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Abstract—Network theory provides a principled abstraction
of the human brain: reducing a complex system into a simpler
representation from which to investigate brain organisation.
Recent advancement in the neuroimaging field are towards
representing brain connectivity as a dynamic process in order to
gain a deeper understanding of the interplay between functional
modules for efficient information transport. In this work, we
employ heat kernels to model the process of energy diffusion in
functional networks. We extract node-based, multi-scale features
which describe the propagation of heat over ’time’ which not
only inform the importance of a node in the graph, but also
incorporate local and global information of the underlying
geometry of the network. As a proof-of-concept, we test the
efficacy of two heat kernel features for discriminating between
motor and working memory functional networks from the
Human Connectome Project. For comparison, we also classified
task networks using traditional network metrics which similarly
provide rankings of node importance. In addition, a variant of
the Smooth Incremental Graphical Lasso Estimation algorithm
was used to estimate non-sparse, precision matrices to account
for non-stationarity in the time series. We illustrate differences in
heat kernel features between tasks, and also between regions of
the brain. Using a random forest classifier, we showed heat kernel
metrics to capture intrinsic properties of functional networks that
serve well as features for task classification.

I. INTRODUCTION

Network theory provides a simple abstraction of neural
connectivity in the human brain and its use to investigate brain
organisation in neuroimaging has gained momentum in recent
years. The brain is a complex, interconnected system which
maintains both functional segregation and integration designed
to optimise information transport [1]]. Due to the integrative
nature of brain functionality, there is increasing evidence of
cognition being supported by coordinated activity between
different functional modules [2], [3]. As such, a number of
recent studies have sought to capture such dynamic processes
using, for example, models of perturbation or spread through
a network [4]-[6]. In this work, we propose the use of heat
kernels, a diffusion model, to capture information propagation
dynamically through functional brain networks.

The heat kernel describes the effect of applying a heat
source to a network and observing the diffusion process
over ’time’. It encodes the distribution of energy over a
network and characterises the underlying structure of the
graph. Heat kernels have found success in the field of 3D
object recognition [7]], [8] where node-based features such
as the heat kernel signature, HKS [7], [9l], and the average

temperature function, AVG [8]], fair well as shape descriptors.
These metrics are able to organise the intrinsic geometry of
the network over multiple-scales, capturing local and global
’shapes’ in relation to a node via a time parameter. In addition,
they are stable and invariant to isometric deformations, and
thus are useful for matching objects in different poses. This
stability against noise is an attractive property to capture
potentially informative features in functional neuroimaging
data. As such, these features also incorporate a concept of the
most influential nodes as measured by heat propagation in a
network. Given the shifting states of neural systems to meet the
demands of cognitive function [[10]], the use of dynamic, node-
based features to investigate brain regions integral for energy
transport may be beneficial towards understanding how these
states interact with one another [6]. For this reason, we sought
to investigate the effectiveness of HKS and AVG as dynamic
features for discriminating between task fMRI networks.

For comparison, we also classify the networks using other
traditional network measures which provide a ranking of
node importance. Centrality measures fulfil such a need of
which there are many variants. Two common kinds used in
neuroimaging are betweenness [11] and eigenvector central-
ity [12]. Other measures such as PageRank [13]] and HITS [[14]]
which analyse incoming links in a network can be used to
order nodes by influence and are commonly used to rank web
pages. The spectral nature of eigenvector, PageRank and HITS
mean they capture the influence of a node that extend to global
features of the network. As such, we opt to compare these
with the heat kernel measures. We also include betweenness
centrality as it is commonly used in neuroimaging network
analysis.

A distinct challenge in the study of brain networks is
addressing potential non-stationarity. While traditionally brain
networks had been assumed to be stationary, recent results sug-
gest connectivity between brain regions is high non-stationary.
This is particularly true in the context of task based paradigms,
such as the Human Connectome Project (HCP) data used in
this work. As a consequence, several novel methodologies
have been proposed to accurately estimate the dynamic proper-
ties of functional networks. A common denominator in many
of these approaches is the use of regularisation to reduce the
number of free parameters. The choice of regularisation will
typically depend on the objectives of the proposed algorithm.
For example, one of the objectives of the recently proposed



SINGLE algorithm [15]] was to estimate sparse connectivity
networks. This naturally led to the inclusion of ¢; regulari-
sation. With the heat kernel, we are interested in capturing
energy flow over an entire network whereby having a denser
network would enable this and may also contain additional
information on functional modules. Furthermore, the stable
property of heat kernel features may be able to account for
any noise in the estimated networks that is not a feature the
task. Here, we use a variant of SINGLE to estimate non-
sparse, precision matrices that were centred on the task’s peak
response to account for non-stationarity in the time series.

We present a preliminary investigation into the efficacy of
node features derived from the heat kernel to classify between
two task-evoked connectivity networks. As comparison, we
also classify using a set of centrality measures which capture
a notion of network topology similar to these heat kernel
features.

The remainder of the paper is organised as follows: in
Section II we first describe the non-sparse variant of the
SINGLE algorithm, followed by details of heat kernel and
centrality features and the classification method. The results
are reported in Section III, before concluding in Section I'V.

II. METHODS

A. Human Connectome Project data

We used a total of 491 subjects from the HCP 500 subject
release [16]. We chose motor and working-memory (WM) 2-
back tasks, RL phase-encoding acquisitions. Cerebral spinal
fluid, white matter and motion were regressed from the time
series. A total of V' = 84 (nodes) regions comprised of
68 cortical and 16 subcortical structures were defined from
the Desikan-Killiany and ASEG atlases, respectively. Signals
were extracted and averaged within each of these regions. The
time of maximal peak, peak;, in the haemodynamic response
of a representative subject was identified for each task. A
connectivity matrix was then estimated from the time series
over a localised temporal window centred on peak; for all
subjects.

B. Estimation of time-varying networks

We estimated a non-sparse, precision network using a
modified version of the SINGLE algorithm [15] in which /5
regularisation was employed. Such an approach retains many
of the advantages of the original SINGLE algorithm, such
as leveraging information across chronologically proximal
networks, while also yielding dense networks for our objec-
tive. Briefly, the SINGLE algorithm produces time-varying
connectivity networks by estimating a corresponding precision
matrix at each observation. Thus for the kth subject we obtain
a sequence of precision matrices {@Ek) r. @Ek) encodes the
partial correlation structure at the ith time point. It follows
th?;)each precision matrix is associated with a weighted graph,
G,".
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The proposed network estimation algorithm looks to solve
the following convex optimisation problem:
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Here f ({@ES)}) is a negative log-likelihood term and
Irghe ({@Es)}) is a regularisation term consisting of £2 penalty
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The adjusted algorithm required the selection of three

parameters. The first is a Gaussian kernel bandwidth, h,
which governs the portion of the time series centred on ¢
from which to estimate sample covariance matrices. The use
of a Gaussian kernel ensures that observations are weighted
according to their proximity to ¢. The remaining parameters
are regularisation parameters A\; and As. Following [[17], the
choice of kernel bandwidth was selected via cross-validation
over a random subset of ten subjects. This resulted in h = 12.5
and h = 17.5 for the motor and WM tasks respectively. For the
work presented here, we use @Ek) from a single observation
at ¢ = peak; for each task. Let @Ek) at ¢ = peak; be defined
as G from now.

C. Heat kernel features

G = (V,E) where V is the set of |V| nodes on which
the graph is defined and £ C V x V the corresponding set
of edges. A weighted matrix, W, is W (u,v) = w,, where
Wy, 18 the corresponding edge strength. A diagonal strength
matrix, D, is D(u,u) = deg(u) = ), .y Wuy. The Laplacian
of Gis L = D — W, and the normalised Laplacian is given
by £L=D"1/2£D1/2,

The heat kernel, H(t), is the fundamental solution to the
standard, partial differential equation of a diffusion process,

0H(t) 4
=—LH(¢
¥ (1),
and can be computed analytically:
H(t) = exp[—tL).

H(t) describes the flow of energy through G at time ¢
where the rate of flow is governed by £ calculated from |[W].
H(t) is a symmetric |V'| X |V| matrix where the entry H (£),,
represents the amount of heat transfer between nodes v and v
after time ¢. The heat kernel average temperature function,

1
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v, 07U
evaluates the importance of u whereby a strongly connected
node would have edges with high energy transfer [8]. The heat
kernel signature,

HESt)y = H)u,

captures the intrinsic geometry of the network for node u
at time t [7]. Both HKS and AVG report slightly different



aspects of heat propagation in a network. As the diagonal of
the heat kernal matrix, H K S(t),, ,, is indicative of the amount
of energy stored in a node at any given time. AVG(t)y v
is indicative of the importance of node w by capturing the
average heat distributed between it and every other node in the
network. This is because an ’edge’ entry in H(t),,, contains
the amount of heat transported between nodes u and v via all
possible pathways. For a given G, we calculated 300 H (t) over
a range of t = [0.05,0, 1, ...,15.0] and normalised each kernel
within ¢. Both HKS and AVG were extracted from all nodes
in each heat kernel. This gave 25,200 heat kernel features per
each subject per task.

D. Network centrality measures

As a comparison, several node-based measures which pro-
vide information on node rank were extracted from G. These
were betweenness, eigenvector centralities, PageRank and
HITS (as implemented in NetworkX ). Briefly, between-
ness centrality ranks node importance by the number of
shortest paths which traverse through a node. Eigenvector
centrality determines node influence by not only considering
its association with other nodes, but also takes into account the
importance of its neighbouring nodes. PageRank and HITS are
link analysis algorithms, typically used by search engines to
rank pages from a search result. PageRank is closely related to
eigenvector centrality but differs by incorporating a damping
factor on contributing neighbours. HITS captures relational
properties between nodes by scoring them as hub (important
for pointing to many other nodes) or authority (important as it
is often pointed to by many hubs) entities. Given the symmetry
of our connectivity matrices, hubs and authority scores from
HITS are equivalent. Each centrality measure resulted in a
vector of 84 features.

E. Networks classification

Our choice of algorithm to classify between motor and
WM features was a random forest [[19]]. Our choice for the
random forest was its ability to rank features by Gini impor-
tance for the classification process. We used the scikit-learn
implementation [20], in with 1000 estimators (trees). Each
separate feature was vectorised (e.g. vector length 25,200 for
HSK, or a vector of 84 for HITS) as inputs into the classifier.
A stratified, 10-fold cross validation approach was adopted
to evaluate the performance of the six node-based features.
Classification performance scores of accuracy, sensitivity and
specificity were recorded and averaged across all folds.

III. RESULTS

Group averaged heat transition maps qualitatively reveal
differences in heat kernel features between motor and WM task
networks, Fig. [T} With increasing time, there is an exponential
decrease in HKS in all brain regions. For AVG, the opposite
occurs; it increases with time. In addition, variations in the
rate of change can be seen both between task networks and
between regions within the networks for both metrics. ROC
plots in Fig. 2] show heat kernel features had the largest areas
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Fig. 1. Node heat transition maps showing the change in HKS and AVG
for each node with increase t. Each map is an average across all subjects for
motor and WM task networks.
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Fig. 2. ROC curves for the 6 node-feature tested to classify task-fMRI
networks. The area under the curves are reported.

under their curves, outperforming all remaining graph mea-
sures tested. Average performance accuracy across all folds
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Fig. 3. Random forest leaves ordered by importance from a single cross-
validation run classifying task networks by HKS. Bar plots are the ranking
for each network node summed across all HKS over ¢.

were: HKS= 95.9%, AVG= 83.7%, eigenvector= 73.5%,
HITS= 73.0%, PageRank= 69.4%, betweenness= 53.8%.
Given the classification performance in Fig. [2] the features
can be broadly categorised into three groups: heat kernel fea-
tures (HKS, AVG), spectral-based features (eigenvector, HITS,
PageRank) and path-based features (betweenness). The most
discriminative nodes for classifying between task networks
ranked in decreasing order of importance for a single cross-
validation fold is plotted in Fig. 3]

IV. CONCLUSION

We presented exploratory work on the use of node-based
heat kernel features applied to functional MRI data. We
illustrated their ability to represent functional connectivity as
a dynamic process and their use for discriminating between
two different task-evoked networks.

Traditional network measures which rely on paths and path
lengths may not be suitable for describing network topology
in functional graphs. Such measures are more appropriate for
networks based on physical, anatomical connections whereas
an interpretation of functional connectivity may be better
served by a diffusion model such as the heat kernel. Heat
kernel metrics also have the advantage of possessing a multi-
scale property where by varying ¢, HK S(t),, for example,
contains information of the network’s geometry as defined
within the local or global area surrounding w. As ¢ increases,
HKS at u decreases as it represents the average behaviour over
an ever increasing region surrounding u, and thus eventually
stabilises. We have shown this to be the case in functional
networks, and also revealed variations in the rate of change
between brain regions. AVG on the other hand increases with
t. It may be that over time, it measures the heat dispersed
from nodes into the system and the more influential the node,
the more energy that was distributed is associated with it. We
demonstrated that these changes in heat propagation are useful
features for discriminating between functional task networks
with high levels of accuracy when compared with several other
equivalent centrality measures.

It is quite possible that the most discriminative nodes are not
associated with the tasks tested. Such brain regions may differ

between tasks, but in themselves, are not significant features
of the task. In addition, performance of the WM task involves
a motor response, thus there will be similar activations in both
networks.

Future work will attempt to investigate the serial correlation
between heat kernel features per node evident in the heat
maps. In addition, the advantage of SINGLE to address non-
stationarity in fMRI time series can be exploited by using
all networks computed temporally. Heat kernel features could
then be extracted from all these networks and analysed through
the evolution of a task.
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