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Abstract—Predictive models applied on brain images can
extract imaging biomarkers of pathologies or psychological traits.
Yet, a successful prediction may be driven by a confounding
effect that is correlated with the effect of interest. For instance
fluid intelligence is strongly impacted by age; age is well pre-
dicted from brain images; hence successful prediction of fluid
intelligence from brain images might have captured nothing
more than a biomarker of aging. Here we introduce a non-
parametric approach to control for a confounding effect in a
predictive model. It is based on crafting a test set on which
the effect of interest is independent from the confounding effect.
We name this strategy “anti mutual-information subsampling”.
We demonstrate the approach with a large sample resting-state
fMRI and psychometric data of healthy aging subjects (n = 608).
We show that using a linear model to remove the effect of age on
the brain signals (“deconfounding”) leads to pessimistic scores, as
previously reported. Anti mutual-information subsampling does
not require to remove from the brain signals the shared variance
between aging and fluid intelligence, and hence does not display
this pessimistic behavior. In addition, it is non-parametric and
hence robust to violations of the linear hypothesis.

Index Terms—confound, subsampling, phenotype, predictive
models, biomarkers, statistical testing

I. INTRODUCTION: CONFOUNDED PREDICTIONS

Large-scale imaging cohorts give increased statistical power,
and make it possible to extract new imaging biomarkers that
predict phenotypes such as neuropyschiatric pathologies [1] or
individual traits [2]. Pattern-recognition methods can predict
individual traits useful for clinicians to measure variations of
the brain, healthy or pathological [3]. For instance, a reliable
marker of brain aging can be extracted from both anatomical
imaging and resting-state functional imaging [2]. However,
predictive models that extract biomarkers can easily capture
confounding effects. For instance, Power et al [4] showed
that in-scanner head motion produces a significant confound
for rest fMRI: motion creates systematic differences in brain
signals, and in-scanner motion varies with subjects’ age.

More generally, in cohorts of larger sizes and with more
phenotypic informations systematic assessment of data quality
is difficult; individuals are not recruited in homogeneous
population with controlled criterion. It is then crucial to
control that detected brain-behavior associations are not driven
by unwanted effects. Indeed the presence of confounding

variables that can mediate observed correlation or be a latent
common cause to observations is a major impediment toward
drawing conclusion from brain-behavior relationships [5].

Classical statistic analysis in brain imaging is based on
the general linear model (GLM) [6], in which confounding
effects are controlled by additional regressors to capture the
corresponding variance. Such an approach shows limitations
in predictive modeling settings. First, it is based on maximum-
likelihood estimates of linear models, while predictive models
are seldom maximum likelihood and sometimes non linear.
Second, it is designed to control in-sample properties, while
predictive models are designed for out-of-sample prediction.
A two step approach based on applying a classical GLM to
deconfound as a first step followed by a predictive model is
often pessimistic, leading to below-chance prediction [2], [7].

In this paper, we develop a novel statistical framework to
control for confounding effects in predictive models. This
framework is based on anti mutual information sampling, a
novel sampling approach to create a test set in which the effect
of interest is independent from the confounding effect. This
approach provides a non-parametric test of whether or not
the imaging data drives a significant prediction, beyond the
confounding effect. To demonstrate our approach, we consider
prediction of fluid intelligence. Indeed, aging significantly
impacts fluid intelligence [8], [9]. Given a fluid-intelligence
predictor trained on a brain-imaging cohort with a wide
age span, the CamCan dataset [10], the question is whether
predictions are driven solely by age differences. Consistently
with previous work, we find that a deconfounding approach
yields pessimistic results. Our approach concludes that, on
CamCan, brain signals predict fluid intelligence better than
age, though not significantly.

II. METHOD: ANTI MUTUAL-INFORMATION SUBSAMPLING

A. Formalizing the problem of prediction with a confound

We consider on n subjects: brain signals X ∈ Rn×p,
an effect of interest y ∈ Rn –the biomarker target– and a
confounding effect z ∈ Rn. An imaging biomarker predicts y
from X independently of z. If y and z are not independent,
we have to account for this effect. Indeed, a prediction of
a target y mediated by a phenotypic information z may
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be misleading or useless. It can be misleading as it can be
interpreted as a link between brain structures and y –e.g. fluid
intelligence– while it is really mediated by z –e.g. age. It
can be useless because brain imaging is likely much more
costly to acquire than the phenotypic variable z, hence may be
preferable only if it bring mores diagnostic information. The
problem that we focus on here it to test whether we can predict
y from X rather than z. Testing predictive model is done
within a cross-validation loop, separating train and test sets
[11]. Little et al [12] discuss what cross-validation measures
in the presence of a confounding variable.

B. Existing approaches for predictions with confounds

a) Deconfounding: The classical procedure in the con-
text of the GLM is to orthogonalize variables that are corre-
lated [6]. In a deconfounding approach, a linear model can be
used prior to the predictive model to remove the effect of the
confounds z in the brain signals X . It must be adapted to
out-of-sample testing. One solution is to apply deconfounding
jointly on the train and the test set, but it breaks the statistical
validity of cross-validation [11] by coupling the train and the
test set, hence it gives biased results. Another solution is to
apply deconfounding separately on the train and the test set,
but this can be very pessimistic [7]. Indeed the shared variance
removed is then an in-sample property, and grows larger in an
uncontrolled way for small test sets. The best approach is to
consider the deconfounding model as a predictive encoding
model, predicting a fraction of the signal X from z, and
removing it from X . This model can be learned on the train
data and applied to the test data.

Another drawback of deconfounding is that it is strongly
parametric: it only takes into account second-order statistics
(covariance or correlations) and may retain latent, more com-
plex dependencies. A possible solution is to use a polynomial
expansion of the confounds z in the deconfounding model.

b) Comparing predictive power: A simple safeguard to
gage the impact of z on the prediction of y is to use predictive
models predicting y from z and compare the predictive
accuracy to that obtained with the biomarkers based on brain
signals. Such argument is used by Abraham et al [1] to control
for the effect of movement on autism diagnostic.

C. Creating a data subset to minimize mutual information

Our strategy is the following: we use as a test set a subset
S of the data such that yS and zS are close to independent.
The remainder of the data is used as a training set, to learn to
predict y from X . If the prediction generalizes to the test set
S, the learned relationship between X and y is not entirely
mediated by z. In particular, the prediction accuracy then
measures the gain in prediction brought by X .

Technically, the challenge is to generate many test sets
on which yS and zS are independent. Our approach is
based on iterative sampling to match a desired distribution:
our goal is independence, i.e. p(y, z) = p(y) p(z), where
p((y, z)) is the joint probability function of y and z, and p(y)
and p(z) are the marginal probability distribution. A related

Algorithm 1: Anti Mutual Information Subsampling
Input: Target y ∈ Rn, confound z ∈ Rn, size m < n

1 S ← {1 . . . n} /* Initialize */
2 while card(S) > m do
3 py ← KDE(yS) /* Density estimation */
4 pz ← KDE(zS)
5 p(y,z) ← KDE((zS ,yS))
6 mi ←

p(y,z)((zi,yi))

py(yi,zi)
, ∀i ∈ S

7 S ← S − {j} Draw one index j to remove from S
with probability mj using inversion sampling.

8 end
Output: Set of test indices S

quantity is mutual information, which characterizes level of
dependency between the two variables: E

[
log
(

p((y,z))
p(y)p(z)

)]
. In

practice we estimate the probability density functions with a
kernel-density estimator (KDE) using Gaussian kernels. We
iteratively create the test S set by removing subjects; at each
iteration, we consider the problem as an distribution matching
problem, matching p(yS , zS) and p(yS) p(zS). For this, we
use importance sampling: we draw randomly 4 subjects to
discard with a probability p(yS ,zS)

p(yS) p(zS) using inverse sampling
method [13, sec 2.2]. Algorithm 1 gives the details.

III. EMPIRICAL STUDY

A. A rest-fMRI dataset with confounded prediction

Various studies have linked whole-brain functional connec-
tivity to individual cognitive abilities [14], [15]. In particular,
Hearne et al [15] predicted fluid intelligence from rest fMRI
on the Human Connectome Project data.

We consider the Cambridge Centre for Ageing and Neu-
roscience (CamCan) data [10]. This study investigates brain
anatomy and function as well as subjects’ cognition over a
large age span. Phenotype data comprises demographic (age)
and psychometric (including fluid intelligence, measured by
a Cattell test). Fluid intelligence is known to change during
the lifetime, with a progressive decrease in middle age [16].
Indeed, the data displays a strong relation between fluid
intelligence and age (fig. 1). When extracting biomarkers of
fluid intelligence, the danger is to simply predict age. Below,
we study how to control the impact of age.

We consider prediction from rest-fMRI functional connec-
tivity: each row of X is a vectorized form of the functional
connectivity matrix for each subject; the target vector y is the
fluid intelligence score; the confound z is the age in years.

B. Experimental paradigm: cross-validating predictive models

a) Prediction pipeline: We use functional-connectivity
matrices as brain imaging signals to build our biomarkers,
following [1]. These matrices were generated by extracting the
time series from predefined atlases BASC [17] with 64 regions
and then calculating connectivity matrices using tangent [18]
connectivity measure. We use Nilearn [19] to extract the signal



and build the matrices. As a prediction model we choose the
standard ridge regression with nested cross-validation.

b) Experiments: We assess the prediction accuracy using
a cross-validation procedure. To generate the test set, we
consider two subsampling methods: either random subsam-
pling, or the anti mutual information subsampling procedure
presented above. The training set contains the samples that
are not dropped to the test set. We use 100 folds. For the
anti mutual information subsampling, different seeds in the
pseudo random number generator lead to different fold. We
assess the null distribution with permutations (20 000 folds
on permuted labels y). With random subsampling, we also
consider deconfounding age.

C. Results

Fig. 1 displays joint distribution of the target (Fluid intel-
ligence) and the confound (age) in the train and test set for
different subsampling methods. The anisotropy of the cloud
of points clearly reveals the statistical dependency between
fluid intelligence and age. The test set generated by Anti
Mutual Information method does not display such anisotropy,
demonstrating the absence of such dependency.

For quantitative evaluation of such dependency, we plot in
Fig. 2 the mutual information and correlation between the
target and the confound for the different subsampling strategies
as we progressively remove more subjects. With Anti Mutual
Information subsampling, both decrease steadily until they hit
a plateau at 300 subjects, which corresponds to a subset with
independent age and fluid intelligence. In contrast, random
sampling (with and without deconfounding) monotonically
maintains high values of mutual information and correlation.

Finally, we report the prediction accuracy measured with
the various approaches in Fig. 3. We use mean absolute error,
as it gives an error measure in the unit of y, comparable
across different test sets. As expected, test sets generated by
random subsampling lead to small prediction error on fluid in-
telligence, much better than chance-level prediction. However,
deconfounding age leads to predictions that are much worst
than chance. Forming a test set with anti mutual information
subsampling avoids to create data where prediction of fluid
intelligence is beyond chance. Instead, this prediction error is
slightly better than chance, thought not significantly.

We hypothesize that deconfounding age leads to worst-
than-chance prediction of fluid intelligence because it removes
shared variance between age and fluid intelligence in the brain
signals. To test this hypothesis, we use a control experiment
where target and confound are the same variable: age. Fig.
4 shows that the effect of deconfounding is similar to that
obtained when predicting fluid intelligence. This supports our
hypothesis.

IV. DISCUSSION AND CONCLUSION

We consider the problem of building biomarkers in the
presence of confounding effects that contribute to prediction.
Standard cross-validation procedures that do not account for
the confound can overestimate the quality of prediction from

brain signals. For instance, an observed prediction of fluid
intelligence from brain functional connectivity may simply be
a consequence of indirectly capturing the subjects age.

Deconfounding approaches used in standard GLM-based
analysis must be adapted to out-sample data, and can easily
lead to pessimistic evaluations [7]. Indeed, when there is
shared signal between the effect of interest and the confound
in the brain data, deconfounding fully removes this signal and
makes it impossible to build a prediction from it. This is unlike
a GLM-based standard analysis in which the confounds and
the effects of interest are modeled simultaneously, and the
consequences of shared signal are less drastic.

Our approach uses anti mutual information sampling to craft
a test set on which the effect of interest is independent from
the confound. It enables a correct test of the predictive power
from brain imaging without killing potentially useful shared
signal. In addition, it is non parametric and does not rely of
a linear confounding model. We demonstrate the use of the
method on data where aging confounds inter-subject variations
in fluid intelligence and hinders the extraction of brain-based
biomarkers of fluid intelligence.
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Fig. 1. Bivariate distribution of
Fluid intelligence and Age com-
bined with distribution for both
variables. The top row shows the
samples that were included in the
training set. The testing set acquired
by different sampled methods is pre-
sented on the bottom row. For the
Random Sampling (first and sec-
ond columns) we observe consid-
erable similarity and negative co-
variance that indicate on strong re-
lationship between predicted vari-
able (fluid intelligence) and con-
found (age). Anti Mutual Informa-
tion Subsampling method (third row)
display zero covariance and interde-
pendency between variables.
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Fig. 2. Evolution of mutual information and correlation with number
of subjects for different subsampling methods. We observe the decreasing
of mutual information and tend to the zero of correlation from the initial set
(608 samples) to final sampled set (around 60 samples).
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