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1. INTRODUCTION

In recent years there has been a resurgence of interest in what are known as robust methods for 

statistical signal processing. Such methods are applicable wherever schemes are used to carry out func­

tions such as signal detection, estimation, filtering and coding, common examples being in radar and 

sonar signal processing, communication systems, pattern recognition, and speech and image processing.

In the early days of development of the body of ideas we now possess for statistical signal process- 

ing, the emphasis was on the derivation of optimum schemes for use in specified signal and noise 

environments. A  classic example of this is the matched filter 'which is optimum for a particular signal 

and noise model. Because the signals and noise in signal processing applications are usually modeled as 

random processes and performance measures therefore usually involve probabilistic quantities (such as 

mean-square error or probability of error), the theory of statistics has played a fundamental role in the 

development of optimum signal processing techniques.

Suppose a signal processing scheme, say a detector for a signal with known waveform in additive 

noise, is designed to give optimum performance for noise possessing a specific statistical description. For 

example, one widespread model for noise is that it is a Gaussian process. One question that arises is, how 

sensitive is the performance of such an optimum scheme to deviations in the signal and noise process 

characteristics from those for which the scheme is designed? This is an important question because in 

practice one rarely has perfect knowledge of, say, the noise characteristics; the Gaussian or any other 

specific assumption is usually a nominal assumption which may be approximately valid most of the 

time. Unfortunately, it turns out that in many cases nominally optimum signal processing schemes can 

suffer a drastic degradation in performance even for apparently small deviations from nom inal assump­

tions. It is this basic observation that motivates the search for robust signal processing techniques; that 

is, techniques with good performance under any nominal conditions and acceptable performance for 

signal and noise conditions other than the nominal which can range over the whole of allowable 

classes of possible characteristics. Thus in seeking robust methods it is recognized at the outset that a 

single, precise characterization of signal and noise conditions is unrealistic, and so classes of possible sig-
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nal and noise characterizations are constructed and considered in the design of such methods.

To illustrate the above observation with a concrete example consider further the detection prob­

lem mentioned above in discrete-time. Thus suppose we have scalar observations X  lfX  2.......X „ , form­

ing a vector X. * which are known either to be noise only or to be a noise plus a known signal sequence 

s ir$ 2> •••’ Sn with positive amplitude 0. We express this situation as a choice between the two 

hypotheses

^  o • Xj N j , i 1 ,2,-^n , Cl.la)

and

H  \ iX i  -  Os, + N,,  i =1,2 , ( l . lb )

where the noise components N , w ill be assumed to be independent and identically distributed with a 

common univariate probability density function (pdf) /  . The likelihood ratio A (X ) for the observa­

tion vector X  is defined as

A (X )  = n
i =1

f i X ,  -0 s ,.)

/  U i ) ( 1.2)

This ratio can be formed for any particular realization of X  provided f  is known. It is well-known 

that a test for H  0 versus H  j based on the comparison of A iX  ) to a threshold is optimum according to 

several criteria. Such a test is Neyman-Pearson optimum [l.l], yielding maximum detection power (i.e^ 

minimum miss probability) subject to a constraint on the maximum value of the false-alarm proba­

bility. The structure of such a test is also that of the test minimizing the Bayes risk for a prior set of

probabilities for H  q and H  as well as that of the minim ax test for a given loss function or pay-oflf 

matrix with unknown priors [l.l].

A  test based on the comparison of A (X  ) with a threshold is equivalent to one based on a com­

parison of the logarithm of AiX  ) with the logarithm of the original threshold. Taking the logarithm 

on both sides of ( 1 .2 ), we have
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lo g A (X )  =  £  ¿ ( X - ^ . ô )  ( 1 .3)
i =1

where

L  (x  ; s , 0) =  log f i x - Q s )  
' f  ( * ) (1.4)

I f  IL  ( * ;  s , 9) I is unbounded as a function of x , the value of log A (X  ) can be influenced heavily by a 

single observation component X¡ for which IL  (X ¡ ; s¡ , 0) I is large. Such a component can therefore 

completely override the weight of a possibly large number of other components in the choice between 

H  o and H  j. While this effect is certainly acceptable i f  the model for the noise density function is 

accurate, it may also be observed because of an occasional completely erroneous measurement which the 

pdf model f  does not take into account. In general the assumed probability density function f  

describes only an approximate or nominal model. Thus, while the actual value of IL  (X ¿; s¿, 0) I at 

some observed value X, =  x¿ may not be large relative to that obtained at other observation com­

ponents, for the assumed model this may happen. To illustrate this, suppose that f  is assumed to be 

Gaussian, in which case L  (x ; s , 0) is linear in x and unbounded. If  the true density /  has exponen­

tial, rather than Gaussian, tails, then the true L  ( x ; s , 0) is a constant for x in the tails, and is bounded. 

For a model specifying exponential tails, an increasing absolute value for an observation component 

indicates increasing likelihood of one hypothesis over another only up to a "saturation" value; beyond it, 

larger absolute values do not indicate larger relative likelihood. I f  the noise density were truly 

exponential (or some other long-tailed pdf), then the performance of the test which is optimum for 

Gaussian noise could be very poor, because of the unexpected number of large noise values.

It would appear, then, that to counter the undesirable sensitivity of the test based on A (X  ) one 

should implement a bounded modification L  (x  ; s , 0) of the function L  (x  ; s , 0) of the assumed nomi­

nal model. Thus, we are led to consider L {x  ; s , 0) of the form
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L ( x ; s , 9) =
b f Z  ( x ; j , 0) >  b ,

L  ( x ; j , 0) , —a ^  Z  ( x ; 5 ,0 ) ^  b , 
~~a * L  ( x ; s , 0) <  — a ,

(1.5)

where a and 6 are constants. One can expect that with a and b not too small test performance should 

degrade only marginally when the assumed model is accurate. On the other hand, the boundedness of 

Z ( x ; s , 0) builds in a robustness against the influence of a small number of spurious observations. The 

size of the interval [—a Jb ] apparently controls the trade-off between degree of robustness and perfor­

mance degradation under the assumed model. It is noteworthy that several analytical considerations of 

robust detection lead to detectors based on functions with the form (1.5), as w ill be discussed in Sec­

tion 4.

Often a class of allowable characteristics, say for a noise probability density function, is con­

structed by starting with a nominal characteristic and then including in the class all other characteris­

tics that are close, in some well-defined sense, to this nominal one. Then a signal processing scheme 

that is robust may have performance at the nominal which is not quite as good as the scheme which is 

optimum for the nominal case, but its overall performance with respect to the defined class of charac­

teristics w ill be good or acceptable. This loose definition of robustness is perfectly reasonable, but it 

does not provide a systematic approach to obtaining robust schemes. In order to achieve this we must 

first specify a measure of "overall” performance of a scheme with respect to a class of allowable condi­

tions at the input. One such measure that has been widely used and which leads to interesting and use­

ful results in many situations is the worst-case performance of a scheme over a class of input condi­

tions. Clearly, i f  its worst-case performance is good we may say that a given scheme is robust. On the 

other hand, to find such a robust scheme we can look for the scheme which optimizes worst-case per­

formance. This approach leads to what we call nurumax1 robust schemes. Implicit in our association of 

minimax schemes with robust schemes is the expectation that the worst-case performance of a minimax 

scheme w ill be acceptably good, being the best that can be achieved. Another expectation one has in

A scheme that minimizes the maximum possible value of a loss function is rranimax; if performance is measured by a gain 
function then a maximin scheme would be sought. We shall use the term minimax as a general description for such schemes in all 
cases.
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defining robust schemes this way is that at any nominal operating point the performance of the 

minimax scheme w ill not be very far below that of the nominally optimum scheme, which on the 

other hand w ill have much poorer performance away from the nominal point. Fortunately, it does 

turn out that minimax schemes for the signal processing applications of interest usually have the above 

characteristics. They may therefore be said to have a more "stable" performance (in the literature the 

terms robust and stable are sometimes used to mean the same thing).

We should emphasize that the classes of allowable characteristics one deals with in robust signal 

processing are generally nonparametric function classes, such as the class of all power spectral density 

functions with specified total power (area under the function) and which lie between specified upper 

and lower bounding functions. For uncertainties expressed by parametric classes of allowable values 

for finite-dimensional parameters (such as the mean and variance of a Gaussian pdf) one car\ of course 

use minimax designs as well, although alternative parametric approaches of statistical theory can also 

be applied in such situations.

In this paper we w ill concentrate on minimax robust schemes. There are useful formulations of 

robustness other than the minimax one, most notably the stability or qualitative robustness ideas intro­

duced by Root [l.2] in the context of signal detection and by Hampel [1.3] in the context of parameter 

estimation. These formulations utilize the idea of robustness as a continuity property of some perfor­

mance measure as a function of the underlying model, and some brief discussion of these ideas is 

included here. However, from the viewpoint of design, the minimax approach has had the most impact 

on robust signal processing schemes. Also we w ill not survey adaptive procedures, which may also be 

used as robust schemes when input conditions are not precisely known and may be time-varying. 

Adaptive procedures, which attempt to learn about input conditions and adjust their specific signal pro­

cessing structure accordingly to maintain good performance, are generally more complex than fixed 

mimmax schemes. Adaptive schemes are more desirable when the a priori uncertainty is so large that 

the guaranteed level of performance of a minimax scheme would be too poor to be acceptable and when 

adequate time and data for adapting is available. Conversely, minima^ procedures would be more
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desirable under more constrained uncertainty classes, and especially as robust procedures to guard 

against excessive performance degradations of nominally optimum schemes for deviations from nomi­

nal assumptions. M inimax schemes may be used in conjunction with an adaptive approach, because the 

learning mechanism in adaptive schemes can never be expected to perform perfectly given any finite 

time for adaptation to take place. The application of minimax concepts to obtain robust versions of 

optimum adaptive procedures has also been considered [1.4]. While our primary concern here is with 

minimax robust schemes we w ill mention other specific techniques whenever it is appropriate.

Most of the recent investigations on robust signal processing techniques have been motivated by 

the works of the statistician Tukey [1.5] and more so by the seminal 1964-1965 results of the statisti­

cian Huber [1.6, 1.7] on minimax robust location-parameter estimation and hypothesis testing. There 

has generally been a tendency to overlook some rather interesting work on m inim a* procedures which 

was carried out for signal processing applications in the decade prior to the publication of Huber’s 

results. In 1954 Zadeh [1.8] suggested that minimax solutions are the natural choices to use in filtering 

noisy signals under a priori, uncertainties. In [1.9] Root describes the game-theoretic approach and its 

application to obtain minimax decision rules in some communication problems. These results of Root 

were originally contained in a 1956 report [1.10]. Early considerations of m inim a* schemes for signal 

processing include those of Yovits and Jackson in 1955 [ l . l l ]  on signal estimation filters for imprecisely 

known power spectral density functions and of Nilsson in 1959 [1.12] and Zetterberg in 1962 [1.13] on 

matched filters. We w ill mention their results again in the following sections. Other early contribu­

tions are the 1957 paper of Blachman [1.14], the 1959 work of Dobrushin [1.15] and the 1961 paper of 

Gadzhiev [1.16].

The pre-1964 investigations of minimax signal processing schemes tend to be characterized by two 

attributes. One is that they were generally not concerned directly with probability density function 

variations but rather with power spectral density function or related variations. Secondly, m inim a* 

schemes were advocated simply as reasonable approaches when designing systems for operation under 

conditions at the inputs which could not be determined a priori. Thus, the possible nonrobustness of
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optimum schemes for nominal assumptions on the input was not explicitly recognized as an issue.

The term robust was first used in describing desirable statistical procedures by Box in 1953 

[1.171 As we have remarked, minimax robustness of estimation and hypothesis testing schemes was 

considered by Huber in [1.6] and [1.7], and since then a large number of results on m inim a and alter­

native formulations of robustness have been generated in the statistics literature. In a recent paper 

[1.18] Huber has given a most interesting account of some early concerns about robustness of statistical 

procedures and specific schemes, some of which date back to the last century. Reviews of the more 

recent techniques of robust statistics have been given by Huber [1.19, 1 .20], Hampel [1.21], Bickel [1.22] 

and Hogg [1.23, 1.24]. Ershov [1.25] also gives a survey of robust estimation schemes which is quite 

broad in its scope. A  monograph on robust estimation schemes by Andrews et cd. [1.26] studies the pro­

perties of many robust estimates. A  collection of chapters edited by Launer and Wilkinson [1.27] con­

tain some useful expositions. A  recent book [1.28] may be consulted for a more detailed treatment.

This survey w ill focus specifically on minimax robust signal processing schemes, so that only a 

small part of the large body of the statistics literature w ill be mentioned explicitly. Most of the recent 

developments in robust signal processing have of course been influenced directly by the developments 

m robust statistics. However, signal processing problems impose their own distinct requirements which 

are not always standard in problems of statistics. Thus it turns out that some recent developments in 

robust signal processing have provided new results in robust statistics.

Most of the results we survey here are of the post-1965 period. Two of the earliest papers in the 

signal processing area from this period are those of W olff and Gastwirth [1.29] and Martin and 

Schwartz [1.30], and they have been responsible for driving much o f the subsequent work in robust sig­

nal processing. Thus a considerable literature has arisen on robust signal processing just in the last ten 

to fifteen years.

The statistical descriptions of input conditions in signal processing are usually stated in terms of 

power spectral density or correlation functions and probability density functions. We shall discuss 

results which have been obtained on minimax robust linear filtering for signal estimation (e.g„ Wiener
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filtering) in Section 2 and for signed detection (e.g., matched filtering) in Section 3. Here the uncer­

tainty classes are for spectral density or correlation functions. In Section 4 results on m inim ax robust 

nonlinear signed detection schemes for distributional uncertainties are surveyed. Nonlinear parameter 

estimation schemes are surveyed more briefly in Section 5, since on this topic there is much already 

available in review form in the statistics literature. Also included in Section 5 is a brief survey of non­

linear modifications of the Kalman filter for robustness against non-Gaussian pdf’s for the observation 

and process noise components. Section 6 treats the problem of robust quantization of data with unk­

nown statistics, and we close with some concluding remarks in Section 7. Although our survey begins 

with robust linear filtering, studies on this topic are of more recent vintage than those on nonlinear sig­

nal detection and estimation. We feel, however, that the very widespread use of schemes such as 

Wiener and matched filters in signal processing justifies our beginning with robust versions of such 

linear processing schemes.

Before we begin let us note some other review, tutorial and survey articles which are available in 

the literature. A  tutorial on this subject by the authors has been published recently [1.31]. VandeLinde 

has given a brief survey in [1.32]. Ershov [1.25] and Krasnenker [1.33] have surveyed nonlinear estima­

tion and detection schemes, respectively. Poor [1.34] has recently given a more mathematically detailed 

survey of robust detection schemes. Kleiner, Martin and Thomson [1.35] and Martin and Thomson 

[1.36] treat the robust estimation of power spectral density functions. Robust methods for time series 

analysis have been considered by Martin in [1.37], and robust methods for system identification have 

been described by Poljak and Tsypkin in [1.38].

As a final introductory comment we should note that the literature in the area of robust statisti­

cal methods is vast and broad. Thus, although this survey touches on what we feel to be the major con­

tributions in robust signal processing, it is by no means exhaustive. However, the many results and 

methods that are pot discussed here are accessible to the reader through the references provided.



2. ROBUST FILTERS FOR SIGNAL ESTIMATION

One of the most common signal processing tasks arising in applications is that of estimating (e.g., 

filtering, predicting, or smoothing) a signal waveform from a noisy measurement. This task arises for 

example in radar and sonar tracking systems, in observers for automatic control systems, in demodula­

tors for analog communication systems, and in medical imaging systems.

Conventional design procedures for optimum signal estimation algorithms often require an exact 

knowledge of the statistical behavior both of the signal of interest and of the noise corrupting the 

measurement. For example, in the design of optimum linear estimation algorithms we must know the 

spectral or autocorrelation properties of the signal and noise in order to specify the optimum procedures, 

and (as w/e shall see below) procedures designed to be optimum for a given model can be undesirablv 

sensitive to inaccuracies in the model. As noted in the Introduction, robust procedures can overcomp 

problems arising due to modeling inaccuracy by incorporating modeling uncertainty into the design 

from the outset.

In this section, we w ill discuss the design of robust estimation procedures primarilv within the 

context of the stationary linear (i.e^ Wiener-Kolmogorov) estimation problem. Several other signal esti­

mation problems have been treated in the context of robust design, including recursive nonlinear filter­

ing and identification. Results on these problems w ill be discussed briefly in Section 5.

2.1. The Need for Robustness in Signal Estimation

Consider the observation model

Y ( t ) =  S (i  ) +  N  ( i  ), —oo <  t <  co, (2.1)

where { S ( i ) ; —oo < t <  oo} and {A  ̂(t ); —oo <  t <  oo} are real, zero-mean, orthogonal, wide-sense­

stationary (w^s.) random processes representing signal and noise, respectively. We assume that

{S (i ); —oo < t <  oo} and {Af ( t ); —oo <  t <  oo} have power spectral densities 3>s and 3»^, respec­

tively. (Most of these assumptions can be relaxed, as is discussed below.)
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Given the observation process {Y it X -oo  <  t <  00} we wish to form an estimate of S i t )  of the

form

S i t )  =  J  h i t  —t )Y  ( r)d  r, (2.2)
—00

where h is the impulse response of a time-invariant linear filter, general problem is illustrated in Fig. '

2.1. A  common performance criterion for signal estimates is the mean-squared error (MSE), which for 

estimates of the form of (2.2)  is given straightforwardly by

£ { I S ( r ) - S ( r ) l 2} 1
27r

OO

f  [ 11— H  ico) 12 <I>5 (o>) + IH  (o>) i2 4>iV (co)] d U)
—00

= e (<1>S, <i>A-; H  ), (2.3)

where H  is the transfer function associated with h (i.e„ H  is the Fourier transform of h ). I f  <t>5 and 

$ Ar are known, then the MSE of (2.3) can be minimized over H  to find the optimum filter transfer 

function for linear minimum-MSE estimation. It is straightforward to show (see, e.g  ̂ Thomas [2.1]) 

that the minimizing solution is given by

H wiaj)
$5 (a>)

<ï>5 (0>) + (û>)
— 00 <  (t) <  00, (2.4)

and that the corresponding minimum value of the MSE is given by

e i<t>s ,<&n , H w )
1 <D5 (û>)<Î>v (û>) ^

27r <Ï>s (û>) +  4>^(îü) dù)

— ew (<î>5 ,«1»^ ) . (2.5)

Suppose that we design a filter H 0 via (2.4) to be optimum for some nom inal signal and noise 

spectral pair i<&§,&$), but that the actual spectra <ï>5 and <I> v can range over some classes S  and M , 

respectively, of spectra neighboring 0$ and <ï>$. An important question that arises in this situation is:
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what is the behavior of the MSE e ($>5 ,$ iV \H 0) as $ s and <*>N range overS  and N  ? For example, it 

is of interest to know how the quantity

sup
XN

e (<D5 'J i o) (2.6)

compares with the quantity e ( <J>|,<J># '̂ H 0) — ew (<££,<!>$). The first of these quantities represents the

worst performance of the filter H  0 over the class of possible spectra, whereas the second quantity 

represents the predicted performance assuming the nominal model to be accurate. A  situation in which

(2.6) were considerably larger than e-y* (<$$,<!>$) would point to a possible inadequacy of the nominal 

design H  o.

To illustrate the degree to which modeling uncertainty can affect performance, we consider the 

following example taken from \ astola and Poor [2.2]. Suppose we have assumed a nom inal model 

(0 50,<I>#) given by

$s(o>)
2v52 _  . , 20va?

--------— and — ------------— f —oo <  o) <  oo.
1 + &>2 100 + o)~

(2.7)

Note that these spectra represent first-order wide-sense Markov processes with 3 dB signal bandwidth

equal to 1, 3 dB noise bandwidth equal to 10, signal power E  {[S’ (f  )]2} =  v52, and noise power 

E  { [A  ( i  )]2} =  v v2. Suppose, however, that all we really know is the total signal power, the total noise 

power, and the fractional signal and noise powers in the frequency band I co I ^  1 . This knowledge

corresponds to the uncertainty classes1

^ * oo

s  =  ^ 5  1 (<») à ù) = ps v/  and J L  f  <t>s (co)d(o =  vs2} (2.8a)
~1  —oo

and

( i 1
— i I 2— J (û>) d co = (2.8b)

1Note that rational models (such as (2.7)) are often forced upon estimated power spectra, although the actual data only 
predicts fractional powers (such as (2.8)) accurately (Marzetta and Lang [2-3D-
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where ps =  J L  J  <D5°(a>) d a>/v52 and pN = J -  f  <J>#(a>) d o>/vA?.

For a given estimation filter, i f , and spectral pair (0 5 ,<&v ), the signal-to-noise ratio (SNR) at the 

output of H  can be defined by

Output SNR =  10 log10(v52/e (<D5 & N ) ) „  (2.9)

since the output S i t )  can be written as S i t )  =  S i t )  +  iS it  )  -  S i t )), and E {[S it )]2} =  v/  and 

E  {(S it ) — S it ) )2] =  e (4>5 \H ). Also, the input SNR is given simply by

Input SNR = 10 log10(v52/v^).

Using these definitions, Fig. 2.1 depicts the nominal and worst-case performance of the filter H  0 

designed to be optimum for the nominal spectral pair of (2.7). Note the considerable performance 

degradation throughout the given range of input SNR’s. Also depicted in Fig. 2.1 is the performance of 

trivial filtering, which corresponds to all-pass filtering if  the input SNR is positive and no-pass filtering 

if  the input SNR is negative. Note that the worst case over (2.8) of the nominally designed filter is uni­

form ly worse than trivial filtering. Thus, the nominal filter can actually make the signal noisier than 

it originally was!

2.2. Minimax Design of Robust Filters

The above example illustrates the need for an alternate design philosophy for the stationary 

linear signal estimation problem for applications in which there is some uncertainty regarding the spec­

tra o f interest. In particular, in view  of the methods described in the Introduction, we consider as a 

design philosophy the minimization over H  of the worst-case performance degradation described by

(2.6). That is, we consider the design criterion

min { sup
H (4>s , ^ ) € i x J i r e ($5 . * * # ) } . (2.10)

A  solution to (2.10) can be considered to be a robust filter for the uncertainty classes S  and N .



O
ut

pu
t S

N
R

(d
B

)

Fig. 2.1: Worst-case and nominal performance of nominal and trivial filtering for example o f Section
2.1.
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To solve this problem, we would like to find a saddle point for the minimax game of (2.10 ); i.e., 

we would like to find a spectral pair ($5  ± ,&NZ  )  6 $  X N  and a filter H R satisfying

max
S  X N

= =  min e (Qs ¿ -J I ).
H (2.11)

Note that the right-hand equality in (2.11) implies that H R is the optimum filter for the pair 

H R{ud =  jr (<t>)/(<l>5 x  (o>) +  (<u))i thus, the determination of a saddle point

involves finding a pair ) which satisfies (2.11) with H R =  <bs x /(<DS x  +  <$>NtLl  The left-

hand inequality in (2.1 l )  says that H R achieves its worst performance at the pair of spectra 

) for which it is optimum. This worst performance, e ($ s x ,$>NJ_-JiR \ is the guaranteed 

level of performance of the filter H R for the classes of S  and N  .

The problem (2.10) was first posed in the context of robustness by Kassam and Lim in [2.4], 

wherein a saddle point solution to (2.10 ) was given for the situation in which the spectra are known 

only to lie within given spectral bands. The problem of (2.10) was considered for general spectral 

uncertainty classes by Poor [2.5], and it is shown in [2.5] that for convex £  and N , a spectral pair 

€ S X N  and its optimum filter H R = &s x X<X>S z  + &NJ. )  form a saddle point for 

(2.10 ) if, and only if, the pair ($>5 x  ) is least favorable for £  x  N ; i.e., i f  and only if  

>®n j . ) solves

max
( *S  . * * ) € • *

eW ($$ &N  )  »
X N (2.12)

where ew is the minimum MSE functional defined by (2.5). The term "least favorable" comes from the 

fact that ( ^ s x . ^ v x  ) is the Pair of spectra in £  X M  that correspond to the random processes that are 

hardest to separate by filtering.

Thus, a design procedure for finding a robust filter for given uncertainty classes £  and N  is to 

solve (2.12) and then to design the optimum filter for the maximizing spectral pair. Since the filter 

design problem is solved by (2.4), the only possible difficulty is in solving (2.12). This problem, how­

ever, is straightforward to solve for many uncertainty classes o f interest. In particular, the functional
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ew (<i>5 ,<$# ) can be written as

(2.13)

where C is the convex function CCx)  =  -(27r)_1x / (l +  x ) .  Thus, maximizing ew is equivalent to

"distances" between densities (see, A li and Silvey [2.6i Csiszar [2.7]). In view  of (2.13) least favorables 

can be interpreted as being the spectra in S  and N  whose shapes are "closest together". Because of this 

structure, the problem of solving for least-favorable spectra for spectral uncertainty classes in which 

the total signal and noise powers are known and only the spectral shapes are uncertain can be accom­

plished by analogy with results in robust hypothesis testing. In particular, for a general type of classes 

with this property, the least-favorable spectra are scaled versions of the least-favorable probability den­

sities for an analogous robust hypothesis testing problem posed by Huber [2.8]. This is a useful result 

because solutions to the robust hypothesis testing problem are known for many uncertainty models of 

interest. (See Poor [2.5, 2.9] for further details.)

2.3. Some Useful Models for Spectral Uncertainty

There are a number of useful models for spectral uncertainty for which solutions to the robust 

stationary linear filtering problem can be obtained straightforwardly. The following examples are typ­

ical:

Example 1: €-contaminated models

One very useful spectral uncertainty model is that given by

where <&° is a nominal spectrum, cr is an arbitrary and unknown "contaminating" spectrum, and € is a 

degree of uncertainty (between 0 and l )  placed on the nominal model by the designer. This type of

the functional J  C (<£$ /$N )<J>̂ -, which is a special case of a general class o f divergences or

oo CO

{3>l 4>(a>) — ( l  — e)̂ >0 (o>) +  ecrico) and J  <P(o))da) = J  <1>0((o)d(o} (2.14)
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model allows for a fairly general type of uncertainty in a nominal spectral model, and it is used fre­

quently to model uncertainty in several contexts.

Example 2: variational-neighborhood models

Another useful model for spectral uncertainty arises from allowing all spectra that vary from a 

nominal spectrum by no more than some given amount. Using a standard measure of "variational dis­

tance" this model becomes

Example 3: p-point models

The classes of (2.8) are particular examples of a more general type of spectral uncertainty class 

known as p-point classes. These classes are of the form:

where, as before, O0 is a nominal spectrum and . . .  , i l „  is a partition of the frequency domain.

Note that a p-point class consists of all spectra that have a fixed amount of power on each of the spec­

tral regions 0 l f . . . ,  f l n . Such a class might arise, for example, when power measurements are taken in 

a number o f frequency bands.

Example 4: band models

The first spectral uncertainty model considered in the context of robust Wiener filtering consists 

of the class of those spectral densities (w ith a given amount of power) that lie in a band bounded above 

and below by two known functions. This class can be written as

(2.15)

oo

(2.16)
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oo

{<$ I L  Cat) ^  $>((0) ^  U (tl>), —OO <  (j) <  00; _L_ f  if o> =  v 2}
27T ‘L

(2.17)

where L  and i/ are known functions and where v 2 is fixed. Note that a model such as (2.17) can be 

used to describe a confidence region around an estimated spectrum. Also note that the €-contaminated 

model of Example 1 is a special case of (2.17) with L  =  ( l  — €)4>° and U  =  00.

Example 5: generalized moment-constrained models

As a final example, consider spectral uncertainty classes of the following type:

00
/  /  * (cd) $ ( cd) d(x) =  Ck,k = 1 , - V i } ,  (2.18)

— OO

w here f  > f  m are known functions and C j....... cm are constants. The quantities

f  f  k k = l»~**ft, are sometimes known as "generalized moments" of the spectrum 4> corresponding to

the weightings /  1, . . . ,  f  n. Note that the p-point class of (2.16) is a special case of (2.18) with 

f  k (^ ) = 1 for <*> € CLk and f  k (to) =  0 for cd # O k . More generally (2.18) might represent the set of 

spectra of all processes that yield output power ck when input to a filter with transfer function

&7r f  k (fc*)]̂ 2 for k =1 r~ji. Thus, a model such as (2.18) arises when the available information consists 

of power measurements taken at the outputs o f a filter bank.

If $  and M  are both of the e-contaminated or variational neighborhood type, then it can be 

shown (see Kassam and Lim [2.41 Poor and Looze [2.10]) that the robust filter is of the form

H  R (to)

k' ,

H j i o ) ,  

km ,

where H 0 =  $>§/($>$ +  <I> 

the value o f e and on the

if H  0(<d) <  k'

i f  k' ^  H  0(o>) ^  k" (2.19)

i f  Hjiw )  >  k‘

n  ) is the nominal filter and where k' and km are two constants depending on 

particular model used. This robust transfer function is illustrated in Fig. 2.2.

Note that the effect of incorporating the uncertainty into the design is a lim iting of the gain of the 

nominal filter both from above and from below. This solution has a nice intuitive interpretation i f  one



. 2.2: Typical robust filter characteristic for €-contaminated or variational neighborhood models for 
spectral uncertainty.
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considers the action of the nominal filter H  o. This filter is designed to have near unity gain in spectral 

regions where the nominal signal-to-noise power density ratio, <I>J* (o>)/<I>(a>), is large, and to have near 

zero gain at frequencies where this ratio is small. In other regions, the gain is chosen to balance the 

effects of signal distortion and noise throughput. The robust filter transfer function reflects similar 

characteristics but, also, because of the spectral uncertainty, it limits the gain from above to guard 

against a greater than nominal amount of noise power at the frequencies where 3>j7 <X># »  1 and it 

limits the gain from below to assure that unexpected signal power at frequencies where «  1

w ill not lead to undue distortion.

I f  both signal and noise spectral uncertainty classes are the p-point form of (2.16)) with common

spectral bands f l x....... Qn , then the robust filter can be shown to be given by (see Cimini and Kassam

[2.11]; Vastola and Poor [2.12])

* Vjj
= , i f  0) Z a iti = 1 ^ 1  (2.20)

yS 4 ' VN j

where vs2- = _ _  J  3>£(o)) a> and = J L  J  (o>) d w for i =  l^ n .  A  typical filter of this
1

type is depicted in Fig. 2.3. Note that this is a zonal filter that can only be implemented approxim ately  

for electrical signals; however, in optical filtering where the variable t in (2.1 )  is interpreted as a spa­

tial parameter and oj as spatial frequency, this type of filter would be very simple to implement (see 

Cimini and Kassam [2.11, 2.13]). An interesting feature of this model is that the performance of the 

robust filter is constant over the classes $  and N  and is given by [2.1l]

e (4 >5 ,&N \Hr )
i=i + VN4 ’

for all (i>s ,<£v ) X N .

(2.21)

The robust solution for the band model of Example 4 is given by Kassam and Lim in [2.4] and its 

behavior is similar to that for the 6-contaminated model (which is a special case). Solutions for general­

ized moment classes have been given by Breiman in [2.14], and a particular case of this model w ill be



Fig. 2.3: Typical robust filter characteristic for p -point models for spectral uncertainty.
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discussed below. (O f course, the p-point model is also a special case.) Other models including combina­

tions of the above models (such as the bounded p-point model [2.15]) and more general models based on 

Choquet capacities [2.9, 2.16] have also been considered.

To illustrate the potential effectiveness of the robust filter we return to the problem described by 

the nominals of (2.7) and the uncertainty model of (2.8). This is a p-point model with 

~  ^2  -  Q ft Ps ~ 1/2 and pN =  0.063. Figure 2.4 superimposes the (constant) performance

of the robust filter (2.20) for this case onto the nominal and worst-case performance curves of the nomi­

nal filter from Fig. 2.1. Note that the performance of the robust filter over the entire uncertainty class 

is only slightly degraded from the nominal performance of the nominal filter and is remarkably 

improved over the worst-case performance of the nominal filter. This example illustrates fairly 

dramatically the favorability of the minimax design for filtering in uncertain environments.

2.4. Robust Causal Filtering, Prediction and Smoothing»

The results discussed in the above subsections assume implicitly that the class of allowable estima­

tion filters includes noncausal filters; Le, h it  -  r )  in (2.2) is not necessarily zero for r  >  t. While this 

assumption is not restrictive for many applications such as those involving spatial filtering or enhance­

ment of stored signals, there are also many applications in which causality of the estimation filter is

desired for the purposes of real-time processing. To discuss this situation we consider again the observa­

tion model given by

Y i t ) =  S i t ) +  N  i t ), —oo <  t <  oo, (2 22 )

where { S ( f ) ;  oo <  t <  oo} and { W ( r ) ;— oo <  t <  oo} satisfy the assumptions made below (2.1). 

We wish to estimate the signal at time t +  X for some fixed X based on observations up to time t ; Le. 

we wish to consider estimates of the form

~ t
S it +  X) = J  h it  — t )Y  iT)d t .

(2.23)
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Fig. 2.4: Performance curves depicting the favorability of the robust filter for the example of Section
2.1.
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Note that X <  0 in (2.23) corresponds to fixed-lag smoothing of the signal, X = 0 corresponds to causal 

filtering, and X >  0 corresponds to signal prediction.

The MSE associated with the estimate of (2.23) is given by

£ { l  S (f  + X ) - S ( t  +  A ) l2) =  _ L  /  [l e iK* — H  (<a) 124>s (<o) +  I H  (a ) i 24> v (<d)] d w
— OO

=  e X(<DS ,&N 'M  ) ,  (2.24)

where H  is the transfer function of the filter \h (i >, t >  0}. For fixed <t>s and $> v such that the obser­

vation spectrum, (O 5 + <î>̂  ), satisfies the Paley-Wiener condition, the MSE of (2.24) is minimized over 

all causal filters by the filter with transfer function

H  0+ (o>) =
[<ï>5 ( « )  +  <ï> v (<*>)]+

e (a>)

[<ï>5 (en) +  $ N (û»)]”
(2.25)

where the subscript + denotes causal part in an additive spectral decomposition and the superscripts + 

and - denote causal and anticausal parts, respectively, in a multiplicative spectral decomposition (see, 

e.g„ Wong [2.17]). The minimum MSE is then obtained by combining (2.24) and (2.25) as

(2.26)

As in the noncausal situation discussed above, it is commonly the case in practice that <X>5 and <I>V 

are not known exactly but rather are known to lie in some uncertainty classes $  and N  of possible sig­

nal and noise spectra. In this case we may seek a robust filter f o rS  and N  by minimizing the worst- 

case error,

sup
(<ï>5 ) € s  x N (2.27)

over all causal transfer functions H . Although this problem is analytically more difficult than the 

corresponding noncausal problem, it can be shown for convex £  and M  that, within mild conditions, a
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saddle point solution for this problem is given by the optimum causal filter H r corresponding to the 

least-favorable spectral pair ($ 5(/ ) for this causal problem, where (<S>5>/ ,<PNJ )  is defined via

e x+ (<tsj,<I>AV)  =  max
(4>5,<i>̂ )€ S x N (2.28)

(see Poor [2.51 Vastola and Poor [2.161 Franke [2.181 Vastola [2.191 Franke and Poor [2.20]).

Thus, conceptually, the causal robust signal estimation problem is no more difficult than the non- 

causal one, since one designs a robust filter by first maximizing e x+ (4>5 ,<1>A0  ove rS  X M  and then 

designing an optimum filter for the maximizing pair via (2.25). However, in the noncausal problem, 

there is a tractable closed-form expression, namely (2.5), to be maximized to find least favorables, 

whereas no such general expression exists for the causal problem; i.e., there is no general closed-form 

expression for e£  (<$$ ,<J>Ar) of (2.28). On the other hand, there are many specific cases of practical 

interest for which e x+ ( $ 5 ,&N )  is known in closed form (see, e.g„ Yao [2.21, 2.221 Snyders [2.23, 2.24]) 

and, moreover, general (but tedious) methods for finding such expressions are available (e.g, [2.23]). 

Robustness in several causal filtering problems has been considered using these results. Generally speak­

ing, the phenomena observed are more or less the same as for the noncausal case, although, for a given 

model, nominal causal filters appear to be somewhat less sensitive to uncertainty than nominal non­

causal filters are, due to the relatively lower selectivity of causal filters (see, e.g., Vastola and Poor [2.2]).

Example: Robust Prediction

An interesting example of an application in which the above results can be easily applied is the

problem of discrete-time one-step pure prediction.2 In particular, suppose we observe a discrete-time sig­

nal directly up to some time t ; Le., we have

Y (Jc ) — S (k X k € {._, t —3, t —2, t —1 , t } . (2.29)

Suppose further that we wish to predict the value of S (k  )  at the next sampling instant k =  (r + l )

Note that the discrete-time problem is the special case of the continuous-time one in which the spectra are concentrated in 
the spectral band I 0) I \  TT. Thus the above discussion holds for both discrete and continuous time.
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with a linear predictor

S ( f + 1) =  Z  h ( t - k ) S ( k ) .
k =—oo (2.30)

This is the problem of (2.23) with X =  1 and 3»^ (o>) =  0 for all (o.

The minimum MSE functional e (<PS )  for this problem is given by the well-known 

Kolmogorov-Szego-Krein formula (Hoffman [2.25]):

TT

e »0) =  exp { ^ -  f  log ( 0 5 (o>)) d it)} . (2.31)

Thus, in order to design a predictor to be robust over an uncertainty class S  of signal spectra, we choose

$>sj via

TT 0

= arg { max f  log &s (o>) d o>}, (2.32)

and we then design the optimum predictor for this spectrum. This problem has been considered by 

Hosoya [2.26] for the particular case of an €-contaminated spectrum and by Franke [2.18] and Vastola 

and Poor [2.19] for the general case.

It is interesting to note that the spectrum of (2.32) can be interpreted as being that member of $  

which is "closest" to a uniform spectrum (see Poor [2.27]).3 This has a very nice intuitive interpretation 

since a uniform spectrum corresponds to white noise, which is the universal worst-case type of signal to 

predict. (I.e^ past and present data is useless in predicting future values of white noise.) It is also

1 \
interesting to note that the quantity J log <X>s (o>) d o> is the spectral entropy of the signal process

—*7T

(see, e.g  ̂[2.28]), and thus the least-favorable spectrum is maxentropic in S . Also, since the entropy of a

TT IT

3This follows since f  log <I>5 M d  (I) =  - f  c ( i >5 (co))<f (D where C is the convex function C Gt) =  —log X.
— JT — TT

Comparing with (2.13) one sees the interpretation of the negative of the spectral entropy of <3?̂  as being a measure of the distance 
of <P5 from the uniform spectrum.
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process is a measure of its indeterminism, the least-favorable spectrum can be thought of as the most 

indeterministic, a term introduced by Franke [2.18].

As a specific example, we consider the particular case of an 6-contaminated first-order wide-sense- 

Markov signal; i.e., we have

oo
S = { i >5 I <I>5 (a>) = (1 -  €)<&£(o>) + eoiai), -L . f  <j>5 (o>) d co = 1}

27T J

where

3>s(<tf) =
1 — r 2

1 —2 rcos (o>) + r 2
—IT ^  G) ^  7T ,

(2.33)

(2.34)

and where 0 ^  r  < 1 . The least-favorable spectrum for this model is given by (see [2.26])

$5 j  (o>) =
(1 -  €)<Pf((o) i f  (1 -  e)3>5°(a>) >  c'

c i f  Cl -  €)$>5° (g>) <  c ,
(2.35)

OO

where c is chosen so that J  0$ j  (o>) d oj = 1 . This spectrum is illustrated in Fig. 2.5 for the case

r — 0.5 and € =  0.25. Note that, as € increases, the peak in the center of the frequency band "melts" 

into a uniform spectrum in the frequency tails.

Another interesting example of robust prediction comes from consideration of the following sig­

nal spectral uncertainty classes (see Franke [2.18]):

1 v
S  =  { t s \ f  e>“ » i j W i a )  =  c „  I I = 0, W n ) (2.36)

where cq. . . .  ,cm is a set of constants. Since —̂— f  e 1 ̂  $>s (aj) d 01 is the k th -lag autocorrelation
2lr i r

(£ {S ,  Sl+k } )  of the signal, (2.36) corresponds to the set of all spectra whose first m lag autocorrelations 

take the given values c0, —  ,cm. Such a model is applicable, for example, when we have measure­

ments o f a finite number of autocorrelations of the signal process. Note that *(2.36) is an example of the 

generalized moment constrained model from Example 5 of the preceding subsection.
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Fig. 2.5: Least-favorable spectrum for predicting an €-contaminated wide-sense Markov signal.
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To find a robust predictor for the class S  of (2.36) we first look for the least-favorable signal spec­

trum by solving the constrained optimization problem

^ n  /  log ^  d w sut>ject t0 ( « )  û> =  c* ; I k I =  0 ^  ; (2.37)

(2.37) w ill be recognized as the well-known maximum entropy spectrum fitting problem, and its solu­

tion is straightforwardly seen to be given by

= --------- 12 ----------
I ± a ke-J<* |2 (2.38)

with a0 — 1 and with a ir~y&m and <Jq satisfying the Yule-Walker equations for the correlations 

c 0i~»cm (see, e.g., [2.29]). The spectrum (2.38) is the spectrum of the m th -order autoregression

= Z  °kst-kk =1
+  cT0et , t  =  0, ± 1 , ± 2, (2.39)

where {er }r“ -oo is a sequence of orthogonal, zero-mean and unit-variance random variables. Thus the 

optimum one-step predictor for the least-favorable spectrum (2.38) is given by

^ mSt +1 = Z  ak St +1 -k »k =1 (2.40)

and so the robust one-step predictor for (2.36) is a simple finite-length predictor with coefficients deter­

mined from the Yule-Walker equations. That this predictor uses only m past samples is an intuitively 

pleasing result, since we have no knowledge o f the correlation structure beyond lags of length m . This 

result has been generalized to p-step prediction by Franke and Poor in [2.21].
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2J5. Robust Equalization of an Uncertain Channel

In the observation model of (2.1 ) and (2.18) it is assumed that the signal we are interested in 

estimating is corrupted only by the additive orthogonal noise process {2V(i ); — oo < t <  oo}. However, 

in many situations of practical interest we also have linear distortion or spreading of the signal by the 

observation channel. This situation can be described by an observation model of the form

oo

Y i t )  -  f  k it  - r )  S (t ) d r  +  N  it ), -oo  <  t <  oo, (2.41)
—oo

where the noise and signal processes satisfy the assumptions made after (2.1 ) and where k it ) is a chan­

nel spread function. The problem of estimating S it ) from the observation of (2.41) is the general prob­

lem of channel equalization (or deconvolution) plus filtering, which arises in many applications such as 

communications, sonar, seismology, and image processing.

If, as before, we consider signal estimates of the form

oo

S i t )  =  f  h it  —r ) Y  ( r )  d t, (2.42)
—oo

then with known O5 ,<1>^, and k , the optimum (minimum-MSE) equalization filter is given straight­

forwardly by the transfer function

H E M  =
K;iù))<t>s (ù))

I K c (cui) 120 5 (o>) +  (cj)  ’ (2.43)

where K c is the transfer function of the channel and where K *  denotes its complex conjugate.

In practice, the transfer function of the channel is rarely known precisely. However, to design 

the optimum equalization filter of (2.43) one needs exact knowledge of this channel characteristic. 

Thus, as in the case in which the signal and noise spectra are uncertain, it is necessary to seek an alter­

native design objective for situations in which the channel characteristic is uncertain. In particular, if  

we can model the channel as having a transfer function which lies in an uncertainty class K , then an
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appropriate design criterion might be a minimax MSE formulation where the maximization is taken 

over all channels in the class K .

This minimax formulation for equalization of uncertain channels has been proposed and investi­

gated by Moustakides and Kassam in [2.30], To illustrate the nature of solutions to this problem we 

suppose, for example, that the channel is known to have a linear phase characteristic and that the chan­

nel gain I K c (w ) I is known only to lie between known upper and lower limits L c (to) and Uc (to), 

respectively. That is, suppose we have

L c (to) K I K c(to)\ ^  Uc (to) (2.44)

for all frequencies to, but that I K c (to) I is otherwise unknown. Then, assuming Uc (a>) >  0 and 

(g>) >  0, it can be shown [2.30] that the magnitude of the robust (minimax) equalization filter 

H e J (to) is given by

H E ji (<*>) —

L c (to)<t>s (oj)

L c\to)^s (to) +  &N (to) ’

2
L c (to) + Uc (to )'

i f

i f

0>N (o>) 

Z ^ c o )^  (a>)

(to)

(to)

^  A  (to) 

<  A  (to)

where

(2.45)

A (iu ) =
Uc (<o) — L c (to) 

2 L jto ) (2.46)

Note that the quantity (to)/L^(to)^>s (to) is a measure o f the maximum possible noise-to-signal ratio 

at frequency to, and A (to) is a measure of the uncertainty in the knowledge about the channel. Thus,

(2.45) implies that i f  the maximum noise-to-signal ratio at a given frequency is larger than the uncer­

tainty in the channel model, then we use the optimum gain for the lower channel, L c (to), at that fre­

quency. Alternatively, i f  the reverse is true for a given frequency, then we simply ignore the noise at 

that frequency and use the gain prescribed by the inverse average channel. A  similar result can be 

obtained for situations in which the phase of K c (to) is also unknown.
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2.6. Robust Filtering of Signals in Correlated Noise

Another aspect of the assumptions made above on the model (2.1) and (2.18) that is sometimes 

violated in practice is that of no correlation between the signal and noise processes. Signal-dependent 

noise arises in many applications such as radar or sonar, for example, due to phenomena such as mul­

tipath and clutter. Often the correlation between signal and noise in such applications is not well 

modeled, so that robust techniques are useful.

I f  we assume that the signal and noise processes of (2.1) are jointly wide-sense stationary, then 

their total correlation picture can be described by the spectral density matrix D  given by

where $>s and <hAr are as before, <PSN is the cross spectrum between {S ( r ); —oo <  t <  oo} and

Z)(" ) _  <t>¡„{10 ) <M<o)

<PS(ü)) <PS A;(ù>)
(2.47)

—00 <  t <  00}, and where, as before, the asterisk denotes complex conjugation.

For a signal estimate of the form

00
(2.48)

—00

we have that the MSE is given straightforwardly in this case by

00

E {  I s ( i ) - i ( i ) l 2} =  J L  /  [I l - t f ( o > ) l2<i>s (ü ))+  I H  (o>) I 2&n  (ai)
^ *' —00

-  2H  (a ltes* (o>) +  2 1 H  (o>) 12 Re{ <D5Ar (u>)}] d <0

(2.49)

The minimum-MSE filter is given by
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<ï»5 (a>) +  <Ï>^(û>)
(2.50)<ï>5 (ùj) +  2 Re {<ï>5Ar (û>)j +  <î>N (ü)) ’

and the corresponding minimum value o f MSE is given by

e ($ s ,<*v ,$SN ; t fw ) (2-51)

Of course, with <bSN (o>) identically zero the expressions (2.49M2.51) reduce to (2.3M2.5).

If  the correlation matrix D  of (2.47) is not known precisely but, rather, is known only to lie in 

some class HD of spectral density matrices, then to seek a robust alternative to the optimum filter of 

(2.50) we can replace the objective function e (<t>s ,<PN ,<&SN -J{ )  with its supremum over HD. As in the 

uncorrelated signal and noise case, this yields a minimax game for designing a robust filter H R. The 

solution to this problem has been considered by Moustakides and Kassam [2.31, 2.32]. Within mild con­

ditions it can be shown that, for convex classes HD, a spectral density matrix DL € HD and its 

corresponding optimum filter from (2.50) (when it is uniquely defined) w ill be a saddle-point solution 

to this game i f  and only if, DL is least favorable; i.e., i f  and only if

Dl =  arg ’ „ T J ,  Cw (i>s • * * »  )! • (2.52)

To illustrate the possible structure of the least-favorable spectral density matrix, it is interesting 

to consider the case in which the signal and noise spectra are known but the cross spectrum is not 

known precisely. In particular, suppose we can establish the fact that the cross spectrum satisfies the

conditions

0 ^  L M  <  I <PSN (û>) I <  U  (o>), —oo <  Ù) <  oo, (2.53)

where L  and U  are given functons. (Such a model might arise, for example, if  a confidence band for 

the cross spectrum could be determined via spectrum estimation.) For this model it can be shown (see
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Moustakides and Kassam [2.32]) that the least-favorable cross spectrum is given by

- £ ( « )
- B M
- U M

i f  B M  L M  
i f  L(<a) ^  B M  ^  U M  
i f  U M  <  B M ,

where B is defined by

B (it>) = min {<I>5 ( t o ) ,^  (a>)} .

(2.54)

(2.55)

Thus, at a given frequency, whether the worst case involves minimum cross spectral density, m axim um  

cross spectral density, or something in between, depends on the relationship among L , B , and U  at that 

frequency. If, for example, nothing is known about the cross spectrum, then all we can say is that

0 <  I 4>5A-(to)l ^  [ $ 5 (o>) 4 ^  (a))]*, -o o  <  (o <  oo, (2.56)

where the right-hand inequality follows from the required nonnegative-definiteness of ZKo>). Since 

min{<2 J> } ^  [ab ]‘/2 for all cz ^  0 and b ^  0, it follows straightforwardly from ( 2.54 ) that in this case 

we have

=  —min {<1>5 (o>),4>jV (o>)}, -o o  <  o> <  oo . (2.57 )

Equation (2.57) together with the optimum-filter expression of (2.50) gives that the robust filter for 

completely unknown cross correlation is given by the somewhat surprising result,

H R (o>) =
1 ,
0 ,

if 4>s (o>) > <&N (0>) 
if 4>5(6>) < «^(fc)) . (2.58)

Other results for different bounded uncertainty classes are given in [2.31].
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2.7. Uncertainty Classes of Spectral Measures

In the above discussion, we have considered several aspects of the basic problem of robust linear 

filtering of stationary signals in additive stationary noise. In particular, we have discussed the basic 

robust filtering problem in a noncausal framework, and we have also discussed the treatment of filter 

causality, equalization, and cross-correlation between signal and noise. One issue which has not been 

discussed is that o f how one can deal with stationary processes which do not necessarily have spectral 

densities but, rather, have associated spectral measures (or, equivalently, spectral distributions). This 

situation arises in practice primarily when there are pure harmonics in the signal and/or noise. For 

example, in a communications receiver, one might have processes that nominally have spectral densities 

but also contain pure-harmonic uncertainties caused by sources such as line hum or tone jamming. To 

treat the robustness problem in this more general context requires a measure-theoretic formulation of 

the filtering problem. This issue has been considered by Poor [2.9] for the case of noncausal filtering and 

by Vastola and Poor [2.16] and Franke and Poor [2.20] for the case of causal filtering. The results 

obtained for this situation are quite similar to those for the case in which all processes concerned have 

spectral densities, with the additional advantage that quite general results concerning the existence of 

least-favorable spectral measures can be obtained.

In particular, suppose we have the observation model of (2.1) in which the signal and noise 

processes are real, zero-mean, orthogonal, wide-sense stationary, and quadratic-mean continuous. Then 

for an estimate of the form of (2.2) we can always write the MSE as

CO oo

2i { I S ( i  )  — S (i  ) I *■} =  [ y* I 1—H  (o>) 12nts (d g>) +  f  I H  (o>) 12m^ (d to)
—oo —oo

A / x
=  e {ms jnN \H ) ,  (2.59)

where ms and mN are the spectral measures associated (via Bochner’s Theorem [2.16]) with the 

processes {5 ( t ); —oo <  t <  oo} and {A/ (i  ); — oo < t <  oo}, respectively. The transfer function that 

minimizes (2.59) for fixed ms and mN is given by
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H w (o>) — — ---------------i ------------ r-  (o>) ,
a {ms +  mN ) (2.60)

where the differentiation in (2.60) denotes the Radon-Nikodym derivative. Alternativelv, if  

ms and are known only to lie in classes M $ and M N , respectively, then we would like to solve 

the minimax problem

min
H

{ sup
{ms ) € Ms e (ms jnN \H )} .

x m n (2.61)

An interesting class of such problems arises when total powers in the signal and noise processes are 

both known (i.e., when ms ( (—00,00)) =  2ttP s and mN ( (—00,00) )  =  2ttP n are constant on ms and mN ). 

In this case, solutions to (2.61) can be characterized for a general type of uncertainty class studied bv 

Huber and Strassen in [2.32]. These classes are of the form

M v = { m  € M  I m ( B )  ^  v ( B )  for all B 6 B  and m (JR ) =  v UR )}, (2.62)

where JR denotes the set of real numbers, B  denotes the cr-field of Borel sets in JR, M  denotes the set 

of all spectral measures on {JR J t ), and v is a 2-alternating (Choquet) capacity. A  2-alternating capa­

city in this context is a set function mapping B  to JR with the following properties: 

v (0 ) = 0, v (JR) <  00, A O B  => v (A  ) <  v {B ), v is continuous from below and is continuous from 

above on closed sets, and v (A  U £ )  + v (A  H B ) ^  v (A  ) + v {B ) for all A  and B in B. Examples 

of classes of the type o f (2.62) are given in [2.33H2.36] and include such common uncertainty models as 

the €-contaminated class, the variational neighborhood, the band model, and others.

Classes of the form of (2.62) are useful for the problem of (2.61) because the solution to (2.61) for 

the situation in which M s — M v$ and M N = M Vn for two 2-alternating capacities vs and vN is given 

by (see Poor [2.9])

H r M  =  w f c T T T (2.63)

where n  =  dvs JdvN is a Radon-Nikodym derivative between v5 and v v . (Note that H w from (2.60)
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could be written as H w (co) = \(o))/(X(oj)  +  l )  where X =  dms /dmN .) Thus, for uncertainty classes 

generated by 2-alternating capacities the general solution to (2.61) is characterized. .Similar results for 

causal problems are discussed in [2.16].

2.8. Robust Interpolation

A  problem related to robust filtering is that of robust signal interpolation. In the signal interpola­

tion problem we have a discrete time signal S ( k \  k -  0, ±  1, ±2, • • •, which we observe for all 

k 5* 0. Our objective is to estimate 5 (0) from {S ( * ) ;  k =  ± 1 , ±2, • • * } with a linear estimate

5 (0 ) =  £  h ( k ) S ( k ) .  , a 6 4 )

The mean-square estimation error incurred by using (2.64) is given straightforwardly by

E { \ S (0) - S ( 0) l 2) =  _ L  f  I 1—H  (at) 12i>c (&>) d 0 1
i r

= eCff;<I>s),

(2.65)

where H  is the transfer function of the filter sequence h (-2 ), h ( - 1 ), 0, h (+ l ) ,  h (+2)^. and where 

is the spectrum of the signal. For fixed , the MSE of (2.65) is minimized by the interpolator 

with transfer function

ir
H , M = 1 -  -j-U y  f  ( l / * 4 (o>))d6>)-‘ . (2.66)

(Note that the zeroth Fourier coefficient of H j  equals zero, as is necessary for H j  to be a valid interpo­

lator.) The minimum possible value of the mean-square interpolation error for a given signal spectrum 

4>5 is given by

TT
eCff/ tf>s ) =  [ - L  /  (1/<J>S (a>))da»]“1 =  e ' (4,5) . (2.67)
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Suppose we design an interpolator based on an assumed signal spectrum but that the true 

spectrum is <3>5 . The resulting mean-square interpolation error is given by inserting the optimum inter­

polator (2.66) for $5  into (2.65), in which case we have the mismatch error

- i— f  &s (o>M<I>f(it))]2rf (x)
2n

—

~ f [ l  /<b§(o>)
—TT

(2.68)

Note that the numerator integrand $>s/(<i»̂ )2 implies a high degree of sensitivity of the interpolation 

error to large spectral components in the actual spectrum that are not predicted by the nom inal model. 

Thus, as with the other linear estimation problems discussed in the preceding sections, it is desirable to

robustify an interpolator against uncertainty in <t>5 . This can be done by embedding in a spectral 

uncertainty class and replacing the minimization of e (H  ;<J>5 ) with the minimization of its worst-case 

value over S . This problem was posed and solved by Taniguchi in [2.37] for the case in which S  is an 

€-contaminated model, and the solution to the general case was characterized by Kassam in [2.38].

In [2.38] it is shown that, within mild conditions onS, a spectrum &SrL € $  and its corresponding 

optimum interpolator from (2.65) w ill be minimax robust overS  i f  and only i f  $>sx  is least-favorable; 

i.e., i f  and only if

= a rg  max **(<!.,), ( 2.69)

where e is from (2.67). Moreover, note that equivalently minimizes —_  f  C (3>5 oj

where C is the convex function CCx)  =  1/x. Thus, as with the filtering and prediction problem dis­

cussed above, least-favorables for many normalized uncertainty classes can be found by applying analo­

gous results from Huber’s robust hypothesis-testing formulation (see Kassam [2.38] for details).
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2.9. Robust Linear Filtering for Vector Observations

Many problems of practical interest involve the vector version of the observation model (2.1). 

Although conceptually similar to the scalar problem, vector filtering problems after present practical 

difficulties that are usually overcome by the imposition of specific structural models such as a finite- 

state signal model. These difficulties are not alleviated in the robust versions of vector filtering prob­

lem, and so the types of uncertainty models for which minimax robust filters can be developed are usu­

ally more structured than in the single variable case. Recent developments for the vector problem 

analogous to those for the scalar problem discussed in the preceding subsection are found in [2.39-2.42]. 

As an example of the type of uncertainty class that can be treated in this context, Chen and Kassam

[2.39] consider an uncertainty set of spectral density matrices which share a common (constant) eigeri- 

structure but whose eigenspectra lie in band models.

Another set of structural assumptions that allow for the treatment not only of the vector case but 

also of time-varying situations is the usual state-space signal model

S ( t )  = C ( t ) X ( t )

X ( t )  =  A ( t ) x ( f )  +  v ( f ) ;  t > t 0 (2-70)

where E  {v (r  V ( s )) =  Q ( i  )&(r —s ), j v ( t ) }  is independent o f I N  ( i )(, and A  (r )  and C ( t ) are matrices 

of appropriate dimensions. We assume that the observation noise { N ( i ) }  has correlation 

E \N it )N  (s )} =  R it )8it —s ). The best linear estimator of X i t )  from {Y (r); 10 ^  r  ^  t } is given 

by the well-known Kalman-Bucy filter

k t  )  =  A  (t )XLt)  +  K  ( i  XF { t )  -  C ( i  M t ) ] ,  (2.71)

where K  ( t ) is the Kalman gain matrix determined from the error covariance

P i t ) -  cov ( X ( t )  — X i t )).

Although uncertainty can arise within the model (2.70) in several ways, there are two basic types 

of uncertainty that can affect the performance of linear estimators. One of these is uncertainty in the 

second-order statistical properties of the noise (and initial condition), such as the matrices Q and R and
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the assumptions that { v ( i )} and { A ( i  ) } are white and uncorrelated- The other type of uncertainty is 

uncertainty in the dynamical model itself; i.e, uncertainty in the A  and C matrices. Problems of the 

first type have been studied by a number of investigators including D’Appolito and Hutchinson [2.42], 

VandeLinde [2.431 Morris [2.441 Poor and Looze [2.451 and Verdu and Poor [2.461 The basic result for 

minimax design within this type of uncertainty is that the linear structure is preserved in the minima-g 

solution and the corresponding gain matrix is chosen to be optimum for a least-favorable set of second- 

order statistics. These results are thus o f the same type as those discussed in the preceding subsections. 

Problems of the second type, however, have received less attention in this context, and have been 

treated only recently in a paper by Martin and Mintz [2.471 As one might expect, the effects of uncer­

tainties in the dynamical structure of the model (the A  matrix) are quite different than those of uncer­

tainty in the noise statistics. In particular, the minimax solutions for uncertain A  matrix are not pure 

strategies (i.e^ they are not simply of the form (2.71)) but rather are mixed strategies — randomizations 

among several filters of the type (2.71).



3. ROBUST FILTERS FOR SIGNAL DETECTION AND RELATED APPLICATIONS

One of the most pervasive of functions that signal processing schemes are required to carry out is 

that of detecting a signal of a generally known type in noisy observations. Obvious examples of appli­

cations in which signal detection is required are provided by radar (detection of echo pulses) and sonar 

(detection of a random signal process present in an array of hydrophones). Numerous other applications 

may be listed, for example detection of specified two-level pulse code sequences in communication sys­

tems and detection o f abnormal patterns in medical imaging.

In the classical theory of signal detection one starts with specific statistical or deterministic models 

for the signal and observation process, and proceeds to obtain a detector which has optimum perfor­

mance under an appropriate detection performance measure such as detection probability or output 

signal-to-noise ratio. In this section we w ill restrict attention to the class of linear detectors or filters 

and to the output signal-to-noise ratio (SNR) as the measure of a linear filter’s detection performance. 

The design of optimum detectors under these two restrictions has been carried out for a large number of 

special applications. There are several reasons for the widespread acceptance of these design restrictions. 

One is that optimization of the linear filter design to maximize output SNR is usually a simple 

mathematical problem and leads to explicit solutions, and the implementation of a linear filter is usu­

ally straightforward. Another reason is that in many cases the statistical models for the noise and any 

random signal are often stated in terms of only their correlation functions or power spectral densities 

(that is, second-order statistical properties). In such cases one simply does not have enough statistical 

information, such as the parametric form of the probability density functions, to allow optimization to 

be attempted over a larger class of detectors. If the noise process can be assumed to be Gaussian then it 

is possible to show that the optimum detector maximizing the detection probability in the detection of a 

deterministic signal is indeed the optimum linear filter maximizing the output SNR; this is the ubiqui­

tous matched fdter of detection theory.

In general the matched filter specification depends on the exact form of the deterministic signal 

for which it maximizes its output SNR, and on the exact noise autocorrelation function or power spec-
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tral density. Since these quantities are rarely known exactly, the need for applying robust techniques 

may arise naturally in the matched filtering problem. One interesting extreme case occurs when the 

nominal assumptions on signal and noise characteristics are such as to result in a singular detection 

problem. This means that under nominal conditions the output SNR is infinitely large, implying per­

fect detection is possible. Consider, for example, an ideal low-pass nominal signal sine (o>0t ) whose 

Fourier transform S (o>) is shown in Fig. 3.1, and let the noise have a nom inal power spectral density 

3\v (w) which is the triangular function of Fig. 3.2. The matched filter frequency response 

S* (to)/$>N (to) is shown in Fig. 3.3; it increases without bound as to approaches ±toQ. The output SNR 

under this situation is

„ But suppose that the signal deviates very slightly from the nominal and becomes sine ([g>0—e] t ). The 

output SNR using the original matched filter now drops to zero, or — oo dB! In this situation where the 

signal bandwidth may not be precisely o>o, it would be better to design the matched filter for the smal­

lest bandwidth that may be encountered. The resulting filter w ill then perform well for the minimum 

band-width signal and w ill be fairly insensitive to deviations of the signal bandwidth from f l 0. This 

basic idea is expanded upon in subsections 3.1 and 3.3, where we consider maximin robust matched 

filters which maximize the worst case performance over a given pair of classes for the allowable signal 

and noise characteristics. Also a property of such robust matched filters in most cases is that their per­

formance is relatively stable, or not too variable, over the allowable classes of characteristics. The 

issues of stability and singularity in certain matched filtering problems have been considered by several 

authors, most notably Root [3.1] and Kailath [3.2]. The maximin robust matched filter has also been 

described as an optimally stable matched filter.

While the simple example we have considered above to illustrate the possibility of extreme sensi­

tiv ity  o f performance of a nominal matched filter assumed that only the value of one parameter (the 

signal bandwidth) was variable, in general we deal with nonparametric classes of functions in

(3.1)
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Fig. 3.1: Ideal low-pass nominal signal characteristic S (oj).
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Fig. 3.2: Triangular noise power spectral density <l>v (<u).
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Fig. 3.3: Matched filter frequency response for ideal low-pass signal and triangular noise power
spectral density.
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modeling the uncertainties in signal and noise characteristics. The results and interpretations we survey 

in this section differ from those in the previous section on robust filters for signal estimation prim arily  

because our criterion of performance here is the output SNR. This leads to mathematical approaches 

which are conveniently unified using Hilbert spaces. In addition, no direct correspondence exists 

between these results on maxim in robust matched filters and results on robust hypothesis tests, although 

some indirect connections do exist.

In subsection 3.2 we w ill give some interesting special applications of the general results on robust 

matched filters in spatial array processing and time-delay estimation. We w ill close this section with a 

more mathematical discussion in subsection 3.3 of the general Hilbert space approach for formulating 

robust linear detection problems; this approach provides a common framework for a variety of such 

problems.

3.1. Robust Matched Filters

As an example of a system using a matched filter for signal detection, consider the structure of the 

receiver for a pulse train in which a given pulse shape p i t )  occurs in the i-th position of the train with 

some amplitude a,, i =1,2,~vn. In a pulsed radar system these might represent the echo pulses from a 

target in some fixed range-gate, with the amplitude factors a, produced by the beam pattern of the 

receiving antenna as its main beam scans past the target position. The noisy received waveform may be 

described by the equation

m ~
Y i t )  =  9 £  (¿¡Pitt )  + N ( t \  0 ^  t ^  mT , ( 3 2̂)

¿=i

where p xi t ) -  p i t  - [ i  —1]7 ), the basic pulse p i t )  delayed by ii - 1 )7  units of time, 7  is the pulse 

repetition period, 9 is the overall pulse-train amplitude and N  i t )  is random noise. Note that the above 

observation model can also describe the received signal in a binary signaling scheme; we may take 

m = 1 and 9 =  9^ 9 = 9X as being two possible values of 9, with 90 =  0 and 9X ^  0 corresponding to the 

case o f on-off keying. For the general problem of testing 9 -  90 vs. 0 = 0i in the observation model
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(3.2) when N i t )  is Gaussian with power spectral density <J>jV (co), an optimum receiver structure is 

shown in Fig. 3.4. This receiver is an implementation of the likelihood-ratio test for 9 =  0O vs. 0 = Oj 

in the case of Gaussian noise. More generally, the output o f the matched filter at the end of each pulse 

interval has the maximum SNR obtainable from a linear filter. The frequency response H M (ct>) of the 

matched filter is

H M (u>) =
4>v (<u) (3.3)

where P (to ) is the Fourier transform of the pulse p i t ) .  We shall now focus on the design of the 

matched filter when P  i(o) and <E>iV i(o) are not precisely known. In the next section we w ill survey 

techniques for modifying the correlator detector following the matched filter in Fig. 3.4, for situations 

where the noise at its input cannot be assumed to be Gaussian.

The general expression for the SNR at time T  at the output of a filter with frequency response 

H  (<o), when the input is Op it )  +  N  it ), is

SNR

-  uu

- —  f  H  iai) P  U ti)e ju!r d (i) 
2ir J

/  I H  (ai)12 9>w io

(3.4)

This SNR is maximized by H  (<t>) =  H M (cn) of (3.3). The synthesis of H M (o>) in this case requires an 

exact knowledge of P  (to) and V (iu). Suppose, however, that the received pulse p ( t )  is a possibly dis­

torted version of a nominal pulse p 0( t ), as illustrated in Fig. 3.5. A  good measure of the degree of pulse 

distortion is the integrated squared difference between p i t ) and p Q( t ) or, equivalently (via Parceval’s 

relation), the integrated squared difference between their Fourier transforms, P io i)  and P  q((d). Thus, a 

useful signal uncertainty model for this matched filtering problem is to assume that the received pulse 

P i t )  is known only to lie in the class Cp which is the class o f pulses p i t )  with Fourier transf orms 

Pia )) satisfying
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- L  f  \ P ( a ) - P , j i o ) \ 2d a  ^  A .  (15 )
** n —oo

Here P 0(co) is the Fourier transform of the nominal puls«, and A determines the degree of uncertainty 

or possible distortion in p (t ).

The solution H  — H R to the problem

max min SNR
H P €  C ,

where SNR is from (3.4) is given by Kuznetsov [3.3] and Kassam, Lim and Cimini [3.4] as

(3.6)

H r M
P o (G ))e -i“r 
<t>N (a>) +  cr0 (3.7)

where the positive constant cr0 depends on A and is an increasing function of A. Equations (3.3) and

(3.7) imply that the robust filter for (3.5) is forced to have less gain than it would otherwise have at 

frequencies where the noise power is low. It is the higher gain of the optimum filter for P 0(cj)  [that is, 

P*0{oi)e~j0iT /<!>Ar (a>)] at these frequencies which makes it too sensitive to deviations in the pulse charac­

teristics, the actual pulse possibly having lower energy at these frequencies. Thus, the filter (3.7) is 

robust from an intuitive viewpoint. Another interpretation of (3.7) is that signal uncertainty is 

translated into an additional white noise component in the noise spectrum. It is interesting to note that 

in the case of white noise with the above signal uncertainty the filter matched to the nominal pulse is 

itself the robust filter, since any absolute gain factor is irrelevant in matched filtering. This result 

agrees well with behavior observed in practice [3.5]. It is also interesting to note that the additional 

white noise component which appears under signal uncertainty in this approach ensures that the detec­

tion is not singular, regardless of how artificial the nominal model is.

Alternatively, suppose we assume that the pulse shape, say p 0( t ), and the total noise power crfi 

are known, but that the true noise spectrum is known only to lie in a class CN of spectra bounded by 

known upper and lower bounds U N (o>) and (a>), respectively. That is, suppose we assume that the 

spectral shape of the noise is constrained only by the band model
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Ljq (it>) ^  $>N (ûi) ^  UN (il>), —OO < (O <  OO (3.8a)

and

oo

;—  f  &N (ü))dù) =  cr% .
2rr (3.8b)

This class is illustrated in Fig. 3.6. In this case the robust filter can again be given an interesting 

interpretation. It turns out that the robust filter H R(ai) in this case is the matched filter for detecting 

/>o( 0  in noise whose spectrum tends to be as close in its shape as possible to the shape of I ̂  0(cu) I. 

Specifically, the results in [3.3, 3.4] show that the robust filter solving

max min SNR
H € CN (3.9)

is given by

h r M
P*0((ü)e~joJ'

where $ # , 1  (û>) is a least-favorable noise spectrum in C v given by

(3.10)

Lft (o>),

\P0M\/k

UN (üù,

\P0(üy)\/k <  L n  (o>)

L n  (o>) ^  \P<f(j))\/k U N (ûi) 

UN (o>) <  \P0M\/k .
(3.11)

Here k is a constant determined by the requirement that <&N , L (g>) must be in CN and therefore must 

have total power cr^, which is assumed to be known. It is clear that <1»̂  t L (oj) tries to follow  as closely 

as possible a scaled version of l i ?0(o>)l. This phenomenon is illustrated in Fig. 3.7. An illustration of 

the magnitude of H R (tt>) for the example of Fig. 3.7 is shown in Fig. 3.8. This figure also shows what

the optimum filter magnitude would be i f  a "nominal" noise spectrum having the characteristic 

■j [Ln  (û>) +  UN (w)] (that is, the normalized center of the band) is used in the design of the filter,

where c is a normalizing constant chosen to get the correct power cr$. The implication for the robust 

filter is that its magnitude characteristic is flatter than it would be with any other (a>) in CN . This
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Fig. 3.7: Illustration of least favorable noise spectral density of Eq. (3.11).
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Fig. 3.8: Illustration of IH R (o>) I, robust matched filter amplitude response, for bounded noise power
spectral density class.
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means that extremes of gain and attenuation do not appear, making the filter less sensitive to the pres­

ence of additional noise power at relatively high-gain frequencies and to a reduction in noise power at 

relatively high-attenuation frequencies. The performance of the robust filter may thus be said to have 

been stabilized. Of course, the advantage gained in using a robust filter in any particular case depends 

on how extreme the frequency response of the nominally optimum filter is.

By combining and extending the above results it is possible to obtain the robust filter for uncer­

tainties simultaneously about the pulse shape and the noise spectrum. This has been done in [3.4]. The 

extension of this spectral domain formulation o f the matched filtering problem to the case of discrete­

time observation processes is quite straightforward.

It is interesting to note that an explicit consideration of a game-theoretic approach in the design of 

a matched filter was first considered by Nilsson [3.6] and Zetterberg [3.7]. In [3.7], in particular, Zetter- 

berg considered uncertainty in the noise spectrum which is assumed to have a known white noise com­

ponent and another component which has fixed total power but is otherwise unknown. He obtained a 

result which is similar to that of (3.11). Although Zetterberg did not allow uncertainty in the signal, 

it is noteworthy that he assumed a fixed white component for the noise spectrum. We have seen above 

that a white noise component for the noise spectrum is prescribed for the L  2 signal uncertainty class of 

(3.5). Other related studies are also discussed in [3.7]. More recent work of this nature has also been 

reported by Cahn [3.8] and Turin [3.9].

The multi-input matched filtering problem under signal and noise uncertainty in the frequency 

domain has recently been considered in [3.10, 3.11], An m -component signal vector s i t ) may be 

modeled to belong to a generalized L  2 uncertainty class which is a neighborhood of some nominal sig­

nal vector s_Jj. ). In [3.10, 3.11] the class was defined in terms of a set o f constants A ltA2, . . . ,  A?; these 

were now the bounds on the allowable values of q sums of component-wise integrated square 

differences between the vectors s_(t)  and Sj^t). The noise power spectral density matrix 4>N (o>) was 

assumed to lie in a generalized bounded spectrum class. Specifically, from the decomposition 4>v (o>) = 

P n (<*>)AN {(iy)P£ (oj) where PN (cu) is a unitary matrix and AN (cd) is diagonal, one may obtain an uncer-
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tainty class by requiring the components o f AN (o>) to have known upper and lower bounds. In addi­

tion, a generalized noise power constraint was imposed which required that the sums of integrals of the 

components of A #  (fc>) for r sets in some given partition of these components be equal to known values 

Q i>Q 2> • • • * Qr • The results given in [3.1l] for this multi-input matched filtering problem form a useful 

extension of the scalar results we have mentioned above.

The frequency domain formulation of the matched filtering problem is useful for large ( infinite) 

observation intervals. A  direct time-domain approach in modeling the signal and noise uncertainties is 

desirable when the observation interval is some finite or semi-infinite interval [t q, t f  ] with one or both 

end-points finite. In this case the matched filter weighting function (impulse response) is the solution of 

an integral equation. In the finite-interval discrete-time case the SNR functional and the equation for 

optimum filter weighting function are given in terms of matrix and vector quantities. Thus for this 

situation the robust matched filtering problem is amenable to simpler mathematical analysis. By view ­

ing the finite-length discrete-time matched filtering problem as a multi-input (time-domain) problem it 

is seen that the ideas for the models for signal and noise quantities in the multi-input frequency 

domain case are directly applicable. This approach has been followed in [3.10, 3.11], where the signal 

vector s_ = (5 lrs 2, • • •, sm )  of samples st and the noise covariance matrix RN are modeled as belonging 

to generalized l 2 and bounded eigenvalue uncertainty classes, respectively. In [3.12] a more general 

approach has been taken, and three signal vector uncertainty classes are considered ( l l t l 2, and l ̂  classes 

defined as neighborhoods around a nominal signal vector). A  general class of noise covariance matrices, 

defined in terms of matrix norms, has also been studied in [3.12]. The general approach in [3.12] is based 

on a Hilbert space formulation of the matched filtering problem, which we shall discuss in subsection 

3.3. There we w ill also see how the time-domain continuous-time version of the problem may be 

approached. In fact, the finite-time-interval continuous-time robust matched filtering problem was ori­

ginally considered by Kuznetsov [3.13] even before his frequency domain problem formulated in [3.3]. 

In [3.13] Kuznetsov used a signal uncertainty class in which the possible deviation 8( t ) of a signal 

waveform s ( t )  from a nominal signal s 0( t ) is bounded in its integrated squared error over the inter­

val. Further aspects of this problem have been considered more recently by Burnashev [3.14]. A  similar
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model was also used for the uncertain noise covariance function, and in addition uncertainty in the 

mean value of the noise was also taken into account. Subsequently Aleyner [3.15] modified the signal 

uncertainty class by imposing a signal-energy equality constraint.

A  variant of the robust matched filtering problem is that of optimal nominal-signal selection to 

obtain the best possible minimax performance. This situation has recently been considered in [3.16] for 

the finite-length discrete-time situation. There the actual signal s_ is assumed to be a nominal signal s_q 

with an additive vector 6. which can belong to some class of possible vectors. For given s_q the robust 

matched filter can be obtained and the minimax performance level can be determined. With s_q 

allowed to be any nominal vector with fixed total energy, the choice of jo# maximizing this guaranteed 

performance level is obtained in [3.16] for signal uncertainty 8_ in and neighborhoods of the 

zero vector. While the result for the 12 uncertainty class indicates that should be the m i n i m u m - 

eigenvalue eigenvector of the noise covariance matrix (a result obtained independently by Kuznetsov

[3.17]), this classical solution does not hold for the other uncertainty classes.

Before considering two specific applications in the next subsection, we mention that recently a 

maximin sonar system design problem has been considered [3.18], in which the signal and detector pair 

are picked to maximize the worst-case performance of the system over a class of possible reverberation 

scattering functions.

3.2. Two Examples of Robust Multi-Sensor Systems

We w ill now briefly describe two specific applications of these results on robust matched filters. 

Our first application is a narrowband spatial array system in which the individual sensors or antenna 

outputs are given complex (amplitude and phase) weights to detect signals arriving from any particular 

direction. While spatial matched filtering has previously been considered for this case [3.19], here we 

w ill be concerned with uncertainties in some of the signal and noise characteristics. It has been found 

that the use of minimax robust weights leads to another significant advantage in such a system. The 

second application, we w ill consider is that of a system for estimating the time-delay between the ran­

dom signal arriving at two sensors, with the signal observed in independent additive noise at each
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sensor. While this is not directly a signal detection problem involving matched filters, we find that in 

at least one approach to optimum system design the mathematical analysis is closely related to that per­

formed in obtaining the matched filter in a deterministic signal detection problem.

3.2.1. Robust Spatial Array for Signal Detection and Location

Consider a J -element narrowband linear array, illustrated in Fig. 3.9. The signals received at the 

array elements from any source are time-delayed (or phase-shifted) versions of the source signal. Let xt 

be the position of the i-th array element, measured from an arbitrary origin. Let X be the wavelength 

of the source signal, and suppose a far-field source is in some direction 0 from the array broadside.

To detect a signal from the direction 0, a phased-array system uses a set of complex weights or 

phase shifts h pi(9) =  exp (—j  2irxt sin 0/\) to "line-up" in phase the signals received at each element. 

More generally, when sources of interference are present in specified directions and the observations at 

each element are noisy, one may design the weights h, (0) to maximize the SNR at the array output due 

to a signal in direction 0. Now it can be shown that the generalized J x  J noise covariance matrix 

Rn for K  interfering sources at locations 0^02, . . . ,  0K is, element wise,

where W, is the white noise level at the i-th element, Sl7 is the Kronecker delta and Rk is the power of 

the k-th interfering source. For a source in direction 0 the nominal signal complex envelope at the i-th 

element is

assuming a normalization to unit signal amplitude at each array element. The matched-filter array 

weight vector maximizing output SNR is

Rx ( i J )  = W, Su +  £  Rt (3.12)

_  j  2ttx. sin 0/X — e 1 (3.13)

h o(0) — Rjf 1 s_q (0) , (3.14)



Fig. 3.9: Narrowband spatial array for signal detection and location.
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where s_o(0) =  [s ol(0Xy o2(0 ) ,^  07 (0)p . This weight vector becomes the phased-array weight vector 

with components h pi(0) =  exp {—j  2irxt sin 0/X) (w ith amplitudes normalized to unity) when there 

are no interfering sources present. For the general case of RN given by (3.12), the spatial matched filter 

w ill have unequal amplitude weights and a set of phase weights different from that for the phased 

array case.

Our interest is in the case where there is some uncertainty in the characterization (3.13) of the sig­

nal components. This may arise because of imperfect propagation characteristics, element position 

uncertainties or element gain variations. To model such uncertainties we use the 12 class of possible sig­

nal vectors r_(0) which satisfy

r
Z  \ S i(9 )-s Oi(0)l2 < A . (3.1.5)
¿=1

While the covariance matrix RN may also be taken to be uncertain, we w ill here assume that it is 

known exactly. I f  the W, are all equal to some common value W  it can be shown that the eigenvec­

tors of Rn are independent of W. Moreover, U  —K  ) eigenvalues of RN are equal to W and the others 

are of the form W  + a, where the a, are independent of W. Such properties of RN may be used in 

enlarging the class of allowable noise covariance matrices, although we shall not do so here.

The general result for finite-length discrete-time matched filters can be applied here to obtain the 

robust spatial matched filter weights as

hxW^Rit'ilW)
= (Rn + CqI  )“x si (0); (3.16)

cr0 is a constant which effectively adds uncorrelated noise components to the array elements, and 

depends on A, and (0) is the least-favorable signal vector

Table 3.1 shows numerical values for the output SNR’s using the nominally optimum weights 

and the minimax robust weights for A = 2, 4 for the following system:
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Table 3.1: Signal-to-noise ratio of array output using nominal and
robust matched filter weights.

A SNR (/ip jSj tRff ) SNR (hp rwRp ) SNR (h o*£z. >Rn )

0 0 46.4 46.4 46.4

2 0.19 13.1 42.3 12.0

4 0.43 6.1 39.0 5.1

signal direction =  0°
number of array elements =1 2
element spacing =  A/2
number of interferences =  1
power of interference = 1.0

direction of interference = —60°

white noise levels, given by

0.25, i =  1, 2, 8,12
0.50, i -  3,4,9,10,11
2.0, i =  5
0.1, i =  6, 7

As expected, the robust weights give a worst-cast performance (for s± (0 )) which is better than

the corresponding performance of the nominally optimum weights h.o(0) = Rn 11s> (0)- Note that the 

SNR is a function of the filter weights, the signal vector and the noise covariance matrix RN , and that 

for A =  0 the vector h# (0) is the nominally optimum vector /zo(0).

The performance shown in Table 3.1 does not show a dramatic advantage (or disadvantage) 

obtained by using the robust spatial filter, in terms of SNR performance. However, there is an impor­

tant aspect of performance of such an array system which is not captured by examining the output 

SNR in the correct "look" direction 0 only. As the array scans for targets by adjusting its weights for 

different angles 9 the output SNR becomes a function of the "look" angle 9 for any fixed source direc­

tion 9 =  90. Alternatively, a beam pattern for the array may be defined as

0,
J,

K ,

R 1, 

01 ,

W i9

Wi =
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£ (e ,e0) = Z
¿=1

¿¿(Go) *o/(0) * (3.17)

the array output signal magnitude for a nominal signal in direction 0 with array weighted to "look" in 

the direction 0O. Ideally B (0,0O) should have only a narrow peak at 0 =  0Q, as a function of 0 for fixed 

Go-

Figures 3.10 and 3.11 show (for the numerical example giving Table 3.1) that the robust spatial 

matched filter weights produce normalized beam patterns that have a distinct advantage over the pat­

tern of the nominally optimum array. The main beams of the robust array weights are narrower and 

their close-in sidelobes are appreciably below those of the nominally optimum array, a factor important

in array design. Thus the use of a robust weighting scheme produces a "side" benefit which probably 

exceeds in importance its original justification of maintaining the output SNR under uncertainties. The 

robust weights differ from the nominally optimum weights as a result o f the addition of the matrix 

<J0I  to Rn , and this suggests that as a general procedure a consideration of different values of cr0 in 

array weight design can lead to optimum" trade-offs between output SNR and beam characteristics 

under nominal conditions.

Notice that the use of A values such as A =  2 implies that allowance is made for up to two "dead" 

elements in the array. As an extension of the signal class modeled by (3.15), one can consider a general­

ized class defined in terms of several tolerances A j ^ , . . . ,  A? for q groups of sensors. Further aspects 

of the performance of a robust spatial array system are discussed in [3.10, 3.11]. Before leaving this 

subject we note that recently Ahmed and Evans [3.20] have considered robust narrowband array pro­

cessing under uncertainties, although their definition of robustness is based on the notion of an accept­

able set of performances rather than on optimizing worst-case performance.

3.2.2. Robust Eckart Filter for Time-Delay Estimation

The estimation of time delay between signals arriving at two spatially separated sensors is of 

interest in applications such as seismology and sonar. In such systems the time delay measurement gives 

information about the direction of arrival of a wideband source. Let Y x{t ) and Y  2(i  ) be the outputs of



Fig. 3.10: Beam patterns of nominal and robust matched-filter (A  — 2) spatial arrays.



Fig. 3.11: Beam patterns of nominal and robust matched filter (A  =  4) spatial arrays.
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two sensors, these signals being described by

Y 1( t )  =  S ( t )  +  N 1( t )  (3.18a)

=  +  (3.18b)

Here S i t )  is a random source signal and N  f t  ), N  f t  )  are uncorrelated additive noise processes at the 

sensors. The basic technique for estimating the unknown relative delay D  is to cross-correlate 

Y f t ) and Y f t )  and to use as an estimate of D  that time argument which gives the maxi mum value 

of the cross-correlation function.

To improve the estimation process one can use a filter to weight the cross-spectrum estimate. Vari­

ous criteria for optimum choice of the filter have been proposed [3.21]. One particular performance 

measure is the output SNR at the correct time delay; for weak signals (low  input SNR) this output SNR 

for long averaging time is [3.21]

SNR =

oo

f  W  (o>)<l>5 i(o)d a)
—oo

oo

2

/  W \u>Xl (o>)d at

(3.19)

where W  (g>) is the real filter frequency response, $$ (oj) is the power spectral density of the zero-mean 

and stationary signal process and Q (w ) =  <£$(&>), the square of the noise power spectral density at each 

sensor. The noise processes are here assumed to be zero-mean and stationary with identical power spec­

tral densities, and signal and noise processes are assumed to be uncorrelated. The filter function WE ( oj)  

maximizing the above SNR is given by

W £ (o>) =
<X>5 (o>)

(3.20)

which is the Eckart filter. Comparison of (3.3) and (3.4) with (3.20) and (3.19) shows the correspon­

dence between the matched filter maximizing output SNR in the detection of a deterministic signal and 

the Eckart filter maximizing output SNR at the correct time-delay for long observation time under
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weak signal conditions in time delay estimation. The main difference lies in the fact that <f>5 (o>) is a 

non-negative power spectral density whereas P  (o>) in matched filtering was a Fourier transform of a 

finite-energy signal.

The implementation of an Eckart filter requires knowledge of <J>5 (o>) and Q((o). These are often 

not precisely known but may be modeled as belonging to uncertainty classes such as those considered 

for power spectral densities in Section 2. As an example, consider the p-point classes for both 

$5  (to) and Q (a>), which specify the fractions of the total powers of $>5 (oj) and Q (o>) in specified inter­

vals partitioning the entire frequency spectrum. Such information may be obtained from measure­

ments at the output of a simple cross-correlator when signal is present, and from output power meas­

urements in the frequency bands of interest under noise-only conditions. Since our earlier results on 

the minimax robust matched filter were obtained specifically for the L  2 signal uncertainty class, these 

results are not directly applicable here. However, it is quite simple to show [3.22] that for the time 

delay estimation problem where SNR of (3.19) is the performance measure of interest, the minimax 

robust Eckart filter for p-point classes for <J>5 (a>) and Q (o>) has a piecewise-constant frequency response. 

The values of the constant levels of the robust Eckart filter frequency response WER (o>) are determined 

simply as the ratios of the given fractional powers in $ s (o>) and Q (o>) in the common frequency bands 

defining the p-point classes.

As an example, assume that the nominal signal power spectral density <l>5(0(o)) and the nominal 

noise power spectral density 0(o>) are given by

,o(<*>) =  $5  ,oM/A (3.21)

and

*>s > )  =
(a 2 + a)2)2 ’

0 ,

10)1 ^  TT

I 0) I >  TT .

(3.22)

For A — 1 (input SNR = 0 dB) the nominally optimum Eckart filter W £0(g>) results in an Qutput SNR of 

2tt or 8 dB. Now 3>5(0(o>) and 0(o>) with a =  1/3 are members of particular p-point classes with
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two frequency bands [0, 1.61] and [1.61, oo). (The value 1.61 of the frequency band edges is the one 

which maximizes the performance of a two-level piecewise-constant filter under nominal conditions.) 

Suppose the noise power spectral density actually is a constant c on [0, coc ] and zero outside. Now we 

may pick the values of c and o>c to make <X>$(o>) a member of the p-point class to which ,0Ca>) 

belongs. In this case we find (w ith A  =1, as before) that the input SNR is now -3 dB. The robust 

Eckart filter for this situation is the optimum two-level piecewise-constant filter for the nominal situa­

tion. Its SNR in the nominal case is 2.76 or 4.4 dB, and it maintains this value of the SNR for all Q (o>) 

in the p-point class defined above. The nominally optimum Eckart filter’s output SNR drops to the 

value of 0.01 or -20 dB when the noise has the above ideal low-pass spectrum in the p-point class. 

Simulation results [3.22] confirm that the robust two-level piecewise-constant Eckart filter works quite 

effectively to obtain a good estimate of D  for all Q (o>) in the defined p-point class, while the nominally 

optimum filter is quite sensitive to deviations from the nominal assumption.

More general results for other convex classes of total-power-constrained allowable power spectral 

densities $ s (cd) and Q (o>) =  <£^i0(a>) have been discussed in [3.22]. Although the SNR performance cri­

terion of (3.19) is very similar to the SNR measure of (3.4) for deterministic signal detection, the 

minimax robust Eckart filter is the optimum filter for a least favorable pair (a>) and QL (oj)  which 

is found exactly as in the case of robust Wiener filtering in Section 2. This follows from the general 

observation made in Section 2 concerning least favorable pairs whenever the performance measure i f  of 

a type expressible as a "distance" measure between ((d )  and Q(a)) [3.23], for convex classes of power 

spectral density or probability density functions.

Before leaving this particular application let us note one further interesting feature of the robust 

Eckart filter. As in the case o f the robust spatial matched filter we have considered above, there is 

another aspect o f the performance of a time-delay estimation system that we have not considered expli­

citly. This is the variance o f the time-delay estimate. It turns out that the robust Eckart filter has the 

additional advantage of generally producing time delay estimates with considerably lower estimation 

variances than the optimum Eckart filter under non-nominal conditions, with almost similar perfor-
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mances for both under nominal conditions. This is discussed further in [3.22].

3.3. General Formulation of Robust Matched Filtering Problems in Hilbert Space

The results we have discussed so far in this section serve to illustrate the ideas behind robust 

matched filtering and their possible applications, and can be extended in several ways as we have indi­

cated. In this subsection we w ill consider a general formulation of the robust matched filtering prob­

lem which has recently been developed [3.24], using a Hilbert space framework. Most matched-filtering 

situations (e.g. continuous-time/discrete-time, one-dimensional/multi-dimensional, time-

domain/frequency-domain) can be fit into a single general Hilbert space setting which is convenient for 

studying robustness in all of these problems simultaneously. In particular, suppose H  is a separable 

Hilbert space (e.g., L  2 or R  n ) with inner product <  •, • >  and let H  denote a set of bounded nonne­

gative linear operators (e.g., integral operators, matrices, or spectral operators) mapping H  to itself. A  

matched-filtering problem on H  involves three quantities: a signal quantity s £ H  (e.g., a signal 

spectrum or waveform); a noise quantity n € H  (e.g., a noise spectrum, autocorrelation function, or 

covariance matrix); and a filter quantity h € H  (e.g., a filter transfer function or impulse response). 

The design criterion for the filtering problem is based on a functional p : H  X H  X H  -+ 1R defined 

by

f t h v * )  =  h 6 H,s €  H,n 6 H , (3.23)

and representing a signal-to-noise ratio. Note that, for properly defined H , most conventional matched 

filtering formulations fit this model (see, for example, Thomas [3.25]). The example described in subsec­

tion 3.1 corresponds to the particular case in which H is complex L  2(—00,00) (i.e^ jgr is the set of

CO

complex-valued functions /  satisfying f  I /  (a>) 12 d o  <  co) and H corresponds to a set of positive,
—CO

symmetric, real-valued functions. The signal quantity s is identified with the shifted-pulse Fourier 

transform P Q(ui)e j0ir; the filter quantity h is identified with H  * (o>), the complex conjugate of the 

filter transfer function; the noise quantity n corresponds to the noise spectrum <£v (o>); and for an
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element n € H  and any /  € H , the operation n f  is defined by (n/  Xo>) =  n M  f  (o>). Note that

oo
the inner product on L 2(—°o,oo) is defined by <  /  , g >  = 

matched filtering problems that fit this general Hilbert-space

-3L  f  f  * M g  M d  (ü. Examples of other
27r Zoo

formulation are discussed below.

Within this general Hilbert-space formulation, for fixed signal s and noise quantity RN the 

matched filter (Le., the element h 0 € H  that maximizes p) is given by any solution to the equation 

n/i0 =  s. I f  Rn  is invertible then h 0 is n~ls and the maximum value of p is given by <  s , n~ls > . 

If, on the other hand, s and n are known only to be within classes S  and N  of signal and noise quan­

tities, respectively, then we can consider the alternative design criterion (as in (3.6) and (3.9))

max | in f p ( h ÿ ^ ) ) ,  ('3 241h € H (S^ )€ .s  xN
It can be shown (see Lemma 1 of [3.24]) that i f  S  and M  are convex, then a pair 

(sL jil )  £ X M  and its optimum filter hR (satisfying nL hR =  sL )  is a saddlepoint solution for 

(3.24) i f  and only i f  the following inequality holds for all (s j i ) € S  X JM:

2 R e {< 5 ,/ i i? > }  — <  hR, nhR >  ^  < s L ,h R > . (3.25)

Moreover, i f  nL is invertible then this occurs if  and only i f  jxL ) is least-favorable for matched 

filtering fo rS  and M , i.en i f  and only i f

< sL ,n 1- 's L (3.26)

Expression (3.25) provides a means for checking potential solutions to (3.24) and (3.26) provides a 

means for searching for such solutions since the expression in brackets in (3.26) is known in closed-form 

for many situations of interest.

By using the above results, solutions to the general robust matched filtering problem of (3.24) 

have been obtained for generalizations of the uncertainty classes CP and CN of (3.5) and (3.8a and b), 

as well as for other uncertainty classes of interest. For example, consider the situation in which the
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noise quantity is known to be some fixed n 0 € H , but the signal quantity s is known only to be in the 

class Cs € H  defined by

Cs =  \s € H  I IIj <  A} (3.27)

where 50 is a known nominal signal, A is a fixed positive number representing the degree of uncer­

tainty in the signal, and II jc II denotes the norm of a: 6 H  defined by I lx  II =  [<  x ,x  > ]v\ For this 

problem it can be shown (see Theorem 1 of [3.24]) that a saddle-point solution to (3.24) is given by 

(hR \sL j i  0) where hR is given by

hR = (n 0 + o-qI ) - 1 s 0 (3.28)

with I  being the identity mapping from H  to itself and with cr0 being the positive solution to

cr02 IIhR II2 =  A ;  (3.29)

and where

S L = * o - < r o h R . (3.30)

Note that, for the specific spectral domain example discussed in subsection 3.1, the identity operator is 

represented by the unit white-noise spectrum $ v ((t>) =  1 and so (3.28) corresponds to (3.7) with n 0 

and s0 being represented by 4v(o>)and P  0((x))e+jOiT, respectively. (Recall that, for this case, h is 

identified with H  * (to)). It is interesting to note that, as in the spectral case, the identity operator / 

generally describes a white-noise process so that (3.28) indicates that the type of uncertainty described 

by Cs has an effect on the design equivalent to that of adding white noise of spectral height cr0.

The result regarding the band model of (3.8a and b) can also be extended to general Hilbert spaces. 

In particular, consider the situation in which the signal is known, say Sq, and in which all of the noise 

operators n € N  can be represented by spectral components {n (o>); o> € f t }  for some set ft. This situa­

tion arises in stationary models such as that yielding (3.8a and b), in which case n (o>) can be taken to 

be the power spectral density at the frequency o> and ft is JR (it could similarly be JRn \



70

Alternatively, for other models this situation arises when all of the members of M  share a common 

eigenstructure and the set \n (a)}, (o € f t }  is the eigenspectrum of the operator n. For example, such a 

model is generated i f  the all noise autocorrelation functions in ffl have Karhunen-Loeve expansions in 

the same eigenfunctions. In this latter case, i l  would be the set of positive integers, and n (a>) would be 

the o>-th eigenvalue of n.

In this general setting the band model (3.8a and b) becomes

Cn =  {n I n'(ci>) ^  n(o>) <  n'(ai), o> € Cl and tr{/i} =  c } (3.31)

where n and n are known functions and tr{ * } denotes trace. Note that for power spectral densities

oo
' 1 n  oo

the trace is just - —  J n (a))d o> and for discrete eigenspectra the trace is £  n ( i ). (More generally, we
27r -oo i =1

can write tr{n } =  J  n (adfiid a>) for some measure ft on Cl.) Assuming that the signal j 0 also has the 
n

spectral representation {S 0(w); 0) € f l } in terms of the same eigenstructure as the members of Cn , it can 

be shown using (3.25) (see [3.24]) that the robust filter for Cn of (3.31) is the optimum filter for S 0 and 

a least-favorable noise operator whose spectrum is

nL (o>) = max \ri (<u), min {k ~l IS 0Co)) I, n (o>)}} (3.32)

where k is chosen so that tr{nx } =  c. Note that (3.32) is identical to (3.11) with nL = $ NtL, 

L n  — n t UN =  n , and P 0 =  S 0. This result can be combined straightforwardly with (3.28M3.30) to 

give the robust solution for uncertainty in both signal and noise (see Kassam, Lim, and Cimini [3.4] and 

Poor [3.24]).

Example: Binary Communication

To illustrate the generality of the above result consider the problem of antipodal signaling in 

additive Gaussian noise as described by the following pair of statistical hypotheses:

H o i Y ( t )  = N ( t ) - s ( t X  O ^ t  ^ T
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versus (3.33)

H l: Y ( t )  =  N ( t )  +  s ( t \  O ^ t ^ T

where {5 (r ); 0 ^  i ^  T } is a known (i.e., deterministic) square-integrable signal waveform and 

{ N ( t ) ; 0  ^ t  ^ T )  is a zero-mean Gaussian noise process with autocorrelation function 

{Rn (t yu y, 0 ^  t ^  T  ,0 ^  u ^ T ) .  Assuming that H  0 and H  x are equally likely, the Bayes 

optimum (i-e., minimum-probability-of-error) receiver for (3.33) is of the form (see, e.g., Helstrom 

[3.26])

T
<f£y ) =  sgn { f  h (T  4 )y it )d t } (3.34)

o

where sgn{ • } denotes the algebraic sign of the argument; <f> -  +1 and <f> =  — 1 denote the acceptance of 

hypotheses H  i and H  o, respectively; y =  {y it y,0 ^  t ^  T  } denotes the observed realization of the 

random process {Y it \ 0 ^  t <  T  }, and where {h iT  jt >, 0 ^  t <  T ) denotes the impulse response of 

a linear filter. The probability of error associated with the receiver of (3.34) is given by

P c =  1 -  0 ([SN R p ) , (3.35)

where SNR denotes the signal-to-noise ratio at the output of the filter at time T  and is given by

j f  h iT  ¿ )s  it )dt

SNR = T Tf  f  h { T d  )Rn it ,u )h (T  ,u )dtdu
0 0

(3.36)

Here <E> denotes the standard (unit) Gaussian probability distribution function. The optimum receiver 

for (3.33) is given by (3.34) with h iT  / ) being the solution to the integral equation

/o
RN ( i  yU )h (T  yU )du s it \ 0 ^  t <  T  . (3.37)
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This problem fits within the above Hilbert-space formulation with H  being real 

L j.O J 'ls  =\s( ty,0 ^  t ^ T ) ,  h = { h ( T ; > , 0  * i t  * i T ) ,  and =  ( i  f t )  € [0,T

T

With a = { a ( r ) ; 0 ^ r  < 7 }  and ^  7  } in 27, we have <  a £  >  =  f  a (t )b (t )d t
o

T

and the operation na is defined by {na X t )  =  f  RN (r >u )a (u )du. So, fXh ̂  j\ )  is given by (3.36), and
o

(3.37) is the equation nh — s. For this model, the signal uncertainty class Cs of (3.27) is given by

T

Cs = { s  € 7  2 [0,7 ] I /  \ s { t ) - s 0{ t )\2dt < A } ,  (3.38)
o

where j 0 =  {.y0( i ) ; 0 ^ i  ^ 7 }  is the known transmitted signal. This model represents a general 

model for types of receiver and channel distortion that are difficult to model parametrically. Further 

justification for this model is found in Slepian’s notion of indistinguishable signals [3.20].

From (3.28)-(3.29) it follows that the robust receiver of the form (3.34) for uncertain signal dis­

tortion described by (3.38) is given by the impulse response solving the equation

T

f  Rn  (t ,u )hR (7  ,u )du +  0 - ^ ( 7 / )  =  s 0( iX  < 7  , (3.39)
o

which is a Fredholm equation of the second kind. The constant cr0 is specified by (3.39) and the condi-

T

tion cr02 f  I hR (7  d ) 12 dt — A. The performance of specific solutions to (339) is discussed in [3.24]. It
o

is interesting to note again that the effect o f the uncertainty modeled by (338) is to introduce a white 

noise HfLoor" of height cr0. This device is used in standard treatments (see, e.g  ̂Van Trees [3.28]) in order 

to circumvent singularity problems arising in the solution to (3.37) for the case o f continuous RN . 

That this phenomenon arises naturally here gives additional justification for considering minimax 

design within (3.38). Equation (3.39) and the condition following it for the robust filter was originally 

derived in [3.13]. A  modified condition for a signal class with an energy equality constraint is given in 

[3.15].
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To further illustrate the general Hilbert-space results, consider the discrete-time observation 

models under the two hypotheses

H  o- Yi Nj  Sj, i ~ 1,2,...,m

and (3.40)

H  j iYi  =  Ni  +  Sj, i =1,2,—¿n

where N  =  (AT l f . . . ,  N m Y  is a random vector having zero mean and nonsingular covariance matrix 2 

and where s_ = (s l t . . .  ,smY  is a known signal vector. Here, the output at time m of a linear filter

with impulse response {/i, Jl =  0,1....... m —1} is given by h j  s_ where hj =  h m _x, and the output SNR

is (h T s_)2/hj 2/i_. The matched filter for known 2 and s_ is given by 2 -1jr_. Of course, this fits the 

above Hilbert space formulation with H  -  JRm (i.e^<a.^. > =ajb_) ,  s =s_ ,h  =  h,  and with the 

operator n represented by the matrix 2. A  band model class N  of operators such as (3.31) occurs here 

in the case m which all members of N  have the same orthonormal eigenvectors v_j, v_2> • • • >Xm in 

which case (3.31) is given by

Cn =  {2  I 2vj =  \i^  and ^  ^

m
for all i =  1 , . . . ,  m , and £  \t =  c } (3.41)

¿=i

Thus, applying (3.32), the least-favorable covariance matrix is given (using its spectral representa­

tion) by

m
S l =  L  * L.i (3.42)

¿=i

where
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XLJ

x i , k v ,  <  \i

k~lpi * K  <  fc-1#  <  Xi

K  , Xi <  k lpi

(3.43)

where #  =  _Ur v, I and where k is chosen so that £  XLti =  c . Note that (3.42) must be nonsingular
i= 1

and thus the robust filter is described by hj? =  E f^X* This result is a special case of more general 

results found in Chen and Kassam [3.10, 3.11].

The discrete-time model of (3.40) can also be used to illustrate least-favorable signals and noise 

operators for uncertainty models of interest other than those of (3.27) and (3.31). This problem has 

been treated in [3.12] in some detail. For example, suppose the noise covariance is known to be given by 

diagio-j2, <j 22, . . . ,  cr 2 } (corresponding to uncorrelated samples), and the signal is known only to diifer in 

total absolute distortion by no more than A from some nominal signal Xo. i.e  ̂we assume the signal lies 

in the class

Csl =  {s_eJRm L  I*,- I ^  A} . 
¿=1

(3.44)

Then, it can be shown [3.12] using (3.25) that the robust filter h j

hRJ
hoj » i f  \h0J I <  c

csgn {/i0(i} ,  i f  \h04 >  c (3.45)

m
where h_0 is the nominal filter and where c >  0 satisfies the equation £  cr2 min{0, Ih 0ti I — c } =  A.

i =1

Thus, in this case the robust matched filter is a clipped version of the nominal filter. Similarly i f  E is 

diagonal and x  lies in a class

c r  =  (x  € JRm I max 1^ —s04 I ^  A},
i = 1 , . . . ,  m (3.46)

then the robust filter becomes (see [3.12])
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h-Rj —

(so, -  A)/cr;2 , A <  s0j 

O, —A ^  s0ti ^  A

(s0<j +  A)/cr,2 , J<y <  - A  .

(3.47)

This filter is the optimum filter for a least-favorable signal in Cs°° that is as near zero as possible (in

terms of the norm max I sf I). Extensions of these results can be found in [3.12].
i = 1,2, . . . ,  m

The above treatment makes clear the rather general applicability of the Hilbert space framework 

for formulating and solving robust linear detection problems. Recently it has been shown [3.29] that a 

Hilbert space framework can also be used for robust linear estimation problems (which we surveyed in 

Section 2); for details the reader is referred to [3.29]. We shall now proceed, in the next section, to con­

sider robust nonlinear signal detection schemes primarily designed to protect against uncertainties in 

noise probability density functions.



4. NONLINEAR METHODS FOR ROBUST SIGNAL DETECTION

In the previous two sections we focused on the design of robust linear filters for signal estimation 

and detection, for situations in which there was uncertainty about the spectral densities or correlation 

functions of the signal and noise. The performance measures considered there were the mean-squared 

error and the signal-to-noise ratio, which did not involve the exact functional forms of the signal and 

noise probability density functions (pdf’s).

In this section we w ill survey results on robust signal detection which pertain specifically to 

robustness when the detection performance is measured by characteristics directly related to the proba­

bility o f  detection or error probabilities instead of signal-to-noise ratios. Although in most situations 

an assumption that the noise is Gaussian gives a direct relationship between the SNR and such detection 

performance measures, this is not true in the case of non-Gaussian noise. In almost all such cases it is 

possible to obtain explicit results on the structures of minimax robust detectors (generally nonlinear) 

only when the noise processes are sequences of independent random variables so that only univariate 

probability density function uncertainties need be considered. In the first two sections we were able to 

avoid considerations of pdf uncertainties because the performance measures (MSE and SNR) depended 

only on second-moment characteristics. For the detection performance measures we use here, considera­

tion of the correlation functions and more generally o f pdfs beyond those of first order is avoided by 

the assumption of independence. For the pulse-train detection problem discussed at the beginning of 

Section 3, this means that a robust detection scheme can be arrived at by decoupling the treatments of 

spectral density and probability density uncertainties. That this approach is necessary is not surprising, 

considering the well-recognized difficulties of dealing in general with non-Gaussian random processes. 

There are available, nonetheless, some recent results on robust detection in correlated noise, under cer­

tain constraints, and we w ill discuss these later in this section.

For the most part, then, we w ill be considering here various nonparametric classes of univariate 

noise probability density functions expressing different types and extents of uncertainty about the exact 

noise pdf. We w ill consider in particular the canonical detection problems of known low-pass signals
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in additive noise, deterministic bandpass signals in bandpass additive noise, and random signals in addi­

tive noise. Even with the simplification due to the white noise assumption, explicit solutions for 

minimax robust detectors are generally possible only under a further restriction to consideration of the 

local or weak-signal case. We w ill begin, however, with a description of the results of Huber, and 

other related results, for a general hypothesis testing problem. As we have mentioned in the Introduc­

tion, the 1964 and 1965 results of Huber [4,1, 4.2] have greatly influenced and motivated much of the 

subsequent work on robust signal processing schemes.

4.1. Robust Hypothesis Testing

In 1965 Huber [4.2] published an explicit solution for the robust test for a binary hypothesis test­

ing problem related to the signal detection problem we discussed in the Introduction. The significance 

of this result lies not so much in the solution it provided for the hypothesis testing problem considered 

by Huber, as much as in the mathematical justification it provided of the use of detectors based on 

bounded functions such as L (x  ;y ,0) of (1.5).

Let X  =  (X  ltX  2 ) be a vector of independent and identically distributed (i.i.d.) observation 

components X i t l  ^ i ^  n . Under a hypothesis H 0 (null hypothesis) let the common pdf of the X, be 

f  o, and under an alternative hypothesis H\ let the common pdf be f v The requirement is to construct 

a test for H 0 vs. H x based on the observations X ,  when / 0 and f x are not specified completely. The 

approach taken by Huber in [4.2] was to define first classes of allowable probability density functions 

under the null and alternative hypotheses. The classes considered in [4.2] were obtained as neighbor­

hood classes containing in each case a nominal density function and density functions in its vicinity. 

One such pair of neighborhood classes which is popular in robustness studies is the pair of €- 

contamination classes, for which under H j , j  =0,1, the class of allowable density functions is

€ ; ) = { /  1/ = ( l -€ ; )/ /  + ejhj ) ,  y =0,1 . (4.l}

Here / /  is the nominal density function under hypothesis Hjt  quantity in [0,1) is the maximum 

degree of contamination for / / , and hj is any density function. These classes are, of course, the same
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(aside from normalization) as the spectral uncertainty classes o f Example 1 in subsection 2.3. The 

hypothesis testing problem is therefore that of choosing between the two hypotheses:1

H 0 : common univariate pdf of the X, is any pdf / 0 m F 0 » (4.2a)

H x : common univariate pdf of the X f is any pdf f x in iP j . (4.2b)

Huber then sought the least-favorable pair of probability densities in F 0 X F i ,  which is defined on 

the basis of a risk function R ( /  ,0). In the risk function, 0  denotes the test for H 0 versus H x which

rejects H } in favor o f with probability &  ( X  )  when X  *  ( X  ltX 2........X n )  is observed,2 the X,

being i.i.d. with density function f  in F 0 or IFi. Consider, for example, the m inim um probability of 

error criterion for which we would have

R d f  ,<t>) =  E f {<f>J(X)} i f f  € JFj .

Then for (/ o »/ i) 6 JF0 X F x the probability of error (assuming equally likely priors) is

P A U  + ,

(4.3)

(4.4)

and this is minimized when 0  is a test based on a comparison of the likelihood ratio A ( X ) =  JJ
i =1

f  f X i )//o(X(. )  with a threshold value unity. The least-favorable pair G?o» <71)  hi F 0 x F i for this 

problem is that pair for which the corresponding test <f>q based on its likelihood ratio satisfies, for all 

(/op/t) € F 0 x F if

( / o / i;0 ? ) ^  Pe(<io>q 1*<t>q) • (4.5 )

In general we may define R { f  ,0) to be L j E f  {<f>KX)} when /  € F Jf the L J being constant 

weights, and we may consider other risk-based criteria [4.2]. One of the major results in [4.2] is that for 

the €-contamination classes a least-favorable pair exists satisfying

The arguments for F q ,  F  j  w ill be dropped when no confusion can result. 
2Note that 0 °(X  ) +  <f>KX )  =  1.
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R ( f  ,<t>q) ^  R(qj,(f>q ) for /  € lFj ,  j  =0,1, (4.6)

where (f>q is any test for  ̂0 versus q 2 based on a comparison of the likelihood ratio with a threshold (a 

’ probability ratio test”). This clearly implies that (4.5) is true. The pair (qo,qi )  and <f>q for m inim um 

error probability form a saddlepoint for the error probability functional, that is

^e(/o  f ^ Re^o>qi,<i>q) ^ Re(qo>qb<fi (4.7)

for any ( / 0 ,/ i )  € x  JFl and any test <f>. The test <f>q is called a robust test for /  € JF0 versus 

/  6 it minimizes over all tests the supremum (least upper bound) of the error probability over all 

pairs in IFq x  2Fj. Indeed <t>g is robust, in view of (4.6), for other risk-based criteria such as the 

Ney man-Pearson criterion. For this criterion we can define the threshold for <f>g in such a way that for 

a design value a  of the false alarm probabilitv

R  ( f  » 4>q ) ^  R  (q  o <f>q ) =  CX , /  € JFq * (4 .§ )

with R ( /  , 0 ) as in (4.3).

For the €-contamination class Huber’s solution for the least favorable pair turns out to be

? o ( * )  =

(l-€ o )/00(x ) ,

i d —€ o )/ i ° ( x ) .

/ i ° d ) 

/o° ( *  )
<  c"

otherwise
(4.9a)

q A  ) =
Cl“ € i ) / i ° ( x ) ,  

c' ( l  €x) / 0° (x  )  ,

. ^  f i°Cx ) 

C / o ° ( x )

otherwise

(4.9b)

where c' < cm are non-negative numbers such that q 0 and q x are probability density functions. The 

proof of the existence of such a pair in F 0 x F j  where IF § and W l are disjoint (the case of interest, 

since otherwise q 0 = q iX and the proof that'(4.6) holds, can be found in [4.2]. Note that the likelihood 

ratio \q (x  ) =  q x(x  )/q0(x  ) for a single observation for the least favorable pair is a "censored” version of
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the nominal one,

\  (x  )  =

be , 

b \q(x ) ,  

be' ,

c' ^  \ 0( * )  

c <  \ q(x  ) <  c‘ 

Xq(x  ) <  c'

where ¿> =  ( l - e ^ X l- e o )  and \0(x  )  =  /^G c )//0° ( x ).

(4.10)

In [4.2] the least favorable pair o f density functions was also obtained for another uncertainty 

model for the density functions under H 0 and H x. This was defined by the total-variation classes of 

probability densities which may be expressed as

F j  ( / ; » € ) = { / / / ( * ) - f j ' K x ) dx ^  e} . (4.11)

This is analogous to Example 2 of subsection 2.3. In a later paper [4.3} it was shown that least favorable 

pairs of probability measures can be found for probability measure classes which are defined as being 

bounded by 2-alternating capacities, which are generalized notions of measure as discussed in subsec­

tion 2.7. The €-contaminated classes of nominal densities have remained the most widely used uncer­

tainty models, partly because of their earlier introduction, but primarily because it is possible to justify 

their use, in many cases, from physical considerations. In modeling impulsive noise, for example, the 

presence of a small proportion (whose maximum value is e) of impulsive components in a background 

of, say, Gaussian noise can be modeled to have an €-contaminated nominal Gaussian pdf. Any uncer­

tainty about the exact pdf of the impulsive components then leads directly to use of an e-contaminated 

uncertainty class, perhaps with a side constraint on the nature of the contam inat ing pdf h .

One other specific uncertainty class of pdf’s that has been used more recently is that analogous to 

the spectral band model discussed in subsection 2.3; this model is justifiable from physical considerations 

in some applications. It may be viewed as being more general than the e-contamination class and 

allows the results obtained for the e-contamination classes to be extended. Specifically the bounded 

classes I F ]L u ) considered in [4.4] Eire defined by
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IFj ( f j L > f j v ' ) - { f  I /jL ^  ^  f  jU  1» j  =0,1 , (4.12)

so that allowable density functions in JFj are those bounded by given non-negative functions 

/ jL and f  j u which make the F } non-empty. These classes reduce to the €-contamination classes of 

(4.1) for f )L = ( l - e j ) f j 0 and f JV = oo. It is not true, however, that the classes (4.12) are obtained 

from (4.1) by imposing an upper bound on the contamination densities h : . This is clear from the fact 

that even i f  we set f  jL = ( l —6 ^ )/ / , the resulting "nominal" density f j °  may not belong to 

W j i f j L  J j  u )• In [4.4] the least favorable pair in the above classes has been found, and the likelihood 

ratio for the least favorable pair is also essentially a censored version of either f lL / f 0L or f w / f ou. 

The bounded classes of pdf’s defined by the band-model in (4.12) can be viewed as arising naturally in 

situations where the pdfs under the hypotheses are estimated from training data, in which case the 

bands ( f JL ,/ f v ) are confidence bands.

Now it should be clear that in the various uncertainty models considered above for the densities 

/  of each independent component X, of the observation sequence X ,  there was no necessary restric­

tion that Xj  be one-dimensional and that /  be univariate. It is possible, for instance, to treat an obser­

vation sequence of n one-dimensional components as a single n -dimensional observation, and character­

ize its multivariate density by one of the above classes. Essentially this approach was taken in [4.5] and 

[4.6] by Kuznetsov, who developed results for the characteristics of the robust test for hypotheses 

described by the bounded classes of (4.12). Since the likelihood ratio in a threshold comparison test 

may be replaced by any function which yields the same critical region and threshold equality region, 

simplifications may be made to results of the type in (4.10). In (4.10), for example, for a single observa­

tion test with the threshold r  in between be and be , one gets an equivalent test i f  simply b \0(x  ) is

compared to r. Note that b \0(x ) =  f  lL (x  )/ f  0L (x  ) when the €-contamination class is viewed as a 

special case of the bounded class.

In [4.5] and [4.6] Kuznetsov shows that the robust tests are obtained by threshold comparisons 

using one of the functions f w / f 0Lt f i L / f Wt  f  lL /f 0Lf or f w / f o u -  As an interesting applica­

tion, consider the detection problem (1.1) where 0s_ = 0Cslfs 2....... )  is not precisely known, but is
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known to belong to a neighborhood of a nominal sequence 0 ^  Since s_o is in JRn one might define the 

neighborhood as a spheroid of radius A centered on 0 ^  Let the N,  be i id .  and zero-mean, unit- 

variance Gaussian random variables. The bounded class of density functions for X  under H 1 is then 

defined in terms of the maximum-likelihood and minimum-likelihood estimates of 0_5j> The robust 

detector is based on a combination of square-law and linear processing of X ; details are given in [4.6].

The results in [4.5] and [4.6] on binary hypotheses have recently been extended to multiple hypothesis 

testing problems in [4.7].

We have remarked that it is possible in general to solve for least favorable pairs of probability 

measures for other pairs of probability measure classes which are defined to contain measures bounded 

by 2-alternating capacities [4.3]. Specific examples of other pairs of classes for which explicit least 

favorable pairs are available are the p -point classes (discussed in subsection 2.3 in defining spectral den­

sity classes; these become classes of pdfs when the power is fixed at unity), and the bounded p -point 

classes [4.8]. The generalized moment classes of pdfs have been considered in [4.9]. Let us also reiterate 

the interesting connection between the robust binary hypothesis testing problems for such classes of 

pdfs and the corresponding robust linear filtering problems with mean-squared errors as performance 

criteria. For many of the robust linear filtering problems with fixed-power spectral density uncertainty 

classes, the least-favorable pairs of pdfs for the robust hypothesis testing problems defined on 

corresponding unit-power normalized spectral density classes produce directly the least-favorable spec­

tra [4.10]. In general one may interpret the least favorable pair of pdfs in X F x as being that pair 

which has the minimum distance between its components. Indeed, strong connections exist between dis­

tance minimization and least favorable pdf pairs [4.4, 4.11] under some general restrictions. It is this 

which results in the close relationship between the solutions for the least favorable pairs in the robust 

linear filtering and corresponding hypothesis testing problems.

The problem of robust sequential hypothesis testing was also considered by Huber in his first 

paper on robust hypothesis testing [4.2]. More recently this work was extended in [4.12], which also 

dealt with the €-contamination model for noise pdf classes under the null and alternative hypotheses.
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Numerical performance results from simulation experiments and computations are also given in [4.12].

4.2. Robust Detection of Known Low-Pass Signals

Consider again the signal detection problem described by the hypothesis testing situation of ( l . l ) .  

Here the signal sequence is known to within an overall amplitude factor, that is, the si f i = 1 , 2 are 

know n. The observations X, described by Hi  in ( l . lb )  may be considered to arise as a result of sam­

pling a continuous-time additive mixture of a low-pass or baseband signal waveform Os ( i  )  and a sta­

tionary noise process. I f  the noise bandwidth is large relative to that of the signal in such a situation it 

becomes reasonable to assume a sampling rate which results in the noise components , i = l , 2 ^ n , 

under H 0 or H y being statistically independent random variables with some common univariate pdf 

f  . Another common situation in which the above observation model is appropriate is that arising in 

the detection of a pulse-train, as described in Section 3.

In the absence of precise knowledge about the noise pdf f  , one can now attempt to obtain *a 

robu st  detection scheme for a class of possible noise pdf’s generated by a model such as the €- 

contamination model used by Huber. But it should now be apparent that Huber’s solution which we 

discussed in subsection 4.1 above does not directly apply to our known-signal in additive noise detection 

problem. The least-favorable pair of pdfs given by (4.9a) and (4.9b) was obtained under the assume 

tion that the pdf’s / 0 6 F q and f  l € are chosen independently; this means that the contaminating 

pdf’s h o and h j in the €-contamination models were not constrained to be related to each other in any 

particular way. In the known-signal detection problem we should require h l to be a translated or 

shifted version of h o- On the other hand, Huber’s approach in which independent contaminating densi­

ties are allowed under the two hypotheses can be used to obtain a conservative solution to the robust 

detection problem.

One of the first attempts to adapt Huber’s approach and results on robust hypothesis testing for 

signal detection problems was reported in 1971 by Martin and Schwartz [4.13]. Martin and Schwartz 

were interested in the signal detection problem described b y .(l. l),  in which the observations X t under 

Hi  are independent but not necessarily identically distributed. They first showed that Huber’s result
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for the €-contaminated classes extends directly to the time-varying problem, where for each component 

Xi o f X  the nominal densities f 0°it f  and contamination degrees e ^ , €lf  may be different. For the 

detection of a known signal in nearly Gaussian noise they set f  = 0, the zero-mean Gaussian density 

w ith unit-variance (without loss of generability), and f  f\(x )  =  0 (x - 9  s, ). They took =  e to be 

sufficiently small for a given 9 so that the resulting e-contamination classes JF0 and JFX are disjoint for 

each i ,  which yielded a symmetric censoring or limiter characteristic. The structure of the resulting 

correlator-limiter detector is shown in Fig. 4.1. The quantities at in Fig. 4.1 are related to the degree of 

limiting and can be solved for from an implicit equation. Although this detector requires knowledge 

of the value of 9 for implementation, a lower bound is shown in [4.13] for the detector power function 

when it is designed for a specific set of values of the parameters.

In addition to the fact that there is only one independent class of pdfs, the noise pdfs, in the 

knou n-signal detection problem, a further limitation of the above approach to obtaining a robust detec­

tor is that the signal amplitude 9 needs to be known. In Huber’s approach the uncertainty classes of 

pdfs are usually defined as expansions of corresponding single nominal pdfs, so that the resulting 

robust test does not generally give a test which is uniformly robust in the strict m inim ay sense for, say, 

a range of nominal alternative hypotheses. As a specific example, consider the likelihood ratio of the 

robust test given by (4.10). Here c and c depend on the density f f .  Thus in [4.13] where these 

results were applied to the known-signal detection problem, the f  were defined for a particular sig­

nal strength 9. While for this problem it is possible to find a lower bound for the robust detector 

power function when it is designed for a particular 9, only for that 9 is the detector implementing a 

nunimax test for the detection problem. Finally, the robust tests and least-favorable pairs were neces­

sarily obtainable only when JFq, were not only disjoint but had a finite "separation"; thus the case 

of vanishing signal strength in weak-signal detection cannot be considered.

These considerations point to the desirability of another formulation for robust hypothesis testing 

problems of signal detection. One such alternative approach which has been quite fruitful considers the 

asymptotic case of weak signals and large sample sizes (0-*O, n -*oo). It is interesting to note that the
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Fig. 4.1: Correlator-limiter robust detector for known signal in e-contaminated Gaussian noise.
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basis for this alternative approach has been the theory of robust estimation o f a location parameter 

which w ill be discussed briefly in Section 5 below.

Asymptotically Robust Detection

For the known-signal detection problem of ( l . l )  consider the log-likelihood ratio defined by (1.3) 

and (1.4). This generally depends on 0, but for the locally optimum (LO) detector which mavimi7P<; the 

slope of the power (detection probability) function at 0 =  0, subject to a false-alarm probability bound, 

it is well-known that the test statistic for given noise pdf /  should be [4.14, 4.15]

T  loQ O  =  £  -s ,
¿=i

f ' l X , )

7 W (4.13)

This LO test statistic is a special case of the generalized correlator (GC) statistic

T  gc( K  ) ~ £  a, l  ( X t) . (A A A )

The class of GC statistics with at =  s, is then a natural class of candidate test statistics to which atten­

tion may be restricted in obtaining a robust detector for known st but for noise pdf /  not precisely 

known.

For a class JF0 of noise pdfs one would like to be able to obtain the minimax robust detector from 

amongst the class o f GC detectors (w ith a, =  st ), with slope of the detector power function as the per­

formance criterion. For fixed finite sample size n this is, unfortunately, extremely difficult in general. 

However, in the asymptotic case n ->oo (and 0-»O), under mild regularity conditions yielding asymp­

totically normal distributions for the test statistics, the problem reduces to a consideration of a more

tractable performance measure called the efficacy. The efficacy E  of a detector based on a test statistic 

T  (X  ) may be defined as [4.14]
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¿IF
£ { r ( x ) i e }

E  =  lim —
n  -*oo Tl

10 =  0
var { r c x j i e  =  0}

(4.15)

It also turns out that maximizing the efficacy with T  (X  ) of the form £  L  (X t ^ ), obtained by drop-
¿=i

ping the undesirable 0-dependence in (1.3), leads one to the LO statistic of (4.13). Without the limit 

(n “ *c° )  in (4.15) the quantity is sometimes called the differential or incremental signal-to-noise ratio.

For the test statistic of (4.14) with a, =  s! the efficacy becomes

€ =  lim
n  —*oo n L s , 2

i=l

[f l ( x  ) f ' ( x  )dx p

oo

f  l \ x ) f  ( x )dx
—CO

(4.16)

under some regularity conditions on /  and l and with the assumption that l (X z) has zero mean value 

under the noise-only hypothesis. We may also assume without loss of generality that 

1 n
^  — £  ST ~ 1» that is that the signal has unit average power when its amplitude is unity. A

significant observation about the efficacy of (4.16) with this normalization is that the reciprocal of this 

normalized efficacy is exactly the asymptotic variance of an M-estimate for the signal amplitude 6 of a 

constant signal (5, = 1 ) .  An M  -estimate 0 of 0 is in general that quantity solving

t « X , - k -  0 ; (4.17)

note that 0 is the sample mean when Z (x ) = x . The variance of an M  -estimate using l is the recipro­

cal of the normalized efficacy of (4.16), under some regularity conditions.

A  brief discussion of robust M  -estimation of a location parameter when the pdf /  of the addi­

tive noise is not precisely known is given in Section 5. Here we shall note only that in 1964 Huber 

[4.1] found the least-favorable pdf in the class of €-contaminated noise pdfs for the robust M -  

estimation problem, and hence obtained the corresponding optimum M  -estimate as the robust M  -
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estimate. It should now be clear (since minimizing the asymptotic variance in M  -estimation is 

equivalent to maximizing the efficacy for our detection problem) that the least-favorable pdf found by 

Huber w ill also make its sequence of LO detectors (for n =1,2,—) an asymptotically robust sequence of 

detectors, providing a saddlepoint value for the game in which the efficacy is the performance function. 

In fact one can get a stronger result where the false-alarm probability can simultaneously be bounded. 

These results for asymptotically robust detection were first extended, from Huber’s estimation results, 

by Martin and Schwartz [4.13] and later expanded by Kassam and Thomas [4.16].

The general result in [4.13] and [4.16] may be summarized as follows. Let W) be the class of all 

detectors of asymptotic size (i.e., false-alarm probability) a for our hypothesis testing problem with 

/  € Fo(g  »€) as defined in (4.1). Now g is a symmetric nominal density function which is strongly 

unimodal so that -log g is a convex function, and is twice differentiable, and the contamination h is 

symmetric and bounded but otherwise arbitrary. Let (0 1 /  ) be the power function of a detector D

with / 6 lF0(g ,e) the noise density function. Our false-alarm probability constraint is that for each

D € IE),

lim M O i  / ) < < * ,  all /  6 JF0(g,e)
n  -*oo ° (4.18)

The asymptotically most robust detector3 DR 6 22) is then defined as the locally optimum detector for 

the least-favorable f R € JF0(g ,e) such that

02)* (01 /  )
 ̂ F 0(g ,e ), (419)

0z>*( 0 1 / * )

in addition to (4.18) and

3More explicitly, each D  € 2® is an ininite sequence (D  lt D  & ~) of detectors, one for each 
tional dependence of the test statistics o n X  is the same for all members of the sequence.

sample size n . The fune-
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0 ^ ( 0 1 / * )
all D  € US) .

(4.20)

The Dr satisfying (4.18M4.20) exists for a  ^  oig ,e\ a lower bound depending on g and €, and is the

locally optimum detector of asymptotic size a  for f R 6 JF0(g ,e) given by Huber’s exponential-tailed 

density

/ * ( * )  =
( l —e )g (x  ) ,
(1— e)g (a ) exp [—b ( I x

\x I <  a 
— a ) ] ,  I x I ^  a (4.21)

where a , b satisfy

f  g ( x )  dx + 2g(a )/b =  ( l — e)“ 1,
—a (4.22)

(4.23)

The lower bound on a is given explicitly as a function of g and € [4.16V For the unit-variance Gaus­

sian nominal density this bound is no less than 0.158, which is obtained when €-+0. Note that the

robust detector is based on the test statistic of (4.14) with l — lR — - f R/ f R, which is

lR(x ) =
- g  ( *  )/g (x ) , 
- g  (a )/g (a ) ,

I*  I <  a , 
lx  I ^  a . (4.24)

The threshold for the robust detector can be set by considering the normalized test statistic 

1 n
£  s, lR (X, X and basing the computation of false-alarm probability on the asymptotically normal 

distribution of this finite-variance statistic.

The resulting generalized correlator detector may be described as a limiter-correlator detector, and 

this is one of the canonical structures of robust detection theory. Note that when g is zero-mean, unit- 

variance Gaussian we have - g ' ( *  )/g ( * )  =  * ,  and lRbecomes the "amplifier-limiter” or "soft-limiter"

“A method for relaxing this restriction is discussed in [4.18].
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nonlinearity. The structure of the limiter-correlator detector which is asymptotically robust for 

known-signal detection in €-contaminated Gaussian noise is shown in Fig. 4.2. Note that this particular 

GC detector can be used in place of the linear correlator detector acting on the matched filter outputs in 

Fig. 3.4, especially when the matched filter output noise components can be modeled as being e- 

contaminated Gaussian random variables with unknown contaminating pdf’s.

Further details of the above results are given in [4.13] and [4.16], including comparison with other 

detectors on the basis of asymptotic relative efficiency (ARE), and a discussion of the robustness pro­

perty of the simple sign detector, which does an extreme form of limiting on the observations. A  

numerical study has been made in [4.17] of the performance characteristics of various limiter-correlator 

detector nonlinearities, for the additive known-signal detection problem. The noise density in [4.17] 

tv as taken to be the €-contaminated Gaussian nominal with contaminating densities of the impulsive- 

noise type modeled by exponential (Laplace) and generalized Cauchy functions. The nonlinearities con­

sidered were various multi-level approximations of the canonical "amplifier-limiterM, including the 

hard-limiter and the noise-blanker. Performances were characterized in terms of asymptotic relative 

efficiencies with respect to the linear-correlator detector.

The growing interest in detection systems using quantized data led to a consideration in [4.18] of 

the above known-signal in additive noise problem with the requirement that the detector characteristic 

l in (4.14) be an m-level piecewise-constant quantizer characteristic. It has been shown in [4.18] that 

the most robust quantizer-detector in the sense of (4.18M4.20) for the €-contaminated noise density 

class J70(g ,e) of (4.1), for the detection problem ( l . l ) ,  is again the locally-optimum quantizer-detector 

for the least-favorable density of (4.21).

Robust Detectors Based on M  -Estimators

The detectors we have considered so far in this section have all had the general structure of 

Neyman-Pearson optimum detectors, which are based on a comparison of the likelihood ratio to a thres­

hold. The test statistics of our detectors have been of the form £  k Of,-), which is that of the statistic
i= 1
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Pig. 4.2: Limiter-correlator asymptotically robust detector for weak signal in €-contaminated Gaussian
noise.
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of (1.3). A  different approach for robust detection of additive known signals was proposed by El-Sawv 

and VandeLinde in [4.19]. In their approach, the test statistic is simply an M-estimate of the signal 

strength parameter 0, and their robust detector test statistic is the robust M  -estimate of 0 for the same 

class of noise densities. To understand the motivation for this approach, and its difference from the pre­

vious one and the possible advantages of the resulting detectors, let us re-examine briefly the above 

results on asymptotically robust known-signal detection. It is clear that, as for any consistent test, the 

robust detector based on a test statistic of the form of (4.14) has a power function /3D(0 I /  )  which

approaches unity as n approaches oo for each 0 >  0, assuming that ^  s-^ln approaches a positive
¿=i

value. Thus, the practical interpretation of (4.19) is that for large enough n for which use of the cen­

tral limit theorem is reasonably well justified, the slope of the power function at 0 = 0 for DR may be 

considered to be minimized by f R in W 0(g ,e).

In [4.19] it is pointed out that this condition does not guarantee that for each /  € JF0(g ,e), we 

w ill have &Dr (0// ) ^  PDr(9/f R )  in some interval (0,0/ ). A  simple example of a density in F 0(g ,e) 

for which &£>R(0/ f  ) <  ($dr(Q/ f  R ) when 0 >  0 proves this. The lack of a strict inequality in (4.19), 

which allows this to happen, led to the alternative approach in [4.19].

For the hypothesis testing problem of ( l . l ) ,  note that for a finite-power signal (for which

n

L  si2' n — c » a finite positive value) the signal energy as n -♦ oo becomes infinite under the alter­

native hypothesis H v I f  the hypothesis testing problem statement is slightly modified by replacing the 

amplitude 0 with v/n /2, the total signal energy in any sample of size n remains finite, and the limiting 

energy is v2, assuming c — 1 without loss of generality. In a practical sense, suppose an observation of 

length N  is given for which the known signal sequence (s lts 2^ s N ) has amplitude 0j and for which

N
Z  s i 2/N  = c n ♦ For N  large enough, the results to follow  can be applied with v -  9 iN C N f 2.

The minimax robust detector for this known-signal detection’ problem was obtained from amongst 

a class of M-detectors in [4.19]. This is a class of detectors for which the test statistic is an M  -estimate
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(as in (4 .17» of the signal strength 9. Let L  be the class o f M  -estimator functions L  which satisfy 

convexity, symmetry, monotonicity and differentiability requirements, in addition to mild require­

ments on the moments of the associated random variables when the noise density function is a 

member of a general class F  of symmetric densities. The M  -estimator 9 o f 0, based on n observations

and a function L , is the value of 0 minimizing £  L (X ,  -  9sf ), so that

0 = a rgn rin | i(X , -0 r , ) .  (4.25)

This is a generalization for non-constant signals of Huber’s definition. Note that (4.17) for =  1 , all i , 

is obtained from this with l ( x )  = d L (x  )/dx.

Let the asymptotic detection power as a function of v for an M  -detector based on a function L  

be denoted as (v I f  ). This power function obviously depends on the noise density function 

f  € F . The analysis in [4.19] establishes the following results. Let V \ f  JL°) be the asymptotic 

variance of n HO -  9\ which is asymptotically normally distributed with mean zero for 

/  6 W  and L  € L. Suppose there exists a density / 0 € F  such that L 0 =  - lo g  f 0 is in L, and

1 ^ /  rX 0) ^  V  2( /o,Z 0) for all /  6 F . Let the M  -detector based on L 0 have a threshold y. Then 

for v ^  y, we have

^£ „(01 /  )  <  0£o(OI /„), /  € F  (4 26)

and

Pl 0( v I /  )  -  I / 0) =  max /3Z (v I / 0)
(4.27)

In fact, since the M  -detector based on - lo g  f 0 is asymptotically equivalent in performance to the 

detector based on the likelihood-ratio for / 0 when f 0 is the noise density function, the maximum over

L  in (4.27) can be replaced by the supremum over all detectors with size equal to that of the M  - 

detector based on L  q.
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The main requirement in the above is that v not be less than y. This implies that for a given v, 

the design false-alarm probability cannot be too small. The requirement v ^  y can be met by making 

the sample size n sufficiently large in any given situation. Note, however, that the saddlepoint condi­

tion (4.27) and (4.26) do not hold together, for a given sample size and false-alarm probability con­

straint, in an interval around v =  0. It has been shown in [4.19] that for such cases the robustness cri­

terion based on asymptotic slope of the power function (as in (4.19) and (4.20)) also makes the M -  

detector based on L 0 the most robust detector, but again subject to the same restrictions on the 

minimum value for the false-alarm probability.

If  the saddlepoint solution ( f  q ,  L  0) exists it may be obtained by first minimizing the Fisher 

Information function for location, / ( /  ), over all /  € . The Fisher Information function for loca-

tion is the function

oo

/ ( / ) = /
—oo

It is no accident that / ( /  ) is the maximum value of the normalized efficacy in (4.16), obtained for 

/ ( * )  =  — /  (x )/ /  (x ),  the LO nonlinearity. The minimizing density / *  and the function 

L  =  - lo g  /  in L  give the saddlepoint pair ( / *  L 0) =  ( /  * J, * ). In [4.19] the fam ily of sym­

metric density functions with a known probability p assigned to an interval (—a ,a ) was explicitly 

considered as an example. For this p-point class of densities the least favorable density / 0 was again 

shown to have exponential behavior outside ( - a  ¿z), and the robust M  -detector characteristic L 0 had 

derivative l Q which was a constant outside {—a ,a ). Some numerical performance comparisons of

asymptotic performance and finite-sample simulation results are also given in [4.19] for a particular 

example.

The significance of the function dL(x )/dx — l ( x )  in M  -detection is that under appropriate 

regularity conditions, the test statistic 0 must satisfy

/ ' ( * )  
/  ( x )

f  (x )d x (4.28)
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Z ̂ U X i  - f t S i )  =  0

i =1 (4.29)

(This is the same as (4.17) for 5, =  1 , all i ). The variance of the statistic 0 is the reciprocal of the 

efficacy of the generalized correlator detector based on the test statistic of (4.14), with a, =  Note 

that the mean of 0 is 0. Since l is a monotonic increasing function of its argument for L  in the class 

L , we have a simple way of implementing such a detector when s{ all have the same sign. In this case

n A

the sign of £  i, l (X, — ys, ) directly indicates i f  0 is above or below the threshold y.
i =i

The robust detection of known signals using an M  -estimate has also been extended in [4.20] to the 

sequential binary signaling problem. Here the two hypotheses H 0 and H x are defined by

H o 9- X i  = N t + 0O

H 1: X, =  Ni +  0j
» i = l ,2 r (4.30)

where the density function of noise components N t is a member /  of some class W  of symmetric den­

sities. Under the same mild restrictions on the class L  of allowable M  detector characteristics L  asm 

the non-sequential case, a robustness property is established in [4.20] for the sequential M  -detector 

(MS-detector) based on the sequence of robust M  -estimates 0 defined by the same characteristic L {) as in 

the robust non-sequential case. Thus, when /  =  / 0 for this robust scheme, the probabilities of error 

are upper bounds on the probabilities o f error for arbitrary /  6 W , and the same holds for "normal­

ized" expected sample sizes, in the limiting case when I -  0OI — 0 and sample sizes are large, for 

which Gaussian approximations to distributions for 0 can be used. In addition, it has been shown that 

the pair (/<> L  0) also forms a saddlepoint for performance measured as a risk function which is a 

linear combination of the error probabilities and the "normalized" expected sample sizes, for one set of 

weighting or cost coefficients. The normalization" of the expected sample sizes is required to obtain 

well-defined quantities, since the results are valid asymptotically when actual sample sizes become 

infinitely large.
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An alternative scheme for robust sequential testing in the situation described by (4.30) was also 

considered in [4.20]. This scheme is the robust stochastic approximation sequential (SAS) receiver. 

Again the test statistic is directly based on the sequence of robust fixed-sample stochastic approxim ation 

estimates of the location parameter 0 — 0O or 0̂ ; this estimation scheme w ill be discussed briefly in Sec­

tion 5. It has been shown that the robust MS- and SAS-detectors have identical asymptotic characteris­

tics. The SAS-detector does not store past observations, as it uses a recursive algorithm for updating the 

estimate of 0 as new observations arrive. On the other hand, the MS-detector converges to its asymp­

totic performance faster and does not need an initial estimate to obtain 0.

Another class of robust estimates of mathematical statistics is the class of L-estimates, which are 

estimates formed as linear combinations of order statistics. One example is the median, which also hap­

pens to be an M  -estimate. The ot—trimmed mean is another example of an L  -estimate and w ill be 

discussed in Section 5. The robustness of these L  -estimates in estimation has prompted investigation of 

their use in signal detection; references [4.21-4.23] investigate the use of some simple L  -estimates in sig­

nal detection problems.

The results we have discussed in this subsection show quite clearly the central role in robust sig­

nal detection of robust estimation theory, particularly of the original results o f Huber, in addition to 

that of Hubers results on robust hypothesis testing. We now go on to consider, in somewhat less detail, 

the other two canonical signal detection problems of random signals and of bandpass signals in additive 

noise.

4.3. Robust Detection of Random Signals

In many applications involving the detection of random signals the observations are obtained 

simultaneously from a number o f sensors forming an array. The detection problem then often becomes 

that of detecting a random signal common to each sensor in the presence noise processes uncorrelated 

with each other and with the signal. An example of such an application is a hydrophone array in a 

passive sonar system used to detect the presence of, and to locate, sources of random signals. For each 

search direction, relative time-delays are imparted to the sensor outputs to equalize the propagation
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delays to each sensor for a potential signal from that direction. This is followed by a detector for a 

common random signal.

A  special case of interest is that in which the sensor array is composed of two elements. In this 

situation, the sampled observation vectors X  i =  (X  UtX  12,^X  ln )  and X 2 =  (X  21fX  22>̂ X  ̂  ) can be 

described by

X ji = OSj + N  ji , i = 1  , j  =1,2, (4.31)

where the signal amplitude 6 is zero under the noise-only null hypothesis and 0 ^ 0  under the alterna­

tive hypothesis. We assume here that the N_j  = (N j lrN j 2 , . . .  , N Jn) are independent sequences of 

zero-mean i.i.d. noise components with common pdf /  , and 5 =  (5  ltS ........ )  is an independent sig­

nal sequence of i.i.d. zero-mean components, whose variance may be taken to be unity without loss of 

generality.

The presence of a signal in the above model (0 ^  0) causes the output pairs of observations 

(X  i j ,X  2i ) to be positively correlated, in addition to increasing the power level received at each sensor. 

The increase in the correlation value from zero is in particular due to the presence of the common ran­

dom signal. Thus it is quite reasonable to restrict attention to the class of generalized cross-correlation 

(GCC) detectors based on test statistics of the type

T’ gccCX i»X 2) =  22  ̂(X  i ,•)/ (X  a ) , (4.32)i =1

where l is the detector weighting function. For detection of weak signals (02-»O) it can be shown 

easily that detection efficacy is maximized with l (x  ) =  -  /'' ( *  )/ /  Gc ), which is also the LO nonlinear­

ity for known-signal detection.

In one o f the earliest published studies of robust detection of random signals W olff and Gastwirth

[4.24] examined several specific simple nonlinearities l for robustness of performance when f  is not 

known. A  finite class of pdf’s comprised of the Gaussian, logistic and the pdf for a particular t -  

distribution was considered in [4.24]. The nonlinearities l considered in [4.24] were the simple three
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and four-level symmetric quantizer and the "amplifier-limiter" or "soft-limiter" continuous function 

which is linear in an interval including the origin but constant outside that interval. The criterion of 

performance used in [4.24] was effectively an asymptotic relative efficiency; it was the ratio of the 

efficacy for noise density /  obtained with weighting function l and the optimum efficacy for noise 

density /  . In the definition o f efficacy, 02 is now the signal strength parameter.

In [4.25] the detection of a random signal common to an array of receivers was considered as an 

extension of the two-input case. Again, no attempt was made to include a bound on the false-alarm 

probability as part o f the performance criterion, so that the assumption was that detector thresholds 

could be varied to get the correct false-alarm probability for any noise density. The performance cri­

terion was the detection efficacy, which as we have remarked before for the known-signal case is 

directly related to the slope of the power function at 9 =  0. For the correlator-array structure (general­

ization of (4.32) by a second sum over all pairs of sensors) an interesting saddlepoint robustness result 

was shown. This was that for the €-contaminated class F 0{g ,e) describing the independent noise com­

ponent at each receiver across the array, with the same restrictions on it as in the known signal in addi­

tive noise case, subject to mild smoothness restrictions on allowable l functions, the m inim a robust 

cross-correlator nonlinearity lR is exactly the same as lR of (4.24) for the known signal case. Of course, 

the result here was only possible in terms of the weaker efficacy criterion above. Figure 4.3 shows the 

structure of a two-element random signal detector using an "amplifier-limiter" GCC nonlinearity l .

In [4.25] other variations o f the €-contamination class for this multi-input problem were also con­

sidered. Modifications of locally-optimum detectors (rather than cross-correlators) for common ran­

dom signal robust detection were also investigated, although explicit minimax robustness results could 

be deduced only for the special case o f contaminated double-exponential noise density, for which a 

hard-limiter based polarity coincidence array detector [4.26] is most robust. The polarity coincidence 

array detector is based on use of the two-level sign function for Z, and is well-known as a non- 

parametric detector with a fixed false-alarm probability for zero-median noise pdf’s.
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Fig. 4.3: Generalized cross-correlation asymptotically robust detector for weak random signal.
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The class of detectors for single-input additive random signal contains no counterpart of the 

cross-correlator structure. In [4.27] the optimum quadratic detector for Gaussian statistics was modified, 

from intuitive considerations, into the limiter-quadratic detector. Numerical asymptotic relative 

efficiency computations for Gaussian-mixture noise pdfs (e-contaminated nominal Gaussian with 

larger-variance Gaussian contaminating density) and finite-sample detection power and false-alarm pro­

bability computations verify  the expected robustness of the limiter structure. The subsequent results in

[4.25] extended such structures to the multi-input or array case.

Explicit minimax results for the single-ihput additive random signal detection problem parallel­

ing those for known-signal detection have been obtained more recently in [4.28]. Two statistical models 

for this problem have been investigated in [4.28]. In one model the alternative hypothesis of signal 

presence is defined to produce additive signal and noise components in the observations, (i.e. (4.31) for 

;  =1). In the second, scale-change, model the alternative hypothesis is defined by the condition that the 

pdf o f the i id .  observation components X¡ is /  (x  /<r)/cr, where /  is the null-hypothesis observation 

(noise) pdf. It had been shown earlier [4.29] that for the additive noise model the locally-optimum 

detector is based on the generalized energy (GE) detector test statistic

, , i  / ' ( X u )
T<dKi) -  Z ttxTTT ’ (4.33)

the LO statistic for the scale-change model is also given in [4.29].

From knowledge of the previous results on known-signal robust detection one might conjecture 

that a minimax result should be obtainable for the robust detector formed by introducing hard- 

limiting beyond some argument value a into the nonlinearity f / f  of (4.33). Indeed, consider the 

exponential-tails least-favorable density of (4.21), with a , b defined as in (4.22) and a modified (4.23), 

namely

g (a )  
g ( a )

= b .
(4.34)
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For this noise density the nonlinearity / '  (x  )/ /  (x  ) becomes

f s  ( * )  
/ r ( * )

g ' ( x )/ g ( x )  , 1 x 1 ^  a

b , lx  I >  a
(4.35)

Consider the €-contamination model iF0(g ,e) for the noise density f  , as described in our summary of 

known-signal results. In addition to requiring a further smoothness property for g (since here g* is 

involved), a more restrictive further condition on the allowable contamination h is imposed. This is 

that allowable contamination densities are zero in (—a ,a ). With these conditions, results exactly paral­

leling those for asymptotically robust detection of known signals in additive noise are obtained in 

[4.28]. An interestng feature of the solution, arising from the restriction on allowable h , is that (4.19) 

holds with equality over the allowable /  and the result is valid for all values of the size, a. Numeri­

cal asymptotic relative efficiency comparisons for general limiter nonlinearities are also given in [4.28].

A  very similar result is established in [4.28] for the scale-change model. Here again for a simi­

larly restricted version of the e-contamination class, the density of (4.2 1 ) is again shown to be least 

favorable. A  noteworthy point about this solution is that as in the case of asymptotically robust 

known signal detection, this scale-change robust solution is directly related to Huber's results on robust 

M  -estimation of a scale parameter [4.1]. Thus we see once again a close relationship between robust 

estimation and asymptotically robust detection problems.

4.4. Robust Detection of Bandpass Signals in Bandpass Noise

Bandpass signals are commonly encountered in applications such as radar and communication sys­

tems, and techniques for their detection in bandpass noise with imprecisely known statistical character­

izations is therefore of practical interest.

Let us first consider briefly one bandpass known-signal detection problem for which an asymptoti­

cally robust detector may be defined using ideas very similar to those used for low-pass known-signal 

and completely random signal robust detection problems. An observed continuous-time waveform is 

now described by
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X  ( t )  =  Ov (r )  cos \(Oot +  0(r )] +  N  ( t ) , (4.36)

where the low-pass signal amplitude and phase components v ( t )  and <#> ), respectively, and the fre­

quency (Oq are known, the overall signal amplitude 6 being either 0 (noise-only) or having some positve 

value (alternative hypothesis). The bandpass noise N  it )  may also be expressed in terms o f its in-phase 

and quadrature components N j i t )  and N q i t ). For a detector operating on sampled values of the in- 

phase and quadrature components of the observation X  it )  the input data may then be represented as a 

vector X  — X/ +  yXg where the components Xa  and X q , i = l ,2,~^n, of X/ and X q , respectively, 

are

x n -  fan +  N n  , (4.37a)

X Qi ~ faQi + N Ql ; (4.37b)

here the sn , sQi, N  n and N Qi are samples of Sj i t ) =  v i t ) cos ),

sQ( t )  =  - v i t ) sin (pit ), N j i t ) and N Qit ), respectively. We make the assumption that the

X i = are i.i.d. for i = 1 ,2 ,— , implying a restriction on the .sampling rate.

I f  the noise components N /, and NQi are restricted to be independent then the problem is essen­

tially the same as the low-pass known-signal detection problem. A  more general assumption is that the 

joint pdf f  jq of N ji and N g, has circular symmetry, so that

/  IQ (w ,V )  =  c (r  ) (4.38)

For Gaussian bandpass noise both circular symmetry and independence of the in-phase and quadrature

noise components is obtained. Under the circular symmetry assumption the LO detector uses a 

generalized narrowband correlator (GNC) test statistic

T g n c ( X )  =  £  U R , )  Re X * }  
i= 1 (4.39)

where the i?, -  IX ; I are the observation envelopes with l the LO envelope weighting function [4.30]
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K r )  =  - c '( r )  
rcTrJ ' (4.40)

Note that /  (r  ) = 27rrc (r  ) is the pdf of the Rj . For Gaussian noise f  is the Rayleigh pdf and 

the LO function of (4.40) is a constant resulting in the linear narrowband correlator (LNC ) detector. 

In general i f  the pdf /  is some known function 2rrrg (r  ) the LO detector can be obtained. In [4.31] 

the €-contamination model for /  was considered, with conditions on the nominal function g similar 

to those for known-signal asymptotically robust detection. As in the case of random signal detection, 

however, the class of contaminating pdf’s Irrrh  ( r ) was restricted to produce tail-contamination only, 

that is, the h were zero in some interval at the origin. With these restrictions the asymptotically 

robust detector was shown in [4.31] to be a GNC detector which is LO for a least-favorable pdf f R 

having an exponentially decaying tail. The weighting function l -  lR in the test statistic T GNC( X )  of 

this robust detector is

g‘ ( r )
W

g ( c )
rg \a) ’

0 ^  r <  a 

r ^  a

(4.41)

for a some function of € and g . Notice that the function rlR ( r ) is a constant for r  ^  a; this function 

may be interpreted as providing the weighting applied to the hard-limiter narrowband correlator

(HNC) terms Re {$|(X */£,•)}, the X , /Ri having unit amplitude value. For a nominal Gaussian case 

the function —g (r  )/g (r  )  is linear in r .

Figure 4.4 shows the structure of the asymptotically robust detector for known bandpass signal 

under the above assumptions. Note that the HNC detector is a special case of this structure and may be 

viewed as the robust detector for a nominal g function which is exponential, or as an extreme case 

which actually possesses a constant false-alarm probability and functions as a nonparametric detector 

[4.32]. Further interesting properties of the robust detector employing lR of (4.41) are mentioned in 

[4.31].
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Fig. 4.4: Generalized narrowband correlator asymptotically robust detector for weak bandpass signal.
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So far we have been considering the case of a coherent bandpass signal. In the incoherent case 

there is an additional phase term uniformly distributed on [0,27r), so that the signal is 

v (i ) cos [<V +  0 (i ) +  ¥ ]. The asymptotically optimum detector test statistic now becomes

2W2Ô Z  X * (4.42)

where l is the optimum nonlinearity of (4.40). It turns out that the efficacy for such a square-law qua­

drature GNC detector is directly related to that of the GNC detector for coherent signals, and thus 

l = lR of (4.41) also results in an asymptotically robust detector in the incoherent case.

In [4.33] a special case of the incoherent signal detection problem was considered in which v ( i  ), 

the low-pass signal amplitude, was a constant, and <b(t), the low-pass signal phase term, was —n/2 (or, 

equivalently, zero). The in-phase and quadrature noise samples were assumed to be independent and a 

robust detector was obtained which used the squares of robust M  -detector outputs for the separate in- 

phase and quadrature observations. Specific results were obtained for the p -point classes of univariate 

noise pdfs. A  more general problem involving signals with random parameters was considered in

[4.34].

Another important variant of the observation model of (4.36)is obtained by allowing a random 

signal amplitude 6 =  A  in addition to the random phase The usual assumption for the signal is that 

A  and V  are independent, with A  being a Rayleigh random variable and ¥  being uniformly distri­

buted on [0,27r). In [4.35] the performance characteristics of a particular modification of the optimum 

detector for Gaussian noise are considered. The modification consists of replacing the squarers of the 

optimum detector with limiter-squarers for robust performance. Both the single bandpass pulse detec­

tion situation and that of multiple independent bandpass pulses is considered. In the latter case a 

binary integration or double-threshold detector is considered. The structure of this detector is shown in 

Fig. 4.5. The numerically computed performance characteristics indicate that, for the independent €- 

contaminated in-phase and quadrature bandpass matched filter output noise components that were 

assumed, the limiter-squarer structure is very effective in guarding against drastic performance
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deterioration in heavy-tailed non-Gaussian contamination. The structure considered in [4.35] was sug­

gested by the many formal results which we have discussed which show the robustness o f limiter-type 

structures in different situations. In fact, the problem considered in [4.35] may be considered as being a 

bandpass version of a random signal detection problem, for which robust detectors have been considered 

in [4.27] and [4.28]. We should note finally that Martin and Schwartz also considered in their study of 

robust detection [4.13] the detection of multiple independent pulses. The robust structure they suggested 

used a limiter function on the sampled in-phase and quadrature observations inside a digital or 

discrete-time implementation of the quadrature single-pulse matched filters, followed by a square-law 

envelope detector.

We have described in these last three subsections the main results on asymptotically minimax 

robust detection for three canonical signal detection situations. A  general theory for robust detectors in 

the asymptotic case (vanishing signal strengths, infinitely large sample sizes) is discussed in [4.36]. Here 

asymptotic normality of statistics of the form pf (4.14) is studied for four detection problems, namelv 

known signal in additive noise, two random signal problems (one with a scale-change in the noise den­

sity, another with an additive random signal, under the alternative hypothesis) and envelope detection 

of a narrowband signal. In addition, the general characteristics of the robust solutions are considered, 

which are not restricted only to the univariate case, and a few  explicit uncertainty models and robust 

detector structures are discussed. This work essentially considers only a performance measure related to 

the efficacy in the known signal case, and defines a general notion of Fisher’s Information; simultaneous 

consideration of a false alarm probability constraint is not attempted in [4.36].

4.5. Extensions and Other Results

While we have surveyed the basic results of robust hypothesis testing and robust signal detection 

in the above subsections, several further results in this area deserve some comment. We have seen that 

explicit minimax robust structures can be derived under some rather specific and sometimes restrictive 

assumptions. In this subsection we w ill also mention some work that has been directed at easing some 

of these constraining assumptions.
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Signal Uncertainty

A ll the results that we have discussed in this section were obtained for robust detection when 

only the noise pdfs are not precisely known. Consider, for example, the known-signal detection prob­

lem of subsection 4.2. In our discussion of the asymptotically robust detector o f the generalized correla­

tor type with test statistic of the form (4.14), the choice a, =  5, for the coefficients in the test statistic 

was the obvious one for known-signal detection. But it is also possible to consider here uncertainty 

about the exact values of the signal components . Notice that this problem was considered in Section 

3 for robust matched filters and SNR performance; here the GC detector is not necessarily linear and we 

have been concerned with weak-signal detection performance.

In [4.37] Kuznetsov considered this signal uncertainty problem, using the differential signal-to- 

noise ratio (see discussion following (4.15)) as a performance measure. For known noise pdf and 12 sig­

nal uncertainty class the result is quite similar to that for the robust linear matched filter of Section 3, 

because the differential signal-to-noise ratio is after all a performance measure derived from the SNR. 

The random-signal detection problem with signal covariance matrix uncertainty is also considered in

[4.37]. For joint uncertainty in signal characteristics and noise pdf’s solutions for the minimax robust 

structures are difficult to obtain in the general case. The special case where the noise is Gaussian with 

uncertain covariance matrices for the signal and noise has been treated in [4.37], with the detector res­

tricted to employ a combination of linear and quadratic statistics. A  similar problem involving deter­

ministic signals and linear detectors has been considered in [4.38], as mentioned in Section 3.

Serial Dependence and Asymmetry

Although a consideration of the asymptotic performance of detectors allows appealing minimax 

robust detector structures to be derived, a major limitation of the schemes we have described is that the 

asymptotic robustness property can be attributed to them only under the assumption of independence 

of the detector input samples. This assumption is generally difficult to get around, serial data depen­

dence introducing considerable complications in the analysis. One of the problems, of course, is the 

definition of appropriate statistical models and uncertainty classes. Recently, however, some progress
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has been made in the specification of asymptotically minimax robust detectors for serially dependent 

data samples.

In [4.39] Poor considers the case of weak serial dependence of data in a constant-signal M -  

detection problem. The dependence structure considered is that obtained from a moving-average model 

for the noise components. In particular, the noise model

N i = p w t+1 + w t + PWl_1 (443)

is considered where the {W , } are i.i.d. with uncertain marginal pdfs. For p =  0 the approaches 

described previously are applicable; in [4.39] the case of weak non-zero correlation is considered. For 

the 6-contaminated pdf classes, it is shown there that the robust M  -detector nonlinearity is the limiter 

function which is robust for p =  0, corrected by a linear term. Thus for the nominal Gaussian case a 

nonlinearity lR of the form illustrated in Fig. 4.6 is suggested; more detailed considerations modify this 

so that the nonlinearity remains bounded. These results are similar to those derived earlier for robust 

estimation with dependent data [4.40, 4.41].

More recently Moustakides and Thomas [4.42] considered a less structured dependence assumption 

for the known-signal detection problem. The additive noise sequence was here assumed to be (fr-mixing, 

which includes the case of stationary Markov noise sequences. For the contamination univariate noise 

pdf model, with attention confined to the class of generalized correlator detectors, and with efficacy as 

the performance criterion and an explicit requirement of false-alarm probability control, the form of 

the robust detector nonlinearity was derived. The very interesting conclusion was that, subject to some 

regularity conditions, the robust detector nonlinearity is a null-zone modification of the independent- 

data robust detector nonlinearity for the same class of univariate noise pdf’s. For the nominal Gaussian 

noise pdf the form of this nonlinearity is shown in Fig. 4.7. It is interesting to note that a simple 

three-level nonlinearity which approximates this characteristic can be used to provide nonparametric 

performance for symmetric noise pdfs [4.43]. The result of Moustakides and Thomas represents a major 

breakthrough in the extension of asymptotically robust correlator-detector structures for dependent
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Fig. 4.6: M-detector nonlinearity for asymptotically robust detection of weak signal in €-
contaminated, weakly correlated, Gaussian noise.



Fig. 4.7: Generalized correlator detector nonlinearity for asymptotically robust detection of weak sig­
nal in e-contaminated Gaussian noise.
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data, and similar results can now be sought for random and bandpass signal detection problems.

Another aspect of robust detection in dependent data has been considered recently by M artin

[4.44] , in which autoregressive dependence and a regression signal model which includes the known sig­

nal and random-phase bandpass signal cases is assumed. He suggests that, in this situation, robust M  - 

detection is best accomplished by first prewhitening the noise and then applying an M  -estimate to 

obtain the test-statistic.

The asymptotic theory of robust detection, fundamentally related to Huber’s results on robust 

parameter estimation as it is, is limited by the same factors that have constrained the applicability of 

robust parameter estimation theory. In addition to serial independence of data one other assumption 

which has been generally required, at least in the widely used €-contamination model for uncertain 

pdf’s, is symmetry of the pdfs of the noise. In estimation theory this results in unbiased estimates for 

which the variances can be written down as second moments. Recently an attempt has been made in

[4.45] to apply to robust detection of known signals ideas formulated for robust M  -estimation for 

classes of density functions allowing tail asymmetry. Specifically, [4.45] considers both the generalized 

correlator structure of (4.14) and the M  -estimate structure (4.29) for detection test statistics, and 

develops the form of the robust detection function lR in (4.14) and (4.29) for classes of e-contaminated 

nominal densities with arbitrary behaviors outside a central interval. The development is based on the 

work on the corresponding M  -estimation problem [4.461 and shows the robustness of detector func­

tions which redescend to zero and remain zero outside the interval of symmetry.

Two general limitations of minimax robust detection theory should by now be clear. These are 

that a considerable part of the theory that has been developed is asymptotic theory, and that it is 

currently unable to deal directly with continuous-time observation processes. It should be kept in 

mind that here our concern is with uncertainty in the noise pdf’s, and not just with power spectral 

density uncertainties and linear schemes which we discussed in Section 3. Care has to be taken in 

applying asymptotic theory in practical situations involving a finite number of observations, since in 

some cases predicted asymptotic performance is approached rather slowly. The Gaussian approximation
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for test statistic distributions in setting threshold values should be applied with care, even i f  the struc­

ture of the robust test statistic appears to have strong justification. In addition, another aspect of 

asymptotic formulations is that they are based on the assumption that signal strengths are approaching 

zero. Thus the efFect of a non-zero signal and a finite sample size together could result in deviations in 

performance from theoretical predictions, even for large samples. Since closed-form analytical results 

are rarely feasible, about the only alternative left is numerical computations and simulations to verify  

the actual performance of such robust schemes in general.

Continuous-time results are very difficult to come by because of convergence issues and also 

because of the difficulty in specifying models to define simple classes of allowable random processes 

which are physically meaningful. Of course, i f  only second-moment characteristics are modeled and 

exact probability distribution functions are irrelevant, as in maximizing signal-to-noise ratio at the out­

put of a linear detector, robust filters such as the robust matched filter can be obtained. Although [4.47] 

introduces classes of mixture" or contaminated random processes, there has been no application made of 

this in signal detection with continuous-time observations.

Adaptive and Nonparametric Detectors

In a general sense a detector can be said to be robust i f  it has good (close-to-optimal) detection per­

formance under nominal conditions and i f  it also maintains an acceptable level of performance when 

the noise statistics deviate, within some allowable class, from the nominal. Our focus in this paper has 

been on fixed detectors designed to provide minimax detection schemes, which generally possess the 

above two characteristics. Another approach which can be taken when the noise environment statisti­

cal characterization is imprecisely known, or is largely unknown, is to use adaptive procedures. In most 

adaptive procedures one generally begins with a specific test statistic structure in which some parame­

ters are free to be set and updated as functions of previous inputs, which might include separate train­

ing data. In addition, the threshold is also usually free to be set adaptively. We have mentioned earlier 

that even for "fixed" minimax robust detectors the thresholds may have to be set adaptively to maintain 

false-alarm probability requirements whenever the performance criterion does not explicitly include
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such requirements. Since our focus here has been on minimax robust fixed-test-statistic structures we 

shall not try to give here an exhaustive survey of adaptive robust detectors, but w ill mention only 

some of the main recent contributions.

One general structure in the known-signal detection problem is obtained by requiring the func­

tion l in the generalized correlator test statistic of (4.14) to be an m -level quantizer characteristic. 

Such a quantizer-correlator detector may be viewed as partitioning the observations X ; into m subsets 

or intervals to each of which a distinct level is assigned. For a given noise pdf the asymptotically- 

optimum quantizer characteristic can be found for this and similar detection problems [4.48]. If, how­

ever, the noise pdf is not known one may use estimated values of these optimum parameters. Alterna­

tively, the quantizer breakpoints may be required to fa ll at the quantiles of the noise distribution, 

which can be estimated and updated. Adaptive m -interval partition detection schemes have been 

described by Kurz [4.49] and for sequential detection by Dwyer [4.50]. Other studies of this nature can 

be found in [4.51-4.55].

Recognizing that contamination of a Gaussian noise density function by an impulsive-noise com­

ponent, and heavy-tailed densities in general, are reasonable models for random noise and interference 

in several applications [4.17, 4.56], adaptive structures are considered in [4.57, 4.30] for good perfor­

mance over such classes of noise. The simple structure considered in [4.57] for the detection of a known 

signal in additive noise is illustrated in Fig. 4.8. It is motivated by the fact that for Gaussian noise the 

linear-correlator test statistic is optimum, whereas for heavy-tailed noise pdfs often used to model 

impulsive noise the sign-correlator test statistic performs very well. The mixture test statistic con­

sidered in [4.57] is T q^ X  )  of (4.14) with a, =  s, and

1 (x i )  =  yXi +  ( l - y )  sgn (X , ) ,  (4.44)

where the free parameter y is set adaptively. Modestino in [4.57] discusses a stochastic approximation 

technique maximizing the signal-to-noise ratio for setting the value of y. A  similar robust detector 

structure based on adaptively forming an optimum test statistic combination is described in [4.30] for
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bandpass signal detection. The detector described in [4.58] uses extreme-value theory to obtain the 

proper threshold setting in an otherwise fixed matched-filter envelope detector structure.

Although adaptive schemes can be useful in situations where the noise statistics are unknown or 

are nonstationary, the implementation of efficient adaptive schemes can add in a major way to the com­

plexity of a detector. Furthermore, other considerations such as of speed of convergence may  limit their 

applicability.

In nonparametric detection the main concern is that the probability o f false alarm remain 

bounded by some design maximum value for broad classes of noise statistics, for example for all 

univariate noise pdfs which are symmetric about the origin. Once again it is possible to consider adap­

tive structures for nonparametric detection, which are mainly of the adaptive threshold type, although 

fixed-structure and fixed-threshold nonparametric schemes are the most common. For a given class of 

noise pdfs there generally exist several possible nonparametric detectors, and in choosing between alter­

natives one usually considers detection performance at some nominal cases within the class. The most 

common nonparametric detection schemes are those based on signs and ranks of observations, including 

multilevel (quantization) versions of sign-based schemes. It often turns out that nonparametric detec­

tors are robust, in the more general sense, in their detection performance over the classes of noise pdf’s 

for which they are designed. Note, however, that the primary aim of nonparametric schemes is to keep 

the false alarm probability bounded by any desired value, whereas robust schemes are required to addi­

tionally exhibit good detection performance for the whole class instead of at some nominal operating 

points only. In this regard the reader is referred to some comments by Huber in [4.59]. For survey 

papers, a bibliography and details of nonparametric detection schemes we refer the reader to [4.60] and

[4.61].

In conclusion we point out a recent Russian survey paper by Krasnenker, available in English 

translation [4.62] which is on the subject of robust detection. Another similar survey by Ershov [4.63] 

is concerned with robust estimation, although it also covers some detection and hypothesis testing 

results. VandeLinde [4.64] gives a short survey of robust techniques in ‘communications which covers
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robust detection. Finally, Poor has given a more recent survey, emphasizing the mathematical details, 

in [4.65].



5. NONLINEAR METHODS FOR ROBUST ESTIMATION

In Sections 2 and 3 we discussed robust linear methods for estimation and detection within uncer­

tain second-order models. In Section 4 we saw that, when the uncertainty is described in terms of the 

distributional model rather than the second-order model, nonlinear methods are called for to provide 

robustness in signal detection. Similar considerations arise in problems of estimation in uncertain distri­

butional models, and in this section we discuss some of the main issues arising therein. Since many of 

these issues have been surveyed and unified elsewhere (see, e.g., the book by Huber [5.1], and the surveys 

by Martin [5.2], Ershov [5.3], and Poljak and Tsypkin [5.4]), we touch only briefly on the essential ideas 

o f this area.

The large majority of work in this area has been concerned with robust nonlinear parameter esti­

mation rather than with robust nonlinear filtering. In subsection 5.1 we outline basic methods for 

( minimax) robust parameter estimation by considering the important special case of robust estimation 

of signal amplitude. In subsection 5.2 we consider robustness in other estimation contexts including sys­

tem identification and Kalman filtering. We also give brief mention to problems of robustness in other 

methods of time series analysis.

5.1. Robust Estimation of Signal Amplitude

Many signal processing applications arising in practice fa ll within the category of parameter esti­

mation. A  common example is the estimation of the amplitude of a signal embedded in additive noise. 

A  standard model for this particular situation is that we have observations X  =  (X  l f . . . ,  X n ) given 

by

Xfc N  ̂ + Qsfc , k — l,~̂ 7i , (5.l)

where (N  l f . . . ,  N n ) is an i.i.d. noise sequence with symmetric marginal pdf /  , (s .........sk )  is a

known signal waveform, and the signal amplitude 9 is unknown and is to be estimated.

The particular situation of (5.1) in which the -signal is constant (s x =  s2 =  • • • = sn =  l )  is the

location estimation problem of statistical inference, and it was this problem that was studied in the
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seminal 1959 paper of Tukey [5.5] that demonstrated the lack of robustness of the classical estimators 

for this parameter, and in the pioneering 1964 paper of Huber [5.6] that established the importance of 

minimax methodology for robust estimation. In the following discussion of the basic results in this 

area, we w ill consider this constant signal case unless otherwise noted. Modifications for time-varying 

signals w ill be mentioned where appropriate.

Three classical estimators for the location parameters of (5.1) with constant st are the sample 

1 n
mean, x  — — A  » t l̂e sample median, med { x l f . . . ,  xn }, and the maximum-likelihood estimate

n ¿=i

/k n

(MLE), Bml (x  ) =  arg {max £  l°g /  (xj —0)}. The sample mean and the MUE coincide for the case in
B i=i

which /  is a Gaussian density, /  (x  ) = —-1---- e ~x 2/2<r2, and the sample median and the MLE coin-
V27T cr

cide when /  is a Laplacian (double-exponential) density, /  (x  ) = y  e~a'x . A ll three of these esti­

mators are examples of a more general class of estimators, known as M  -estimators, proposed by Huber 

in [5.6]. As discussed in Section 4, this class of estimators consist of those estimators of the form

(a ) =  arg {min £  L  (x, - 0 ) }  (5 2 )

where I  is a function determining the estimator. The sample mean corresponds to the choice 

L  ( x ) =  x 2, the sample median corresponds to L  ( x ) =  I x I, and the MLE corresponds to 

L  (x ) =  —log f  ( x ). Note that 0L of (5.2) is the estimate of 6 that best "fits" the data when errors, 

Xj — 9l (x  ), are weighted with the function L .

Assuming that L  is convex, symmetric about the origin, and sufficiently regular, the M  -estimate 

based on I  is consistent and has the property that \fn (0L (X  ) — 6) is asymptotically Gaussian with 

zero mean and variance V  ( l ,  f  ) where

T u  ’
(5.4)
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with l — L  (see [5.6] for details). Thus, estimators of this type can be compared on the basis of their 

asymptotic variances V  ( l , f  ). The function l is called the inftuence curve of 0. For fixed f  , the 

Schwarz inequality implies that

V G , / ) > V C 0. / ) - 7 Ty 7 . (5.5 )

where Z0 = —/ '/ /  , and where / (/  ) = f  ( / ’)2/ f  is Fisher’s information for location. (Note that

the inequality V ( Z , /  ) ^  a sPec â  ̂ case of the Cramer-Rao lower bound.) This l 0

corresponds to p0( x ) =  —log /  (x}, so assuming —log /  is convex, the most efficient M  -estimate of 

location is the maximum-likelihood estimate, a well-known result.

If, as in the signal-detection problems discussed in Section 4, f  is not known precisely but rather 

is known only to be in some class IF of bounded symmetric pdf’s, then it is possible that the perfor­

mance of an improperly designed location estimator can be quite poor. For example, suppose we con­

sider the e-con taminated Gaussian class

JF =  {/  I /  = (1—e)0 + eh, h € H  )

1 2
where <fi(x ) =  e~x 12, H  is the class of all bounded symmetric pdf’s, and e € [0,1].

estimator based on the nominal model <f> is the sample mean, which corresponds to Zo(*) 

asymptotic variance

OO oo

v(l0» / ) = /  x 2f ( x ) d x  = (1— e) + e f  x 2h (x )d x  . (5.7)
— oo — oo

For e >  0 the asymptotic variance (5.7) can be arbitrarily large since h is arbitrary, and so the sample 

mean is a very nonrobust estimator of location for this type of uncertainty.

The basic problem with the sample mean is that it has an unbounded influence curve so that too 

many large observations (or outliers) can destroy its efficiency. This could be corrected by employing 

the sample median, which has the influence curve (x  ) =  sgn (x ). For the sample median the

(5.6)

The optimum 

=  x and so has
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asymptotic variance (assuming f  is continuous at the origin) is

V a m, / )  = l/4/  2(0)^ 1 _  7T

^ l-ety^O ) 2 (l-e ) ‘ (5.8)

So, the sample median is certainly more robust than the sample mean in this case; however, its efficiency 

relative to the sample mean is only 62 % at the nominal model. Ideally, we would like an estimator 

that has near the efficiency of the sample mean at the nominal and has the robustness of the sample 

median away from the nominal. It turns out that these goals can be achieved as we see below.

To correct the possible nonrobustness of classical estimators of location, Huber proposed the design 

of location estimators using a minimax formulation, viz

min max^ V  (Z,/  ) .

Within some assumptions on IF , the solution to (5.9) is given by the influence curve lR — — f  R/ f  R 

where f  R is a least-favorable density for location estimation defined by

f R =a r g {  nun./ ( / ) } .  (5.10 )

The pair (\lR, f  R ) is a saddlepoint solution for (5.9) provided -log f  R is convex; i.e., under the convex­

ity of -log /  r ,U r ,/ r ) satisfies

V ( Z * ,/  ) ^  V ( l R, f R ) <  V U , f R ) ,  ( 5 . 1 1 )

for all f  € IF and all l .  Note that (5.11) implies that, not only does lR have minimax asymptotic 

variance but also its variance is upperbounded over IF by its variance when f  L is the true density. 

This means that the performance of the estimator w ill never be worse than V ( l R, f  R) over IF . Also 

note that, since / ( /  ) is Fisher’s information for location, f  R has the interpretation of being the den­

sity for which the observations are least in formative about 0.
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For the particular case of e-contaminated Gaussian data (Le^ 2F from (5.6)), the least favorable 

density turns out to be given by (4.21) with g =  <j> as discussed in Section 4. In this case, lR is a soft- 

limiter

I r  Gc ) =
x , i f  lx I <  a
sgn Gc ) ,  i f  I x I ^  a ,

(5.12)

where a is from (4.22M4.23), and so Gc) ^  a 2, and Ir Cx )  =  1 for \x I < a and lR( x )  =  0 for 

I x I >  a . Thus the numerator of V (lR,/  ) is

J  lp ix ) f  (x)dx =  ( l —e) J  lx(x)(f)(x)dx +e J  l^x^hix^dx
—-oo —oo —oo

oo oo

^  ( l —e) f  Ir ( x )$ (* )dx +  ea2 =  f  lR f  R(x )dx , (5.13)

and the denominator is

oo a a aJ  lR( x ) f  ix )dx  = J  f  (x )dx — ( l — €) J  <f^x)dx +  € J  h (x )dx
—oo —a —a —a

a oo

^ ( l —€) f  <p(x)dx =  f  lR( x ) f  R{x)dx . (5.14)
—a —oo

From (5.13) and (5.14) the left-hand inequality of the saddlepoint condition (5.11) is readily seen to 

hold in this case. (The right-hand inequality o f (5.10) is just a restatement of (5.5).) Similarly, for the 

e-contamination model with <f> replaced by any density g (w ith -log g convex) a saddlepoint solution

to (5.9) is given by (—f R/ f R, f  R)  with / R from (4.21).

Note that the influence curve (5.12) of the robust estimator for €-contaminated Gaussian noise 

combines features of the influence curves for the sample mean and the sample median (see Fig. 5.1a). It 

has the boundedness of lm but it has the linear shape of l 0 for \x I ^  a.  (This eliminates the sensi­

tiv ity  of lm to the value of /  at zero.) For the case € =  0.1, the limiting point a =  1.1 and the 

efficiency of the robust estimator at the nominal model relative to the sample mean is 92%. Moreover,
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the worst-case variance o f lR over 1F i s V ( l R, f  R) = 1.5 compared with sup V  (lm ,/  ) =  1.9. Thus,
f  t F

we see that this estimator does indeed achieve the goals set forth for robust estimation.

Robust M  -estimators can be found for uncertainty classes other than the €-contaminated class by

minimizing Fisher’s information over the uncertainty class and then choosing the estimator accordingly.
\

It is not necessary that the uncertainty class contain only distributions w ith density functions, 

although the least favorable w ill always correspond to a continuous distribution. A  variational 

method for minimizing Fisher’s information is discussed in Chapter 5 o f [5.1]. Examples of useful 

uncertainty classes for which solutions are known are p -point classes, which consist o f the set o f all 

noise distributions that place a fixed amount of probability on a given interval [5.7] and the class of 

noise distribution functions F  that satisfy sup IF  Gc ) — <I)(x ) I <  €, where <E> is the unit Gaus-
— OO <  X  <  OO

sian distribution function [5.6]. Influence curves for robust estimation in these models are shown in 

Figs. 5.1b and 5.1c, respectively. Appropriate modifications o f the influence curve for robust estimation 

in dependent noise and for asymmetric noise have been considered by Portnoy [5.8, 5.9] and Collins 

[5.101 respectively. Also, the estimate o f (5.2) is straightforwardly modified to account for the time

varying signal * l f . . . ,  sn, via 0L (x  )  =  arg {min £  L(x ,  -  Gj, )}. Assuming C =  lim  — £  j, 2 <  oo,
9 i=l n —*oo n j =1

this estimate has the same properties as in the constant-signal case except that the asymptotic variance is 

V ( z , /  )/C. Thus, the minimax robustness problem for the time varying case is identical to that for 

the constant signal case [5 .1 ll

From a practical viewpoint, the robust M  -estimator o f signal amplitude has the disadvantage o f

„ „ n
being a batch procedure; i.e^ a ll data must be stored in order to minimize £  L  (x, —0) iteratively.

i =1

This disadvantage can be overcome by considering a class o f recursive estimators o f the stochastic 

approximation type. Robustness theory for this type of estimator was first considered by Martin [5.121 

and these ideas were developed further by Martin and Masreliez [5.7] and by Price and VandeLinde 

[5.131
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To discuss these results, we first consider a generalization of the minimax problem of (5.9):

min sup v (0,/ )
e€ © / c f (5.15)

A

where 0  is the class o f all asymptotically unbiased estimators o f 0 and where v (0 ,/ ) is the asymptotic 

variance o f 0. A  sufficient condition for 0* to solve (5.15) is that it, together w ith some f  R € JF, 

satisfy the saddlepoint condition

v (0 * ,/  ) <  v(0Ä , / Ä ) ^  v (0 , / * ) (5.16)

for all 0 € 0  and f  € W . It is possible that (5.9) and (5.15) have different solutions since, in (5.9), 

consideration is restricted to M  -estimates. However, since the Cramer-Rao bound implies 

v (0 , / * )  >  l / / ( / * )  =  V ( l Ryf R) for all 0€  0, we see that the minimax robust M  -estimator also 

satisfies (5.16) and so is in fact a minimax robust estimator among all asymptotically unbiased estima­

tors. However, there is also another saddlepoint (0R, f R) for (5.15) in which Or  is not the MLE for 

f  R but rather is a recursive estimator.

In particular, suppose iF , f  R and lR are as in the robust M  -estimation formulation and let 

0jP(x ) = 0n be defined for each n by

0, =  0j - i  +  lR ( x , -  9j _ J /iI (/ r ), i =l_^i , (5.17)

"  A A

with 0O arbitrary. Note that Q$A is computed recursively (i.e., at the i th sampling instant 0, is com­

puted from 0j _ ! and x, ). Then under regularity conditions the asymptotic variance of Q$A for a given 

noise density /  by [5.13]

v (0 | V  ) = f  l R f
(5.18)

f  h 2f *  [2  j l ' R f - f  l i f t ]

 ̂ A
Note that v(Q£A, f  R)  =  1/1 ( f  R ) so that 0$A is asymptotically optimum for f  R. Moreover, it can

also be shown that
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v (0 jP ,/  ) <  v {9gA, f R) (5.19)

a

for a ll /  € W , so that (9RA, f  R )  is also a saddlepoint solution to (5.15). Thus we have the interesting 

conclusion that the recursive estimator o f (5.17) is minimax robust over JF just as is the M  -estimator 

based on lR. However, although both estimators have the same worst-case performance, 1 / / (/ * ),  one 

can see that their performances (V  ( lR,/  R )  and v (9iA, f  R ) )  generally differ for given /  ^  /  R. For 

the e-contaminated Gaussian case it is easily shown that v(0gA, f  )  >  V ( l R, f  ) whenever

a
f  h (x  )dx > 0; thus, for the computational advantage o f the recursive structure one pays the penalty
—*Z

of some lost efficiency when worst-case conditions are not present. However, for example at e =  0.1 this 

lost efficiency is negligible (<  1%) at the nominal density, <j>.

The appropriate modifications of the algorithm of (5.17) for the time-varying case is 

9¡ =  §,_! +  s¡lR(x¡ -  Q .js, ) / / < / * )  ¿  sk2, i = W i  . (5.20)k =1

This estimator has not been studied analytically; however, simulations for the case of a sinusoidal sig­

nal in €-contaminated Gaussian noise indicate that the performance of (5.20) is comparable to that for 

the constant-signal case (M artin [5.12]). Heuristically, in either this or the constant-signal case robust­

ness against contamination is achieved by inserting the soft-lim iter lR into the feedback loop that incor­

porates the residual x¡ — §, _¡s¡ into the updates of the amplitude estimate (see Fig. 5.2). If it were not 

for this limiter, then when 0, gets close to the time 0 "too many" large noise values would tend to drive 

0 away from 0.

The robustness properties o f types o f estimators other than the M  -estimators and stochastic 

approximation estimators can be studied in a general framework. In particular, for the constant-signal 

case, many estimators o f practical interest can be written in the form

l  =T(Fn )

where F n is the sample cumulative distribution function (cdf),

(5.21)
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2: Robust recursive amplitude estimator for e-contaminated Gaussian errors.
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F n Cx )  — —  ( # X j  ^  x \  CO <  x <  OO , 
n (5.22)

and where T  is some functional mapping the set o f cdFs into JR. For example i f  we define

T l F )  =  arg {min f  L  Gt — G)dF (x  ) } , (5.23)

then the M  -estimate 0L is T  (F n ) since f  L ( x  —G)dFn Gc) =  — £  L { x t —0). If we assume that L  is
—oo ^  i =1

convex and symmetric about zero and i f  F q is the common marginal cdf of X, =  N, +  0, then for 

(5.23) we have T ( F  q)  = 6.

For a wide class of estimates of the form T  (F n )  it turns out that, when F  is the true data distri­

butions, \fn (T  ( F n ) — T ( F )) is asymptotically normal w ith zero mean and variance

A ( F J  ) =  f  U C ( x J (5.24)

where IC  is the influence curve o f the estimate (the reason for the earlier use of this term w ill become 

obvious below) defined by

I C ( x  JF JT )  =  lim 
€-0

r ((l-€ )J F  + e F x ) - T ( F )
(5.25)

where F x is the cdf of a random variable taking on only the value x .A The influence curve for an M  - 

estimate 0L is

IC {x  yF^T) - U x - G )

—J  I! {x —G)dF 4<x )

which gives the asymptotic variance V  (Z,/  ) o f (5.4).

(5.26)

^Note that, in addition to its role in the asymptotic variance formula (5.24), the influence curve characterizes the sensitivity 
of T \ F n ) to the incorporation of a datum X into the estimate; Le., it quantifies the influence of such a datum on the estimate. 
Hence, the term influence curve.
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Other useful classes o f estimates o f the form T  (F n )  are the so-called L  -estimates, which estimate 

6 by linear combinations of the order statistics (i.e^ the observation sequence put in numerically 

increasing order), and R -estimates which are based on the ranks o f the data- Explicit representations of 

these type estimators in the form T  iF  )  and the corresponding influence curves can be found in [5.1]. 

For any fixed noise density, an asymptotic variance equal to 1/7 (/  ) can be achieved within each of 

these classes. O f particular interest in the class o f L  -estimates is the so-called a-trimmed mean, which 

estimates 0 by first removing the [an ] largest and [an ] smallest samples (0 ^  a ^  V2), and then com­

puting the sample mean o f the remaining sample. The a-trimmed mean can be written as T aiF n ) 

where

1 1-0
T J L F ) =  - J L _  f  F~Kx)dx  , 

1—2a (5.27)

where F  1 is defined by F  Kx ) =  in f {y  IF  (y  ) ^  x }. For a symmetric noise distribution F N the 

influence curve o f the a-trimmed mean is given by

l f  {x —0)
/ C O c ^ f t T « ) *  fN

l- 2 a
(5.28)

where

t-Fir ,aix )

F jFKo ) , i f  X < FtfKa)  

x , i f  FtfKa)  ^  x <  F jFK 1—a )

T’aTKI—a ) , i f  x > F t f K l —a) .
(5.29)

Note the sim ilarity o f this influence curve to that of the robust M  -estimator for €-contaminated Gaus-

00

sian noise. If fact, by choosing a  =  J  f  r {x )dx where / R is the least-favorable density from (4.21)
a

and a is the lim iter breakpoint from (4.22M4.23), we see that IIC  (x  ^  ¿T a)  I ^  11C (x jFR<Q? J l

X
where F Rt£x  ) =  f  f  R iy —0)dy. It follows that this a-trimmed mean is also a minimax robust loca­

tion estimate for €-contaminated Gaussian noise. Unfortunately, there is no known t ime-varying
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analog to the a-trimmed mean that carries its minimax property.

A  different, intuitive, notion o f robustness o f an estimator is that small changes in the data set

x .........xn should not change the estimate much. (This notion is sometimes called resistance.) This

property is assured for an estimate T  (F n )  i f  the functional T  is continuous. Thus one way of defining 

robustness of an estimator o f the type T  (F n )  at a given nominal F  0 is in terms of the continuity o f T  

at F  q. A  related robustness notion arises i f  we view  an estimator ) as a mapping from the marginal 

distribution of the observations X  l f . . . ,  X n to the distribution of the estimate OCX ). Robustness can be 

formulated in this context by requiring this mapping to be continuous in some way; i.e., a small change 

in the data distribution should cause only a small change in the distribution o f the estimate. It turns 

out that, for estimates o f the form T  (F n ), these two continuity definitions of robustness are equivalent 

(w ith in  the proper definitions of continuity). The notion of robustness as a continuity property was 

introduced in the context o f parameter estimation by Hampel [5.14] in 1968, although similar ideas 

were set forth in the context of signal detection in Root's earlier study of stability in detection [5.15]. 

Robustness of this continuity type is usually known as qualitative robustness.

The robust estimators discussed above can be extended to the estimation of signal parameters other 

than amplitude (see, e.g., Huber [5.1], K elly  [5.16], and El-Sawy [5.17]). Robust estimators have found 

numerous applications in statistics and signal processing. For example, location M  -estimates, a- 

trimmed means, and modifications thereof have been applied successfully to the problem of image 

enhancement Bovik, Huang and Munson [5.18] and by Lee and Kassam [5.19-5.20]. This is a natural 

application for robust methods since image noise typically consists of a Gaussian-like background with 

occasional impulsive or "spiky" components. For example the image o f Fig. 5.3a is shown corrupted by 

a combination of additive Gaussian and impulsive noises in Fig. 5.3b. The effects o f smoothing this 

image w ith a running mean (analogous to the sample mean) and with an M  -estimate are shown in 

Figs. 5.3c and 5.3d, respectively. The beneficial effects of robustifying the estimate are quite dramatic

in this case.
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Fig. 5.3: Application of robust amplitude estimation to image enhancement, (a) Original image,
(b ) noisy image (Gaussian background noise with impulsive outliers), (c) running-mean pro­
cessing, and (d ) M  -estimate processing.
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5.2. Robust Nonlinear Recursive Filtering and Identification

One of the most commonly used signal processing algorithms is the K alman filter, which is based 

on the linear observation model

Yn = H nX n +  V n, n =0,1,2, • • •

where, for each n>Yn is an r x l observation vector, H n is the observation matrix, X n 

vector, and Vn is the observation noise; and on the state model

X n +i =  F n X n +  Wn, n =0,1, • • • (5.31)

where F n is the state transition matrix and W n is the state noise. Assuming that X 0, {W n and

)r= 0 are all Gaussian, are independent of one another and that {W n } “=0 and {V n are indepen­

dent sequences, the optimum (MMSE) estimators o f X n and X n+1 given Y 0, . . . , Y n are given recur­

sively by the well-known Kalman filtering algorithm

Xn I« = Xn i» -1 +  Mn M n H Tn +  Rn )~KYn _ ,) (5.32)

and

Xn +lln F n Xn | n , (5.33)

where R„ = c o v (W „ ) ,  M„ =  + Q „ _ „  ft, = c o v (V „ ) ,  and P„ = c o v ( i „ i„ -  X „ l

P n is found recursively from a standard formula [5.21]. The relations (5.32) and (5.33) are called the 

measurement update and time update, respectively.

O f course the linearity of (5.32) and (5.33) follows from the assumptions o f Gaussian statistics for 

the state and the observation noise. I f  either o f these quantities has a distribution that deviates from 

this nominal assumption in that it allows an unexpected number of large observations, then the Kal­

man estimator may perform poorly. This may be seen from (5.32). In particular, the prediction resi-
A

dual (K n — H n Xn i„ _ i) w ill'contain outliers i f  either o f the Gaussian assumptions is violated towards a 

heavier tail behavior. Since this residual is fed directly into the estimate, a distorted value can cause

(5.30) 

is the n X l state
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severe degradation of the estimation performance; and, because o f the dynamics, such errors w ill pro­

pagate. However, there is an additional dimension to this problem in that outliers in the state are of 

interest and should be tracked rather than limited, and so additional considerations arise here. A  

method for robustification o f the Kalman filter against modeling uncertainty has been proposed by 

Masreliez and Martin in [5.22]. •

In view  of the ideas described in the preceding subsection, a natural way to try to protect against 

the detrimental effects noted in the above paragraph is to somehow place a lim iter dr similar nonlinear­

ity in the feedback loop o f the filter (5.32M5.33). This would lim it the effects that any outlier could 

have on performance, and this in fact is the way robustness is achieved in this model i f  a ll uncertainty 

is in the observation noise distribution. However, because of the vector nature of the Kalman filtering 

problem, some scaling and transformation of the residual is necessary both in modeling the uncertainty 

and in processing the residuals for robust estimation. In particular, for p -point uncertainty, the robust 

version o f (5.32M5.33) when the prediction errors X n ~ X n l n  _ j  are Gaussian but the innovations 

(Y„ — H nXn \n _ j) have uncertain distribution (this case corresponds to uncertainty in the observation 

noise) is of the form

Xn i » =  X. i « - i + M n H TnT Tn )  (5.34)

Xn+1\* = F nin\n (5.35)

with

V„ =  Tn (yn - H nXn[tl _ !> , (5.36)

where Tn is a scaling transformation described in [5.22] and where ¥(i/„ ) is the vector whose j th com­

ponent is the j th component o f vn, (vn j  ), replaced by \pp (vn j ), \f/p being the influence curve for 

robust location estimation in the p -point model. The error covariance of this estimator for p -point 

uncertainty is always less than its value when the components o f the transformed residual vector are 

i.i.d. w ith the least-favorable marginal distribution. Moreover, this worst-case covariance is the 

optimum covariance for the case in which the transformed residuals have this least-favcrrable property. 

However, this estimate does not provide a saddlepoint because o f the constraints o f the linear model as
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discussed in [5.22].

For the case in which the observation noise is Gaussian but the residual distribution is uncertain 

due to uncertainty in the state distribution, the Kalman filter is robustified differently than for the case 

uncertain observation noise. In particular, without going into detail, the measurement update (5.32) 

still incorporates Yn linearly into the estimate o f ^  , n but the transformed residual vn is limited. The 

linear incorporation o f Yn is done because an outlier in Yn indicates an outline in X n, which should be 

incorporated into the estimate o f X n. On the other hand, an outlier in vn does not necessarily indicate 

a bad prediction (X^ (n _2) and so should not be treated as such.

For further details and simulation results for robust Kalman filtering, the interested reader is 

referred to [5.22].

A  problem related to Kalman filtering is that of system parameter identification. In this problem 

we have a set o f scalar observations Y v . . .  ,Yn and a set of system input vectors X  h . . .  , X n that are 

related through the equation

Yi = s ( c P C i )  + N it t = U  (5.37)

where c is a vector parameter and N l t . . .  , N n is an Li.d. noise sequence w ith marginal pdf /  . The 

system identification problem is to estimate c from observation o f Y h . . .  ,Yn and X  h . . . ,  X n. Note 

that (5.37) is a generalization of the amplitude estimation problem of (5.1) in which X t , 0, and in

(5.1) correspond respectively to Yt , c , and X { in (5.37), and j (c ) = cX , .

As in the estimation o f signal amplitude, the conventional estimators o f c in (5.37) are o f the 

form o f M  -estimators; namely,

^ n

c =  arg {m in £  L  -  s (c  ̂  ) ) } ,  (5.38)
c i=l

with L  an error-weighting function. W e get least-squares estimation w ith L { x )  — x 2y least-moduli 

estimation w ith L ( x )  =  lx  I, and maximum-likelihood estimation with L ( x )  -  —log /  (x ) .  I f  the 

X l 's are i.i.d. and L  is convex, then within mild regularity conditions the estimate c of (5.38) is
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strongly consistent. Moreover if  s (c  rX l ) is linear (i.e., s (c  ,X, ) = c r X, ), then >fn ( c —c ) is asymptot­

ically Gaussian w ith zero mean and covariance matrix

r xv (  z , / ) , (5.39)

where /3 — E {X ; X,7"} and V  (Z,/  ) is from  (5.4). Thus, just as in the location estimation case the 

minimax robust estimate of c in (5.33) for a given noise uncertainty class JF is the optimum M  -

estimate ( lR =  — f  R/ f  R ) for the least favorable f  R =  arg { min / (/  )}.
/  € F

As noted in the preceding subsection, since the M  -estimator is a batch process, we are often more 

interested in recursive estimators for on-line applications. In this case (w ith  linear s (c ,X. ) )  the 

appropriate robust recursive identifier for a class F  is given by

A A A A

c n + i = c n -  0_1c n lR (yn -  s ( c nrxn ))/n/ { f  R ) , (5.40)

which, together with f  R, also gives a saddlepoint for the minimax robustness problem. For further 

details on this and related topics the reader is referred to the survey by Poljak and Tsypkin [5.4].

The problem of system identification is closely related to the problem of estimating the parame­

ters of a linear time series. An excellent survey o f methodology for robust estimation in this context is 

found in [5.2]. To illustrate the type o f results that can be obtained, we mention briefly the problem of 

estimating the parameters of an autoregression. Specifically, suppose we have observations

Yi =  9 + X lt i = 1 , 2 ,  (5.41)

where 0 is a location parameter and {X j } is a p th -order autoregression

x , =  _! +  <f>2X i_ 2  +  • • • +  <f>p X j - p +  €, , (5.42)

where <j> — (0 i- . . .  ,<f>pY  is a vector of constants, and {ei } is an i.i.d. innovations sequence w ith margi­

nal pdf /  . M  -estimates o f and 9 can be computed by finding
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Yi -y-<f)1Y l_1 -  ••• -(f>pY i-p 

s

where y -  9/(1—<f>1 — • • • — <f>p ) and 5 is an estimate o f the innovations scale parameter (see [5.2]), and
A A A A

then setting 9 =  y ( l — — • • • — <f>p\ These estimates of 0 and <f> are consistent and are asymptotically 

Gaussian and independent w ith

n Var (0) -  V  (Z ,/  )/ (l- ^ 1-----------<f>p7  (5.43)

and

n cov (0 ) — V  (Z,/  X T1/«?-/ , (5.44)

where V  (Z,/  ) is the asymptotic variance expression for M  -estimation of location from (5.4), ct}  is the 

variance of the innovations, and Cis the p X p  covariance matrix of the {X , } process when <j }  — 1.

Note from  (5.43M5.44) that lR — — f  R/ f  R and f  R — arg { min 1 ( f ) )  gives a saddlepoint for
f  £ F

the minimax robust estimation o f 0 when the innovations distribution is uncertain. However, this is 

not necessarily so for robust estimation of (f> because of the cj }  term in (5.44). It is interesting to note 

from (5.44) that a heavy-tailed innovations distribution may actually be beneficial in estimating 0, 

since cov (¿ ) depends inversely on cr€2. This is not surprising if  we note that outliers in the innovations 

should actually aid in the identification o f <f> just as the insertion of an impulse into a system allows 

one identifying its impulse response. Thus, we have here a situation in which impulsive phenomena 

are beneficial to inferences.

Extensions o f the above ideas to problems of estimation in ARM A models, nonlinear models, 

models w ith additive observation noise (in  which outliers are again detrimental), and models of unk­

nown order are discussed in [5.2]. Similar ideas can also be applied to other problems o f time series 

analysis such as forecasting [5.2] and spectrum estimation [5.23]. Connections between the problems of 

robust Kalman filtering and robust time-series regression have been noted in a recent paper by Boncelet 

and Dickinson [5.24].

(y, $) -  arg min jT L
i —p +1



6. ROBUST DATA QUANTIZATION

Data quantization is a necessary function o f systems which digitally process or transmit signals. 

The optimum design of quantizers based on minimum-distortion criteria has been considered exten­

sively over the past three decades and a number o f references on this subject can be found in surveys 

by Morris [6.1] and Gersho [6.2] and a recent special issue o f the IE E E  Transactions on Information 

Theory (Gray [6.3]). More recently, designs for quantizers which are optimum for signal detection or 

estimation purposes have also been developed by [6.4]-[6.7].

Optimum quantizer design is based prim arily on statistical definitions of optimality, such as 

minimum mean-distortion [6.8] or maximum divergence [6.6]. Thus, the optimum designs usually 

require an accurate statistical model for the data to be quantized. Since such models are rarely exact, 

the study o f quantizer design for inaccurate models is o f practical interest. One approach to this prob­

lem is that o f adaptive quantization (see, for example, [6.9-6.11D, which is appropriate for very inaccu­

rate models or for situations in which data statistics are changing significantly  over moderate time 

periods. An alternate approach which is primarily o f interest when there are relatively small inaccura­

cies in the statistical model or when a fixed structure is preferred, is a game theoretic one in which a 

quantizer w ith best worst-case performance is sought. As demonstrated in the preceding sections, this 

general approach has also been applied successfully to many other problems of signal processing with 

inaccurate statistical models, and the resulting designs are usually robust. In this section, we consider 

the problem o f minimax design o f quantizers for imprecisely modeled data. In particular, we survey 

several recent results pertaining to the problem o f minimax distortion quantization. These results 

include both asymptotic (as the number o f quantization levels becomes infinite) and nonasymptotic 

treatments o f this problem.

6.1. Robust Quantization for a Small Number of Levels

An M  -level quantizer Q can be represented by a set o f M  output levels q x, q 2, . . .  ,qM and a set 

of (A/ +1 ) input breakpoints satisfying -o o  =  10 <  t x <  • • • <  tM <  tM =  +oo,

where the quantized value of a real input x is given by
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Q ( *  )  =  9k» i f  x € (i* —\£k 1 k =  l r - M  . (6.1)

(See Fig. 6.1.) Thus, the design o f an M -level quantizer is an optimization problem on JR2*1 ~l. The 

most common quantizer design criterion for a random input X  is to choose the quantizer parameters to 

minimize a mean-distortion quantity,

E { D [ X j Q { X ) ] ) t (6.2)

where D  [y ] is some appropriate measure o f distortion. Usually D  [y] is a difference distortion measure 

(Le^ it depends only on the difference, IX  —Q (X )\ \  and the most useful o f these are the p th - 

difference distortion measures given by D  [a jb ] =  I a —b Ip .

The study of minimum-distortion quantization is exemplified by the classical work o f Max [6.7l 

in which design conditions for the tk ‘s and qk ‘s o f minimum-distortion quantizers are derived. In par­

ticular, for a wide class o f difference distortion measures (including the p th -difference ones), Max 

shows that the breakpoints should be chosen to satisfy

tk
9k + 9 k +1 

2
k W f - 1 , (6.3)

and he also gives a second set of necessary conditions which, together w ith (6.3), give a set o f nonlinear 

equations to be solved for the optimum quantizer parameters. For example, i f  we consider mean-square 

distortion (D [a jb ]  =  la — b I2) and if  X  has a probability density function /  , then the necessary 

conditions are given by

*k
f  x f  (x )dx

9k =  ^ , k =  l J U  ; (6.4)

f  f  Gc V x
r*-i

i-e-, 9k is the centroid of itk ] weighted w ith f  . (A n  equivalent interpretation is that 

qk = E  {X  IX  € (tk _iJk ]}). Many important refinements and generalizations o f this theory as w ell as
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OUT

Fig. 6.1: Input/output characteristics of an M  -level quantizer.
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studies o f performance, approximately optimal design, etc, can be found in the literature, and again the 

reader is referred to [6.1], [6.2], and [6.3] for further discussion.

O f course, designs based on minimizing the quantity o f (6.2) w ill depend on knowledge o f the 

probability distribution o f X , as can be seen, for example, in (6.4). Thus, as discussed in the introduc­

tion, when this distribution is not known exactly it is necessary to seek an alternative design strategy 

to minimizing (6.2). I f  we assume that the probability distribution of X  lies in some uncertainty  class 

F , then a useful design objective is the minimization o f the alternate quantity

s u p £ {Z ) [X ^ 2 (X ) ] } .  (6>5)

Several recent studies have considered various aspects of the minimization of (6-5) and these are dis­

cussed in the follow ing paragraphs. For the purposes of discussion, we w ill consider only the particular 

case o f mean-square distortion, although all o f the cited studies consider more general distortion meas­

ures as w ell. Thus, we w ill be considering the problem

oo

min sup f  \x -  Q ( x )\ 2 d F ( x ) , (6.6)
Q * Q m f  €*>

where QM denotes the class o f a ll M  -level quantizers.

The first study to consider (6.6) in the context o f minimax robustness is that o f Morris and Van- 

deLinde [6.12] in which F  is taken to be the class o f all possible probability distributions on a fixed 

interval [—V  ,V ]. In this case, it is shown in [6.12] that the minimax quantization problem (6.6) is 

solved by the M  -level uniform quantizer on [—V  ,V \ which is given by

tk = ~ V  +  2kV / M y k =  1,-,/U - l

qk = h  — V I M ,  k -  1 ,~yM —1

and

(6.7)

qM =  V  - V / M  .
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The solution to (6.6) was considered next by Bath and VandeLinde in [6.131 in which the class F  

is taken to be a unimodal generalized moment constrained (UGM C) set; i.e^ F  is assumed to consist of 

the distribution functions which are unimodal (w ith  mode zero) and which satisfy the generalized 

moment constraint

oo

/  p(x ) dF (x  ) ^  c , (6.8)
— OO

where the constraint function p is symmetric, continuous, is strictly increasing on (0,oo), and satisfies 

p(0) =  0 and p (x )  -> oo as x -» oo. In particular, it is shown in [6.13] via the Lagrange duality 

theorem that the minimax quantizer for this problem is given by the solution to

min
Q*Qm

m in

Xj,X2 ^  0
H  ( x )  ^  0

{Xj +  X2C} (6.9)

where c is from  (6.8) and

H ( x )  = f  [I y -  Q (y  )  12 -  Xx -  X2 p(y )] dy . (6.10)
0

An O i M  ) algorithm for solving (6.9) is also given in [6.131 and it is demonstrated numerically that 

the resulting minimax quantizer can perform much better in the worst-case over F  than both the uni­

form quantizer and the quantizer which is optimum for Gaussian data.

6.2. A sym ptotic Robust Q uantization

Further work on the minimax-distortion quantization problem considers the asymptotic case as 

the number, M , o f quantization levels becomes infinite. Assuming the data is confined to an interval 

i~V  iV 1 it is convenient to represent (and to implement) a quantizer as an increasing invertible func­

tion G : [—V  ,V ] -* [—V ,V 1 followed by a uniform quantizer, which is followed in turn by the 

inverse of G . (See Fig. 6.2.) The function G is termed a compressor and its inverse an expander, so
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Fig. 6.2: Configuration for companding quantization.
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that the whole scheme is termed companding. In general, the compressor G can be any invertible func­

tion; however, it is usually assumed to have a continuous derivative, g . It is also common to assume, 

for simplicity, that the data distribution F  has a density / . Under these and further m ild regularity 

conditions it can be shown that the mean-squared error associated w ith the companding scheme is 

asymptotically o f the form  D  (/ ,g  )  • M  ~2, where the functional D  (/ ,g  )  is given by

v 2 V
£> (/>g ) =  /  /  (x  Xg (x  )]~2dx . (6.11)

The function g describes the relative density of the quantization intervals within the range o f the 

data.

By way o f (6.11), an asymptotically optimum compressor curve G can be chosen by minimizing 

over g . Straightforward minimization (see, e.g., Gersho [6.2]) yields that the minimizing compressor is 

given by

G 0( x )  =  2V

/  f uH y ) d y
-V

f  f m (y )d y  - i
—V L

(6.12)

which yields a value o f (6.11) of

~  -A- ( /  /  1/3 (x ) ds )3 , (6.13)
—v

where g 0 — Go» Since it is known that (6.13) gives the lim iting distortion o f the minimum-mean- 

square-error quantizer (see, for example, Bucklew and Wise [6.14]), it follows that the companding 

structure causes no performance loss for optimum quantization in the asymptotic case.

Note that, as one would expect, the optimum compressor characteristic of (6.12) depends on an 

exact knowledge o f the probability distribution o f the data. Thus if, as above, F is known only to 

belong to some class F  o f possible data distributions, then it is reasonable to replace the problem of
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minimizing (6.11) over g w ith that o f minimizing over g the worst-case over F  o f (6.11). That is, it 

is of interest to consider the problem

(6.14)

where F  = {/  I /  — F , f  € F  } and where S is a set o f admissible compressor curve derivatives.

The problem in (6.14) was first considered by Bath and VandeLinde in [6.151 where the case in 

which F  is a. UGMC set as in (6.8) is treated. It follows from  [6.15] that the minimax compressor for 

this case is given by

G IC x )  =  f  g \ (y )d y  - V  , (6.15)
—v

where

g \ Cc) =  (V  /3%XX; + A2* f i x  )]- *  (6.16)

with Ai and A2 chosen to solve

min {At +  \yc }
^ 0

and

v
f  g \ { x )d x  =  2V . (6.17)
-v

Here, the constant c and the function p are from  (6.8). It is noted in [6.15] that the case f i x  )  -  x 2, the 

solution to (6.17) involves only finding the root o f a simple transcendental equation. It is also shown in 

[6.15] that the worst-case performance over the UGMC set F  o f the minimax compander is much 

better than that o f the corresponding optimum companders for the Laplace, uniform, and Gaussian dis­

tributions. However, surprisingly, it is found that "robustified" versions o f the classical A -law  and ¡1 - 

law companders (see, for example, Cattermole [6.16]) perform nearly as w ell in their worst case as does 

the minimax compander.
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A  slightly different approach to solving the robust companding problem is proposed by Kazakos 

in [6.17] and [6.18]. In particular, [6.17] and [6.18] consider uncertainty classes F  for which 

saddlepoint solutions to (6.14) can easily be demonstrated. Note that D  ( / ,g  ) is linear (and hence con­

cave) in /  and is convex in g. In [6.17] the follow ing uncertainty class is considered (here V  is taken 

to be equal to l):

F  2 =  \F IF  (xk +1) — F  (xk )  =  pk, k =  0 ,1 ^ N  —1,

F i x  ) +  F ( — x )  =  l f O =  x 0 < * i <  • "  <  x n  -  1} > (6.18)

N - 1
where N , the xk's, and the pk ‘s are fixed and known w ith £  Pk =  !• This class is an example of

k =0

the p-point class discussed in previous sections. Kazakos shows that the member o f (6.18) which has the 

uniform density on each of the intervals (xk -\yXk ] and its corresponding optimum compressor from

(6.12) form a saddlepoint for (6.14) in this case. That is, w ith

/  2 (*  )  =  Pk X ** +i — xk X *   ̂ (x* pck +11 k =  0 .1 J V  -1  , (6.19)

and g 2 from (6.12) w ith /  =  /  *2, we have

D ( f , g 2 )  <  D i f  i g J <  D ( /  *2,g ) ,  (6.20)

for a ll g € G. Note that the compressor curve G *2 corresponding to this g \ w ill be piecewise linear. 

Also note that, o f course, the existence o f (/  \ >g*2 )  satisfying (6.20) is equivalent to the condition

min max Z ) ( / , g )  =  max min Z ) ( / , g ) .

In [6.18], the saddlepoint properties o f (6.14) are considered in a more general setting. In particu­

lar, it is noted in [6.18] that w ithin regularity conditions on F  and G , the equality o f (6.21) holds for 

general convex classes F . Thus, in view  o f (6.13), saddlepoint solutions to (6.14) can be sought by 

looking for solutions to the alternate problem
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max / (/  ) ,
/ € P

where

v
/ ( / ) =  /  f  .

-V

(6.22)

(6.23)

That is, under mild conditions, a solution f  * to (6.22) and its corresponding optimum compressor 

characteristic g * from  (6.12) form  a saddle point for (6.14). As was noted in [6.19}, since / (/  )  is of

the form f  C (/  (x J)dx with C concave, solutions to (5.22) are those "closest" to the uniform density 
-v

on [—V  ,V ]. Thus, solutions for several uncertainty classes are straightforward. For example, with

^ 3  =  1 / 1 /  =  ( l - e )/  o +  €/i} ,  (6.24)

where /  0 and € are fixed and h is arbitrary, the density solving (6.22)  is given by

/  3 (*  )  =  maxKl—€ )/  0(x  ), m } ,  (6.25)

where m is a constant chosen so that /  3 integrates to unity.

Unfortunately, as pointed out in [6.20] the asymptotic formulation o f [6.17H6.18] is flawed by the 

fact that, for some models (e.gn 6-contaminated data), the m in im u m  of the maximum asymptotic error 

is different from the minimum o f asymptotic maximum error due to the discrete nature o f the finite- 

M  problem. (This problem does not occur for the UGMC model o f Bath and VandeLinde.) This prob­

lem is corrected in [6.20], and the solution for 6-contaminated data is still o f the form o f (6.25) but 

with a higher degree o f lim iting. A  typical solution is shown in Fig. 6.3. Note that, for this case, the 

levels o f the robust quantizer are distributed more or less as those o f the nominal quantizer near the 

center o f the range but they are spaced uniform ly (and closer together than for the nominal quantizer) 

near the ends o f the range. Thus, the robust quantizer is a mixture o f the n o m in a l l y  optimum quan­

tizer and the uniform quantizer (which is universally minimax). Numerical results illustrating the 

effectiveness o f the robust quantizer are given in [6.20].



Input Value, x

Fig. 6.3: Nominal and robust level densities for €-contaminated truncated-Gaussian data (€ =  0.1).
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7. CONCLUSIONS

In this paper we have considered minimax robustness in the context o f the signal processing tasks 

of estimation, detection, and data quantization. W e have seen that these robustness formulations take 

tw o basic forms: robustness w ith respect to uncertain second-order statistical properties (e.g., spectral 

properties) o f signals or noise and robustness with respect to uncertainty in the marginal distribution o f 

the noise or signal process. In the first o f these cases, the robust methods take the form  of the linear pro­

cedures discussed in Sections 2 and 3, whereas in the second case nonlinear procedures are called for. In 

either case the typical robustification procedure has the effect o f lowering the sensitivity o f a nominally 

optimum procedure by tempering those characteristics that are accentuated by the nominal model. 

Thus, in a nominally Gaussian noise model w ith a small fraction of "outliers", enough lim iting is intro­

duced into the optimum procedure to keep these outliers from destroying the action of the procedure. 

The frequency domain robustness methods can also be thought o f in the same way in which the gain of 

the appropriate filter is reduced in certain spectral regions to limit the effects of a more than expected 

amount of energy in those regions (i.e^ "spectral outliers").

The relationship of these two types o f robustness has been discussed by Franke and Poor in [7.1] in 

the context of estimation. In [7.1] it is noted that, i f  one knows only spectral or other second-order 

properties, then linear estimation procedures are globally minimax over all estimation schemes. It is 

only when distributional information is provided that nonlinearity arises in the minimax solutions. 

Thus, the robust filters o f Section 2 are globally minimax over all filters (linear or nonlinear) and all 

random processes (Gaussian or otherwise) with the given spectral properties. Note that the relevant 

observation or noise processes in Section 5 have very special spectral characteristics (they are usually 

white), and only their marginal distribution is allowed to vary. Very little progress has been made in 

dealing with simultaneous spectral and distributional uncertainty models (an exception is a recent 

paper by Moustakides and Thomas [7.2]), although this certainly gives rise to an interesting class of 

problems from a practical viewpoint.
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