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Abstract—The quasi steady-state (QSS) model tries to reach a
good compromise between accuracy and efficiency in long-term
stability analysis. However, the QSS model is unable to provide
correct approximations and stability assessment for the long-
term stability model consistently. In this paper, some numerical
examples in which the QSS model was stable while the long-term
stability model underwent instabilities are presented with analysis
in nonlinear system framework. At the same time, a hybrid
model which serves as a remedy to the QSS model is proposed
according to causes for failure of the QSS model and dynamic
mechanisms of long-term instabilities. Numerical examples are
given to show that the developed hybrid model can successfully
capture unstable behaviors of the long-term stability model while
the QSS model fails.

Index Terms—quasi steady-state model, long-term stability
model, hybrid model, nonlinear analysis, power system long-term
stability.

I. I NTRODUCTION

T HE long-term stability model in power system is large
and involves different time scales, thus its time domain

simulation is expensive in terms of computational efforts and
data processing. The quasi steady-state (QSS) model proposed
in [1] [2] seeks to reach a good compromise between accuracy
and efficiency. By assuming that fast variables are infinitely
fast and are stable in the long term, the QSS model replaces
the differential equations of short-term dynamics by their
equilibrium equations.

The assumptions behind the QSS model that the post-fault
system is stable in short-term period and the QSS model
is singularity-free are not necessarily satisfied. These issues
of the QSS model were addressed in [3]- [5]. Nevertheless,
even when these assumptions are satisfied, the QSS model
can still provide incorrect approximations for the long-term
stability model while little attention was paid to this severe
problem before [6]. Some examples were presented in [6]
[7] to illustrate limitations of the QSS model with nonlinear
analysis. In addition, a theoretical foundation for the QSS
model was proposed in [8] where sufficient conditions of
the QSS model for accurate approximation of the long-term

Xiaozhe Wang is with the Department of Electrical and Computer Engineer-
ing, Cornell University, Ithaca, NY 14850, USA. E-mail: xw264@cornell.edu.
Phone: 607-592-4050.

Hsiao-Dong Chiang is with the Department of Electrical and Com-
puter Engineering, Cornell University, Ithaca, NY 14850, USA. Email:
hc63@cornell.edu. Phone: 607-255-5270.

stability model in terms of trajectories andω-limit set were
derived.

In this paper, we show that the QSS model can miss two
kinds of long-term instabilities. Some numerical examplesin
which the QSS model was stable while the long-term stability
model underwent instabilities are presented. At the same time,
nonlinear analysis and some dynamic mechanisms behind
failure of the QSS model are given. In addition, a hybrid model
which serves as a remedy to the QSS model is proposed, and
numerical examples show that the hybrid model can capture
unstable behaviors of the long-term stability model while the
QSS model fails.

This paper is organized as follows. Section II briefly reviews
power system models and their formulations in nonlinear sys-
tem framework. Section III presents two examples to illustrate
limitations of the QSS model followed by some general dy-
namic mechanisms of long-term instabilities. A hybrid model
is proposed in Section IV with numerical schemes. Then
Section V gives two numerical examples to show that the
hybrid model can capture unstable behaviors of the long-term
stability model while the QSS model fails. Conclusions as well
as perspectives are stated in Section VI.

II. POWER SYSTEM MODELS

The long-term stability model for calculating system dy-
namic response relative to a disturbance can be described as:

żc = ǫhc(zc, zd, x, y) (1)

zd(k) = hd(zc, zd(k − 1), x, y) (2)

ẋ = f(zc, zd, x, y) (3)

0 = g(zc, zd, x, y) (4)

Equation (4) describes the transmission system and the
internal static behaviors of passive devices, and (3) describes
the internal dynamics of devices such as generators, their as-
sociated control systems, certain loads, and other dynamically
modeled components. Equations (1) and (2) describe long-
term dynamics including exponential recovery load, turbine
governor, load tap changer (LTC), over excitation limiter
(OXL), etc. f , g and zc are continuous functions andhd are
discrete functions. Vectorx, y are short-term state variables
and algebraic variables;zc, zd are continuous and discrete
long-term state variables respectively. Besides,1/ǫ is the max-
imum time constant among devices. Note that shunt compen-
sation switching and LTC operation are typical discrete events

http://arxiv.org/abs/1405.1385v1


2

captured by (2), in which casezd are shunt susceptance and
transformer ratio correspondingly. Transitions ofzd depend on
system variables, thuszd change values fromzd(k−1) to zd(k)
at distinct timestk wherek = 1, 2, 3, ...N , otherwise, these
variables remain constants. Since short-term dynamics have
much smaller time constants compared with those of long-
term dynamics,x are termed as fast state variables whilezc
andzd are termed as slow state variables.

A. Models in Nonlinear System Framework

If we represent the long-term stability model and the QSS
model in τ time scale, whereτ = tǫ, and denote′ as d

dτ
,

then the long-term stability model of power system can be
represented as:

z′c = hc(zc, zd, x, y), zc(τ0) = zc0 (5)

zd(k) = hd(zc, zd(k − 1), x, y), zd(τ0) = zd(0) (6)

ǫx′ = f(zc, zd, x, y), x(τ0) = xl
0 (7)

0 = g(zc, zd, x, y) (8)

At the same time, the QSS model can be represented as:

z′c = hc(zc, zd, x, y), zc(τ0) = zc0 (9)

zd(k) = hd(zc, zd(k − 1), x, y), zd(τ0) = zd(0)(10)

0 = f(zc, zd, x, y) (11)

0 = g(zc, zd, x, y) (12)

As stated before, the discrete variables only jump at distinct
times while remain constants otherwise in power system
models. Thus whenever discrete variables jump in the long-
term stability model,zd update firstly according to (6), and
then the long-term stability model moves according to Eqn (5)
(7) (8) withzd fixed as parameters. Similarly, when (10) works
in the QSS model, discrete variables update firstly according
to (10), and then the QSS model evolves as Eqn (9) (11) (12)
with zd fixed as parameters.

In this paper, we assume that the sequence of control gov-
erned by(6) and (10) are the same in the long-term stability
model and the QSS model. In other words, control sequences
including shunt compensation switching, LTC changing and
load shedding are the same in both models.

If we are interested in the study regionU = Dzc ×Dzd ×
Dx×Dy, whereDzc ⊆ ℜp, Dzd ⊆ ℜq, Dx ⊆ ℜm, Dy ⊆ ℜn,
then we have the following facts.
Fact 1.(Locations of Equilibrium Points)Both models have
the same set of equilibrium pointsE = {(zc, zd, x, y) ∈
U : zd(k) = zd(k − 1), hc(zc, zd, x, y) = 0, f(zc, zd, x, y) =
0, g(zc, zd, x, y) = 0}.

Furthermore, assuming(zcls, zdls, xls, yls) ∈ E, and let
φl(τ, zc0, zd(0), x

l
0, y

l
0) denote trajectory of the long-term

stability model with initial condition(zc0, zd(0), xl
0, y

l
0) and

φq(τ, zc0, zd(0), x
q
0, y

q
0) denote trajectory of QSS model with

initial condition (zc0, zd(0), x
q
0, y

q
0), then the stability region

of the long-term stability model is:

Al(zcls, zdls, xls, yls) := {(zc, zd, x, y) ∈ U : φl(τ, zc0,

zd(0), x
l
0, y

l
0) → (zcls, zdls, xls, yls) asτ → +∞} (13)

And the stability region of the QSS model is:

Aq(zcls, zdls, xls, yls) := {(zc, zd, x, y) ∈ Γ : φq(τ, zc0,

zd(0), x
q
0, y

q
0) → (zcls, zdls, xls, yls) asτ → +∞} (14)

where Γ := {(zc, zd, x, y) ∈ U : f(zc, zd, x, y) =
0, g(zc, zd, x, y) = 0} is the constraint manifold of the QSS
model.

The singular points of constraint manifoldΓ are:

S := {(zc, zd, x, y) ∈ Γ : det

[

Dxf Dyf
Dxg Dyg

]

= 0} (15)

For each fixedzc ∈ Dzc and zd(k) ∈ Dzd , given a point
(zc, zd(k), x, y) on Γ, the corresponding transient stability
model is defined as:

ẋ = f(zc, zd(k), x, y) (16)

0 = g(zc, zd(k), x, y)

If (zc, zd(k), x, y) 6∈ S, then by Implicit Function Theorem,
there exists a unique solution(zc, zd(k), l(zc, zd(k))) locally
near the point(zc, zd(k), x, y) such that:

f(zc, zd(k), l(zc, zd(k))) = 0 (17)

g(zc, zd(k), l(zc, zd(k))) = 0

where
(

xts

yts

)

=

(

l1(zc, zd(k))
l2(zc, zd(k))

)

= l(zc, zd(k))

(zc, zd(k), xts, yts) is termed as an equilibrium point of the
transient stability model. If(zc, zd(k), xts, yts) is a stable
equilibrium point (SEP) of the transient stability model, then
the stability region of(zc, zd(k), xts, yts) is represented as:

At(zc, zd(k), xts, yts) := {(x, y) ∈ Dx ×Dy : φt(t, zc,

zd(k), x, y) → (zc, zd(k), xts, yts) as t→ +∞}

(18)

whereφt(t, zc, zd(k), x, y) denotes the trajectory of the tran-
sient stability model (16).

Assuming thatDyg is nonsingular, then transient stability
model (16) can be linearized near the equilibrium point as:

ẋ = (Dxf −DyfDyg
−1Dxg)x (19)

and we can define the stable componentΓs of constraint
manifold:

Γs = {(zc, zd, x, y) ∈ Γ : all eigenvaluesλ of

(Dxf −DyfDyg
−1Dxg) satisfy Re(λ) < 0,

andDyg is nonsingular} (20)

such that each point onΓs is a SEP of the corresponding
transient stability model defined in Eqn (16) for fixedzc and
zd(k). A comprehensive theory of stability regions can be
found in [9]- [15].

III. LIMITATIONS OF THE QSSMODEL

In this section, we firstly present two examples of the QSS
model in which the QSS model failed to capture dynamics
of the long-term stability model. Then some general physical
mechanisms of long-term instabilities are elaborated.
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A. Numerical Examples

To best of our knowledge, there are two kinds of instabilities
that the QSS model fails to capture in long-term stability
analysis. In the first case, the QSS model fails to detect
oscillation problems in the long-term stability model as shown
in Fig. 1. In this 14-bus system, the system maintained stability
in the short-term period when lines between Bus 11-10, Bus
7-9 and Bus 6-11 broke down. The final oscillations were
brought by dynamics of OXL. When the LTC between Bus 4
and Bus 9 stopped changing as LTC ratio reached the lower
limit, the OXL of generator at Bus 2 reached its limit leading
to oscillations of field currentif and state variablevoxl which
further resulted in oscillations of variables of automaticvoltage
regulators (AVR). As a result, the system had both voltage
and electromechanical oscillation problems. However, theQSS
model failed to capture the oscillations that happened in the
long-term stability model.
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Fig. 1. The trajectory comparisons of the long-term stability model and the
QSS model. The QSS model converged to a long-term SEP while the long-
term stability model suffered from voltage and electromechanical oscillation
problems.

In the second case, the QSS model fails to capture the long-
term instability caused by short-term variables as shown in
Fig. 2. In this 14-bus system, the system maintained stability
in the short-term period when lines between Bus 6-13, Bus 7-9
and Bus 6-11 broke down. The long-term instability was due
to the counter effect between LTC and OXL. The OXL of the
generator at Bus 2 reached its limit when LTC at Bus 2-4, Bus
4-9 and Bus 12-13 jumped the second time at 40s, however,
LTC continued lowering tap ratio afterwards and the counter
effect between the LTC and OXL became even severer, which
resulted in wild oscillations of variables of AVR. Finally,long-
term instability took place. Also, the QSS model didn’t provide
correct approximations for the long-term stability model with
incorrect stability assessment.

The causes for failure of the QSS model were analyzed
in nonlinear system framework [6] [7]. From the viewpoint
of nonlinear system theories, the cause for failure of the
QSS model in both examples here was that the first point
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Fig. 2. The trajectory comparisons of the long-term stability model and the
QSS model. The QSS model converged to a long-term SEP while the long-
term stability model stopped at 101.2155s s due to instabilities caused by wild
oscillations of short-term variables.
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0) after discrete

variables jump tozd(k) lied outside of the stability region
At(z

q
ck, zd(k), x

q
k, y

q
k) of the corresponding transient stability

model, thus slow manifolds of the QSS model and the long-
term stability model got separated afterwards and the QSS
model could no longer provide correct approximations for the
long-term stability model as shown in Fig. 3. Specifically, in
the first case, the long-term stability model and the QSS model
had differentω-limit sets. Theω-limit set of the QSS model
was a stable equilibrium point around which was a limit cycle
that the long-term stability converged to. Refer to [6]- [8]for
more details.
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approximations afterwards.

From these two examples, we can see that when the QSS
model failed to capture unstable behaviors of the long-term
stability model, OXL were excited. Next, some dynamic
mechanisms of long-term instability are going to be elaborated,
which further illustrate the important role that OXL plays.

B. Some Dynamic Mechanisms of Long-Term Instabilities

For long-term stability analysis, it’s assumed that the system
has survived the short-term period after the contingency,
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and the study period may extend to several minutes. The
long-term instability usually happens in a system which is
operating with many lines heavily loaded and reactive power
reserves at minimum. The contingency results in an increased
reactive power loss on the transmission line and voltage drops
consequently at some buses. Assuming the system maintains
its stability in short-term time scale by control of AVR and
power system stabilizers (PSS) at generators. Then after a time
delay, LTC start to work and try to recover load-side voltageby
lowering tap ratios, however, LTC may impose an even heavier
reactive demand on the generator until OXL of generators are
activated. With fewer generators on voltage control, the power
system is much prone to voltage instability [16].

The long-term instability is usually classified into two
cases, namely long-term voltage instability and instability
of short-term dynamics caused by long-term dynamics [1]
[17]. Let’s firstly consider the long-term voltage instability.
This instability may be due to loss of long-term equilibrium
when loads try to restore their power beyond the capabil-
ity of the transmission network and connected generation.
Mathematically, that means there is no solution for system
(1)-(4) anymore. Besides, the instability may also because
post-fault long-term equilibrium point is disturbance unstable
[18]. Additionally, dynamic mechanisms of voltage collapse
in long-term were explained in [19] [20] in terms of stability
regions. It was shown that voltage stability region shrinksas
the generator terminal voltage decreases. As a result, when
OXL are activated as LTC evolve, the trajectory is easier to
leave the shrinking stability region, then voltage collapse takes
place.

As for the other case, the evolution of long-term dynamics
leads to the instability of short-term variables in the formof
sudden transitions. The outcomes include loss of synchronism
of field current limited generators, induction motors stalling
[17] and electromechanical together with voltage oscillations.
One physical mechanism is that the activation of OXL caused
by LTC operation leads to wild change of fast variables
of AVR and PSS, thus results in instabilities of short-term
variables. The examples presented in the last section belong
to this kind of instability.

In the next section, a hybrid model is presented as a remedy
to the QSS model according to nonlinear analysis of causes
for failure of the QSS model as well as physical mechanisms
of long-term instabilities.

IV. REMEDY: HYBRID MODEL

From the viewpoint of physical mechanisms, the dynamics
of OXL and its counter effect between LTC and load restora-
tion are main causes for long-term instabilities as mentioned
in extensive literature [1] [16] [18]- [21]. From the aspect
of nonlinear system analysis, when the QSS model fails to
provide correct approximations, slow manifolds of the long-
term stability model and the QSS model get separated, which
is caused mainly by slow dynamics of OXL and LTC. Hence,
the deviation of slow variables of OXL between the long-term
stability model and the QSS model can be regarded as criteria
to judge whether the QSS model works properly. And this is
the starting point to develop the hybrid model.

The hybrid model is presented as follows. The QSS model
starts to implement after short-term dynamics settle down
before which the long-term stability model is used; whenever
discrete variables jump, check the distance of variables of
OXL of the long-term stability model and that of the QSS
model to judge whether the QSS model works properly; when
discrete variables stop changing, check whether variablesof
OXL are positively damped in the long-term stability model to
guarantee that there is no oscillation in the long-term stability
model. The hybrid model is shown as below.

Hybrid Model
A Run the long-term stability model tillτ1 when short-

term dynamics settle down.
B Run the QSS model fromτ1. Whenever discrete vari-

ables jump, check whether the distance of variables of
OXL of the long-term stability model and that of the
QSS model is bigger than thresholdη. If yes, switch
back to the long-term stability model; Otherwise, con-
tinue with the QSS model.

C When all discrete variables stop jumping, check
whether variables of OXL are positively damped in the
long-term stability model. If yes, the long-term stability
model converges to the stable equilibrium point that the
QSS model converges to; Otherwise, switch back to the
long-term stability model.

Short-term dynamics usually settle down by 20s after the
contingency, thusτ1 was set to be 20s in examples of this
paper. On the other hand,η is system-dependent and was set to
be 10−3 in examples of the paper. In addition, although slow
variableszl{oxl}k of OXL on the trajectory of the long-term
stability model is needed atB, zl{oxl}k can be approximated
from trajectory of the QSS model without simulation of the
long-term stability model, which are to be discussed more in
the next subsection. Also, reinitialization when switching back
to the long-term stability model is also to be explained.

A. numerical schemes

Let’s firstly consider B. Assuming the point on
φq(τ, zc0, zd(0), x0, y0) before discrete variables jump
thekth time is(z̄q

c(k−1), zd(k−1), x̄q

(k−1), ȳ
q

(k−1)), if the QSS
model works properly before the jump of discrete variables,
then the trajectory of the long-term stability model should
keep a small distance to(z̄q

c(k−1), zd(k − 1), x̄q

(k−1), ȳ
q

(k−1)),
thus we approximate the point on the trajectory of the
long-term stability model immediately after discrete variables
change by a one-step integration in the long-term stability
model, i.e.

z′c = hc(zc, zd(k), x, y), zc(τ0) = z̄q
c(k−1) (21)

ǫx′ = f(zc, zd(k), x, y), x(τ0) = x̄q

(k−1)

0 = g(zc, zd(k), x, y)

and denote the approximated point as(zlck, zd(k), x
l
k, y

l
k) with

zl{oxl}k ⊂ zlck. In addition, assuming the QSS model jumps to
(zqck, zd(k), x

q
k, y

q
k) andzq{oxl}k ⊂ zqck. If the distance between

zl{oxl}k and zq{oxl}k is bigger than thresholdη, then switch
back to the long-term stability model.
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As for C, when discrete variables stop jumping, we firstly
check whether all generators are working under current limits
which means OXL are not excited. If yes, then the long-term
stability model converges to the same point that the QSS model
converges to; otherwise, suppose the QSS model converges
to (zqcN , zd(N), xq

N , yqN), then we run the long-term stability
model starting from(zqcN , zd(N), xq

N , yqN) for several steps,
i.e.

z′c = hc(zc, zd(N), x, y), zc(τ0) = zqcN (22)

ǫx′ = f(zc, zd(N), x, y), x(τ0) = xq
N

0 = g(zc, zd(N), x, y)

and see whether the magnitude ofz{oxl}k is decreasing, i.e.
z{oxl}k is positively damped. If yes, the long-term stability
model converges to the same long-term stable equilibrium
point as the QSS model; otherwise, the long-term stability
model suffers from oscillation problems and we need to switch
back to the long-term stability model.

When switching back to the long-term stability model is
needed in eitherB or C, we need reinitialization for the long-
term stability model, i.e. we need to provide initial point for
the long-term stability model. For this purpose, we record
the point(zc0, zd(0), x0s, y0s) when the QSS model starts to
work and each point(z̄q

c(k−1), zd(k − 1), x̄q

(k−1), ȳ
q

(k−1)) on
φq(τ, zc0, zd(0), x0, y0) before discrete variables jump thekth
time as the hybrid model runs. Suppose we need to switch back
to the long-term stability model when discrete variables jump
thekth time, ifk is no more than 2, we switch back to the long-
term stability model with initial point(zc0, zd(0), x0s, y0s); if
k is bigger than 2, we switch back to the long-term stability
model with initial point (z̄q

c(k−3), zd(k − 3), x̄q

(k−3), ȳ
q

(k−3)).
The block diagram of the hybrid model is shown in Fig. 4.

At the end of this section, we would like to discuss the
efficiency of the proposed hybrid model. As you may notice,B
doesn’t require extra computational efforts if the QSS model is
implemented without switching back to the long-term stability
model. AlthoughC requires additional integration during the
simulation, the time required is a mere fraction of total time
consumed if not neglectable. For instance, to simulate a 14-
bus system which was long-term stable up to 300s, the QSS
model took 9.50s while the hybrid model took 9.80s, and the
long-term stability model required 42.18s. All models used
fixed time step for comparison purpose.

V. NUMERICAL ILLUSTRATION

In this section, two examples which are shown in Section III
are presented with comparisons with the hybrid model. In the
first example, the QSS model failed to capture the oscillation
problems caused by OXL. In the second example, the QSS
model failed to capture the instability caused by fast variables
of AVR. However, in both cases, the hybrid model successfully
detected problems of the QSS model and switched back to
the long-term stability model, thus provided correct stability
assessment. All simulations were done using PSAT 2.1.6 [22].
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Fig. 4. The block diagram of the hybrid model.

A. Numerical Example I

The first example was the 14-bus system shown in Fig. 1.
Each of the five generator was controlled by AVR and OXL
whose initial time delay was 40s. Generator 1 and Generator
3 were also controlled by turbine governors. Besides, there
were three exponential recovery loads at Bus 9, Bus 10 and
Bus 14 respectively. Additionally, there was one LTC between
Bus 4 and Bus 9 which had an initial time delay of 20s and
fixed tapping delay of 10s. At 1s, there were three line losses
including Bus 11-Bus 10, Bus 7-Bus 9, Bus 6-Bus 11. The
QSS model started to implement at 20s.

The trajectory comparisons of the long-term stability model,
the hybrid model and the QSS model are shown in Fig.
5. The long-term stability model suffered from both voltage
and electromechanical oscillation problems brought by OXL
dynamics. When the LTC stopped working after 180s, field
currents of both the generator at Bus 2 and the generator at
Bus 3 reached OXL’s limits, and slow variables of OXL were
not positive damped since their magnitudes of oscillation were
increasing. Finally the long-term stability model converged
to a limit cycle around the long-term SEP that the QSS
model converged to. However, the QSS model failed to capture
oscillation problems in the long-term stability model and
provided incorrect stability assessment. On the other hand, the
hybrid model detected that there were oscillations in the long-
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term stability model, thus it moved back to 160s at which the
long-term stability model was implemented. Although there
was a difference between the trajectory of the hybrid model
and the long-term stability model due to different initial points
at 160s, the hybrid model provided correct stability assessment
that the system had oscillation problems.
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Fig. 5. The trajectory comparisons of the long-term stability model, hybrid
model and the QSS model. The hybrid model captured the oscillation problems
of the long-term stability model while the QSS model failed.

B. Numerical Example II

This example was the 14-bus system shown in Fig. 2. Each
generator was controlled by AVR and OXL whose initial
time delay was 30s. Generator 1 and Generator 3 were also
controlled by turbine governors. Besides, there were three
exponential recovery loads at Bus 9, Bus 10 and Bus 14
respectively. Additionally, there were three LTC between Bus
4 and Bus 9, Bus 12 and 13, Bus 2 and Bus 4. All LTC had
initial time delay of 30s and fixed tapping delay of 10s. At
1s, there were three line losses including Bus 6-Bus 13, Bus
7-Bus 9, Bus 6-Bus 11. The QSS model started to implement
at 20s.

The trajectory comparisons of the long-term stability model,
the hybrid model and the QSS model are shown in Fig. 6.
As stated before, OXL of the generator at Bus 2 reached its
limit when LTC jumped the second time at 40s. However,
LTC continued lowering tap ratio afterwards such that fast
variables of AVR were excited and oscillated wildly. The
instability of short-term variables finally resulted in long-term
instability of the whole system. However, the QSS model
failed to capture the unstable behaviors and converged to a
long-term SEP, thus provided incorrect stability assessment in
concluding that the system was long-term stable. On the other
hand, the hybrid model detected that the distance betweenzoxl
of the long-term stability model and that of the QSS model got
bigger than the threshold10−3 at 30s, thus the hybrid model
moved back to 20s and started to run the long-term stability
model with initial condition(zc0, zd(0), x0s, y0s). Hence, the

hybrid model successfully captured the unstable behaviorsand
provided correct stability assessment.
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Fig. 6. The trajectory comparisons of the long-term stability model, the
hybrid model and the QSS model. The hybrid model successfully captured
the instability of the long-term stability model while the QSS model failed.

VI. CONCLUSION

In this paper, two examples in which the QSS model
was stable while the long-term stability model underwent
instabilities are presented, showing that the QSS model can
miss two kinds of long-term instabilities. Causes for failure
of the QSS model in nonlinear system framework and some
general dynamic mechanisms of long-term instabilities are
elaborated, from which we see the important role OXL plays
in long-term stability. In addition, a hybrid model which serves
as a remedy to the QSS model is proposed with efficient
numerical schemes. Finally, numerical examples are given to
show that the hybrid model can capture unstable behaviors of
the long-term stability model while the QSS model fails.

The proposed hybrid model is based on nonlinear analysis
for the QSS model and dynamic mechanisms of long-term
instabilities. We would like to provide a theoretical foundation
for the hybrid model in the near future.
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