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Abstract—In this study we present a kernel based con-
volution model to characterize neural responses to natural
sounds by decoding their time-varying acoustic features. The
model allows to decode natural sounds from high-dimensional
neural recordings, such as magnetoencephalography (MEG),
that track timing and location of human cortical signalling
noninvasively across multiple channels. We used the MEG
responses recorded from subjects listening to acoustically
different environmental sounds. By decoding the stimulus fre-
quencies from the responses, our model was able to accurately
distinguish between two different sounds that it had never
encountered before with 70% accuracy. Convolution models
typically decode frequencies that appear at a certain time point
in the sound signal by using neural responses from that time
point until a certain fixed duration of the response. Using our
model, we evaluated several fixed durations (time-lags) of the
neural responses and observed auditory MEG responses to be
most sensitive to spectral content of the sounds at time-lags of
250 ms to 500 ms. The proposed model should be useful for
determining what aspects of natural sounds are represented
by high-dimensional neural responses and may reveal novel
properties of neural signals.

I. INTRODUCTION

The way our brain represents periodic signals in different
sensory modalities has been a subject of several studies.
For example, spiking of movement-sensitive neurons in
response to periodic signals was successfully encoded using
the convolution model [1] which is a linear mapping from
time-varying neural responses to time-varying representation
of the incoming stimuli. The model has been subsequently
employed in many studies e.g. to investigate how the primary
auditory cortex neurons encode spectro-temporal features in
invasive recordings of ferrets [2] and humans [3], to study
the robustness and the extent to which perceptual aspects are
coded in the cortical representation [4], and to characterizing
stimulus-response function of auditory neurons [5].

Earlier studies addressing the spectro-temporal encoding
in the human auditory system have typically used invasive
intracortical recordings with limited spatial coverage. For
studying the spatio-temporal response across the entire cor-
tex one can utilize MEG which can track the timings and
location of cortical responses at high resolution. However,
direct application of the convolution model to MEG data is
computationally challenging, as the complexity of the model
is directly proportional to the spatial dimensionality of the
neural response data, which is usually very high in MEG. In
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Figure 1. Spectrograms and fourier transforms of four sample sounds.
The amplitude waveform of the sound is depicted below each spectrogram.

this study we propose the kernel convolution model, which is
a dual representation of a sparse convolution model and has
an efficient parameter estimation scheme that is independent
of the spatial dimensionality of neural responses. We first
show that the presented methodology using time-varying
acoustic features of sound stimuli, here spectrogram, is able
to decode new sounds with high accuracy. We then evaluate
different time-lags of the MEG responses in decoding the
spectrogram of test sounds in a cross-validation setting.

II. CONVOLUTION BASED PREDICTIVE MODELLING

A. Convolution model

The convolution model [1]–[3] is a linear mapping be-
tween the response of a population of neurons and a time-
varying representation of the original stimulus, here spec-
trogram s(t, f), sampled at times t = 1, ..., T (see Fig. 1
for the spectrograms of four example sounds used in the
study). The mapping is performed via a convolution of the
neural responses evoked by the sound r(t, x) with unknown
spatio-temporal response functions g(τ, f, x)

ŝ(t, f) =
∑
x

∑
τ

g(τ, f, x)r(t− τ, x) + ε, (1)
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where x indexes the MEG vertices (here sensors), f repre-
sent the frequency channels, τ indicates the fixed duration
(also referred to as the temporal lag above), and ε is an
additive zero mean Gaussian random variable. In this model,
the reconstruction for each frequency channel ŝf is treated
independently of the other channels. If we consider the
reconstruction of one channel, it can be written as

ŝf (t) =
∑
x

∑
τ

gf (τ, x)r(t− τ, x) + ε. (2)

To simplify the description of the inference algorithm used
in this study, we transform the model in a linear algebraic
form. First we define the response matrix R ∈ RNT×τx,
such that each row rn(t) contains the MEG response profile
to sound n across the entire set of sensors x at time t and
the subsequent τ time bins:

R =

r1(1, 1) r1(1, 2) · · · r1(1, x) · · · r1(1− τ, x)

r1(2, 1) r1(2, 2) · · · r1(2, x) · · · r1(2− τ, x)

...
...

. . .
...

r1(T, 1) r1(T, 2) · · · r1(T, x) · · · r1(T − τ, x)

...
...

...
rN (T, 1) rN (T, 2) · · · rN (T, x) · · · rN (T − τ, x)


Gf =

[
gf (1, 1) gf (1, 2) · · · gf (1, x) · · · gf (τ, x)

]>
and

Sf =
[
sf (1, 1) sf (1, 2) · · · sf (1, T ) · · · sf (N,T )

]>
Using the matrix notation, Eq 2 becomes: Sf = RGf + ε,
which is similar to multiple linear regression with weights
Gf . Given a pre-defined lag, the function Gf is estimated by
minimizing the mean-squared error between the actual and
the predicted stimuli: arg minGf

∑
n,t{sf (n, t)−ŝf (n, t)}2.

Solving this results in a maximum likelihood (ML) estimate:

Ĝf = (R>R)−1R>Sf . (3)

The estimate requires an inversion of the inner product R>R
that has a dimension d× d, where d = τx is the dimension
of the MEG response data. In neuroimaging, particularly in
MEG, the value of d is typically large. This is primarily
due to the high spatial resolution of MEG where the data is
sampled from hundreds to thousands vertices, x, depending
on whether the data is represented at the sensor- or source-
level. Further, the different sources can be highly correlated
in MEG which makes the inversion ill-conditioned, i.e., the
resulting inverse may not be possible to compute or it may
be very sensitive to slight variation in the data.
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Figure 2. Event-related responses in one subject (averaged over 20
repetitions of the sound) at an MEG sensor located over the left hemisphere.

B. Kernel convolution model

By applying similar developments for linear regression
[6], we reformulate the classical convolution model in terms
of its kernel or dual representation and add suitable regular-
ization. In this representation, we use a sparse prior on the
response function Gf : Gf ∼ N(0, λ−1f I), where λf ≥ 0 is
the regularization parameter and I is an identity matrix. The
function can be determined by maximizing the log-posterior
distribution of Gf which is equivalent to minimizing the
regularized sum-of-squares error function given by

arg min
Gf

∑
n,t

{sf (n, t)− ŝf (n, t)}2 + λf
∑
x,τ

gf (τ, x)2. (4)

Solving this yields a maximum a posteriori (MAP) estimate:

Ĝf =(R>R+ λf I)−1R>Sf . (5)

The addition of the regularization term stabilizes the estima-
tion of the inverse. Following the derivation of kernel ridge
regression [7], the MAP estimate can be obtained using the
dual form of the sparse convolution model:

Ĝf =R>(RR> + λf I)−1Sf . (6)

Unlike the original form (Eq. 5 or the non-sparse version:
Eq. 3) that required the inversion of R>R ∈ R(τx)×(τx),
the dual form requires inversion of the Gram matrix K =
RR> ∈ R(NT )×(NT ). This is very useful for neuroimaging
studies where the number of conditions, N , is typically very
low compared to the number of neural sources x while τ
and T are of the same order. To estimate λf , we follow
[8] and use an efficient computational technique [9], which
avoids the inversion (RR> + λf I)−1 for each value of λf
and uses a fast scoring measure to estimate leave-one-out
error for different values of the regularization parameter.



The entire reconstruction of the sound spectrogram can
be described as the collection of convolution functions for
each frequency channel; Ĝ = [Ĝ1Ĝ2 · · · ĜF ]. Then, given
an MEG response to a test sound, we take the lagged
representation of the response, rnew ∈ RT×(τx), and obtain
a prediction of its spectrogram Ŝnew ∈ RT×F as follows:

Ŝnew = rnewĜ = rnewR
>(RR> + λf I)−1S. (7)

The dual formulation can be obtained by noticing that the
prediction in Eq. 7 operates on the feature space and only
involves inner products. These inner products can be re-
placed with a kernel function k(rn, rm) = φ(rn)>φ(rm) =∑
i φi(rn)φi(rm), where φi(r) are the basis functions. If

we substitute the kernel functions for the inner-products
we obtain the following prediction of the spectrogram:
Ŝnew = k(rnew)(K + λf I)−1S, where we have defined
the matrix k(rnew) with column-wise concatenation of sub-
matrices k(rnew, rn). Similarly, the submatrices of K are
defined using the kernel function k(rn, rm). Thus, the dual
formulation implicitly allows to use feature spaces of very
high, even infinite, dimensions.

C. Model evaluation

We performed a leave-two-out cross-validation where, in
each fold, we used all but two randomly picked sounds as
training data. To label the held-out sounds without using any
training examples for those sounds, we followed a two-stage
prediction procedure, similar to [10]. In the first stage, we
applied the learned functions to predict the spectrograms for
the test sound pair and concatenated the temporal dimension
to form vectors for both predicted and original spectrograms.
In the second stage, we quantified the predictive accuracy
by computing the correlation between the reconstructed and
the original spectrogram of the two test sounds. If the two
predictions are represented as p1 and p2 and the original
spectrograms are s1 and s2, then the labelling assigned by
the model was considered correct if:

corr(s1, p1)+ corr(s2, p2) > corr(s1, p2)+ corr(s2, p1) (8)

This process is repeated for all possible combinations of
leave-two-out sounds. Under this evaluation, the expected
performance of a random model is 50%. Since the sounds
are of different durations, to evaluate Eq. 8, we truncated
the predicted and original spectrogram to the length of the
shorter sound in each test sound pair.

To evaluate how well the spectrogram features were
predicted, we use the following score:

scoref,t = 1−
∑

(sf,t − ŝf,t)2∑
(sf,t − s̄f,t)2

, (9)

where sf,t is the original value of the spectrogram frequency
f at time t, ŝf,t is the predicted value by the model, and
s̄f,t is the mean value across all pairs in the cross-validation
combinations. The summations in Eq. 9 are computed over
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Figure 3. Performance of kernel convolution model as a function of
time-lag. Each point is an average over 946 cross-validation tests. Chance
accuracy is 50%. Solid line is average accuracy across the three subjects.

all pairs of cross-validation samples. The feature score thus
measures percent of variation explained in each feature.

III. EXPERIMENTS

A. MEG recordings

The data consisted of event-related MEG responses from
three subjects listening to common environmental sounds
(44 items). The sounds included sets of 6−8 items from five
pre-selected categories (vehicles, music, human, animal and
tool) and 8 uncategorized sounds. Each sound was presented
20 times.

Magnetic fields associated with neural current flow were
recorded with a 306-channel whole-head neuromagnetome-
ter (Elekta Oy, Helsinki) in the Aalto NeuroImaging MEG
Core. The MEG signals were band-pass filtered between
0.03 and 330 Hz and sampled at 1000 Hz. During the
recordings subjects listened to a pseudo-randomly shuffled
sequence of sounds and were asked to respond by finger
lift when two consecutive sounds referred to the same item.
Response trials were excluded from analysis. The event-
related responses to the 20 repetitions of each stimulus were
averaged from 300 ms before to 2000 ms after the stimulus
onset, rejecting trials contaminated by eye movements. On
average 19.2 ± 1.1 (mean ± standard deviation) artifact-
free epochs (repetitions) per subject were gathered for each
item. The averaged MEG responses were baseline-corrected
to the 200 ms interval immediately preceding the stimulus
onset and down-sampled to 10 ms intervals. Data analysis
was restricted to 56 planar gradiometers above the auditory
cortex. Example responses are depicted in Fig. 2.

B. Stimulus spectrogram representation

The auditory spectrogram representation was binned at
10 ms and calculated based on the auditory filter bank



with 128 overlapping bandpass filter channels mimicking the
auditory periphery [11]. Filters had logarithmically spaced
central frequencies ranging from 180 to 7246 Hz (Fig. 1).

C. Prediction of sound spectrograms from MEG responses

Prior to the analysis, both spectrogram and MEG data
were standardized to zero mean and unit variance. We used
causal response functions (τ ≤ 0; [4]), which means that the
model decoded spectrograms of sounds at time t using neural
responses at time t, t+1, t+2, ..., t−τ ms. To evaluate the
sensitivity of MEG neural responses to the frequencies in
the stimulus spectrogram, we evaluated the mean predictive
accuracy across all possible leave-two-out combinations of
44 sounds (C44

2 = 946 combinations) for different time-lags
−τ = 20, 100, 180, 260, 340, 420, 500, 580, 740 and 980
ms. Results, shown in Fig. 3, indicate that it was possible
to discriminate between two previously unencountered test
sounds with ∼ 70% accuracy (Mean value 70.0 to 71.9 at
time-lag 250 to 500 ms) even when neither sound was used
in the training data. Next, to evaluate which spectrogram
features were best predicted, we considered the time-lag of
500 ms that gave the optimal predictions and computed the
mean score (Eq 9) across the three subjects for each spec-
trogram feature. The top 15 scoring features represent high
stimulus frequencies (above 3.8 kHz) with scores ranging
from 0.12 to 0.21. Further, we computed item-wise mean
predictive accuracy over the cross-validation folds. The
five best predicted sounds were camera (95.3%), helicopter
(88.4%), lighting a match (84.5%), motorsaw (83.7%), and
door (82.9%), while five least accurately predicted sounds
were trumpet (59.7%), laughter (58.9%), yawning (56.6%),
zipper (55.0%), and thunder (54.3%). The best predicted
sounds typically contained higher frequencies compared to
the less accurately predicted sounds (see Fig. 1).

IV. DISCUSSION AND CONCLUSION

Our results demonstrate that the kernel convolution model
provides an efficient method for predicting spectrograms
of new sounds. Predictions are made by decoding neural
information in high-dimensional MEG responses to com-
mon environmental sounds. Therefore, the extracted neural
information can be regarded as being based on neural
mechanisms that generalize across a variety of sounds. We
evaluated different time-lags in the MEG response data to
predict spectrograms of unencountered sounds, and observed
that the responses are most sensitive for a duration of
around 250− 500 ms from the input stimulus. The auditory
evoked responses used in the analysis are most prominent at
50−500 ms after the stimulus onset despite the stimulus du-
ration (see Fig. 2). Thus, at the longest time-lags (> 500 ms)
the MEG data is noisier compared to shorter lags, as the
decaying MEG responses start to show large inter-response
variability. Neurophysiological interpretation and evaluation
of significance of the results are natural extensions of the

study. The decoding problem studied here is an example of
an underdetermined systems for which regularization and
Bayesian inference have provided reasonable answers.

Classical linear regression has been used earlier to de-
code neural responses, but most studies have either been
limited to non-time-varying stimulus representations [8] or
neuroimaging recordings [10] [12]. The proposed method
will be useful for analyzing brain’s ability to understand
sounds in an acoustic environment, particularly when neural
responses are recorded at high spatio-temporal resolution.
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