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Abstract— We consider a class of optimal power flow (OPF) are the power injections, and especially active power flows
aﬁpllcatlfons whertge S:?mefmad_?hOffer a nln_od:glanon Se[)V'CG (')m as they underlie most of the financial transactions. Therothe
change for an activation fee. These applications can be m ; ;
as multi-period formulations of the OPF with discrete variables variables (voltage, (_:urrent) can be viewed as a consequence
that define mixed-integer non-convex mathematical prograre. We ~ Of the power flows in the ngtvvprk, and we must ensure that
propose two types of relaxations to tackle these problems. @ these consequences stay within the operational limitss@he
is bé}\SNedkofT a Lé}gfa?_glaane:ﬁXa}'OH tand the ?th?fdls based |0n observations motivate the relaxation algorithms studiethis
a network flow relaxation. Both relaxations are tested on seara ; ;
benchmarks and, although they provide a comparable dual bound, paper. We focus on relaxations tha_t decor_npose_the probtem in
it appears that the constraints in the solutions derived fran the ~©One subproblem that works exclusively W"Fh active and eact
network flow relaxation are significantly less violated. _ power flows but encompasses the multi-period and discrete

Index Terms— Multi-period optimal power flow; relaxation  aspects, and subproblems that assert that for each time step

schemes; mixed integer non-linear programming. those flows do not violate voltage and other technical limits

I. INTRODUCTION After the precise statement of the discrete multi-periothogal
Many power system applications that require solving a#Pwer fI_ow we are targeting in_Se(_:tion Il. _and a review of the
optimal power flow (OPF) problem share two features. Fistijecent literature on these topics in Section IIl., we pr@pos

these applications are multi-period because of the ewsiutitwo relaxations achieving these goals in Section IV.. Tht fir
of market prices, of the ramping limits of generation unitéelaxation is a straightforward generalization of the Leangyian
and of the behavior of static and flexible loads. Secondly théelaxation (LR) of [2] to this problem. The downside of thiR L
contain integer decision variables to model the acceptancescheme is that the power related subproblem lacks infoomati
the rejection of bids, or the start up of some generationsunifn the network topology. The second relaxation builds orta ne
As a first example, the day-ahead energy market in Europ@rk flow reformulation of the original problem by introdug
computes spot prices based on Supp]y and demand offers. Thﬁ]%-ﬂOW variables. It is then relaxed into a convex problem
application has a multi-period and discrete nature becafisedy substituting non-linear terms with their convex envelsp
the “block bids”, and because of some ramping constrainfmall semidefinite programming (SDP) relaxations are used t
Active power flows are constrained by a simple network flofanslate operational limits into bounds of voltage ank-fiow
model. Operational constraints on reactive power, voltag Variables. Section V..4 compares the two proposed appesach
current are aggregated in the arc capacities of the netw®k several test systems, whereas Section VI. concludes and
flows. More realistic (so called “flow based” [1]) networkdives directions of further research.
models are emerging, but they are still a linear approxiomati
of the set of feasible flows around a foreseen operation point
As a second example, new applications arising in distrilouti  We consider the problem of finding the optimal operation of
networks such as operational planning aim at avoiding tlaesetD of devices (i.e. loads and generators) over a certain
congestion of network elements and minimizing the curtaiin time horizon while maintaining the network and the devices
of renewable energy sources. To benefit from the flexibilfty avithin operational limits. The network is defined as a Seif
customers, it is necessary to account for the time-cougada links, that is lines, cables or transformers that definewiae
of the problem, and integer variables can be used to model ttanections between elements of the Bedf buses. Several
reservation of that flexibility. The physical charactédsbfthe devices can be connected to a single bus. The time horizon
network are different from those of transmission systents ais modeled by a se¥ of periods. We denote by C D
DC power flow approximations can hardly be used. the flexible loads. The consumption of a flexible load can be
Hence depending on the complexity of the primary goal @hodulated around a baseline profile. In particular, we use th
the application and its scale, it is often mandatory to resdtexibility model presented in [3], where the right to modela
to a relaxation of the non-convex network constraints samasa flexible load is conditioned to the payment of an availabili
devise a robust and fast algorithm. Also, a common charactére. The operational constraints associated to these lads
istic of these applications is that the main decision vaesb upward and downward modulation limits as well as an energy

Il. GENERAL PROBLEM STATEMENT
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constraint, stating that any modulation should consume the  V(¢,k) € T x F:

same amount of energy than the baseline profile. We use the () 0) ()
following notations throughoutthis paper, where the ssgept P = (1= di) By . + ALy ©)
(t) refers to period: Pét) <(1- dk)P,fl( )y d,f;“ @)
o P® ¢ RIPI the active power injections of devices (posi- V(t,i)eT xB:
tive when power flows from the device to the network); (M PW),; = Z (gij(e;tﬂ + fim? _ ei”e;.”
e QW ¢ RIPI, the reactive power injections of devices JEN ()
(same sign convention @®); — [0 F7) + (e 7 — fi(t)eé-t))) (8)
e d c {0, 1}, the availability indicators of flexible loads; (M QW) = Z (bij(e§t>e;.” +FOFO - e?
JEN (i)

cy € ]R‘f‘, the availability costs of the flexible loads;

o IO g €010 = 106) @)
PP ¢ RIZ1 the active power injections of flexible loads , ) y
when operating at their baseline; Vi<e +f77<V; (10)

P and P® ¢ RIBl the bounds on active powerThis is a mixed-integer non-convex mathematical program

injection of devices; where the non-convexity comes from constraints (8-10). In
Nox2|D| N . _addition, the electrical variables (i.e. powers and vatare

A€eR™ anda € R™+, matrix and vector modeling ¢oypled over the seff of periods because of the time-coupling

the P-Q capability of the devices (wifi. the total number -qnstraints (5-7) that model the flexible loads.

of linear constraints betweeR®) andQ®);

) _ I1l.  LITERATURE REVIEW
M € {0,1}5%P, mapping from devices to busesl( ; =

1 if device; is connected to busando otherwise); We first review the methods designed to solve "static” OPF

problems, in the sense that the problem has no temporaltaspec
e®) e RIBI the real part of the voltage at buses; We then review the literature on multi-period OPF, which is a
scale up of a static problem caused by time coupling comsgrai

f € RIFl, the imaginary part of the voltage at buses; on power variables. Finally, we review the literature on keor
where some discrete variables have been introduced in the
OPF problem to model the ability to act on power injections
g:; the conductance of link, j) € £; or withdrawals, that is, problems comparable to the problem
introduced in Section Il..

Optimal power flow problems, although non-convex, have

V andV < R!Bl, the limits on the voltage magnitudes;

b;; the susceptance of link, j) € L.

The decision variables are the subset of the active andiveacPeen for long solved using local non-linear optimizatiorthme
power injections for which the boun@,j andB;(f) are not 09ds. Interior-point me'.thods are p.robably the most Wldembr_e
equal ¢ € D), the voltage at all buses, and the discretdass of methods dedicated to this problem [4]. If the sohuti
decision variabled. The notion of optimal operation is definedthey provide has no guarantee to be globally optimal, theg ha

by a
that
fees

generic cost functiofi( P) (linear or a convex quadratic) béen made popular by their convergence speed and thetyabili
we want to minimize together wity - d, the availability {0 Solve fairly efficiently problems of large dimension.
of flexible loads. The whole problem is modeled in (1- Recently, SDP was successfully applied as a convex relax-

10) where we use the notatid, Q, e and f to denote the ation to the OPF problem [5]. The OPF is formulated over
concatenation of, respectively, the vect®is Q, e; andf, for all the degree 2 monomials of the real and imaginary parts

allteT. of the voltage variables. Dropping the rank 1 constrainhef t
corresponding matrix yields the SDP relaxation. For tec&ini
min f(P)+cs-d (1) reasons, the dual of this SDP relaxation is solved (stroagjtstu
(fé% holds). When the duality gap is zero, a primal feasible ogtim
st de {01} @) solution to the original OPF problem can be recovered froen th
’ solution of the dual SDP. The authors report no duality gap on
vteT: some standard meshed test systems and randomized versions
PO <« pt&) « Y (3) of these test systems. The zero duality gap property was thus
- P—(t) B observed experimentally on standard test systems, artaefurt
A (Q“)) <a (4) research resulted in sufficient conditions. This is the chse
example, if the objective function is convex and monotolfyca
Vke F: increasing with the active power generation, and the nétwor
Z (P,Et) _ P]gl(ﬂ) —0 (5) has a radial topology [6, 7]. Another approach aiming at glob
byt optimality relies on LR [2], which is further explained in



Section IV..1. The author also describes a spatial brandh di..1 Lagrangian relaxation
bound (B&B) algorithm to close the gap, should it exist one.
The ability of both SDP and LR to decrease the optimality gap

within a B&B framework was evaluated in [8]. If SDP appeared /S Previously discussed, the author of [2] proposes a La-
to be computationally more attractive, it showed that itldou9rangian Relaxation (LR) scheme in which the constrains (8

be very challenging to reach a significant gap reductionimith(10) are dualized. He proves that this leads to two independe
reasonable time limits, even for small test systems. subproblems: a problem involving the active and reactiveqso
Multi-period applications related to energy storage avesa injections, and a quadratic pr_oblem involving the voltage-v _
tigated in [9], where the SDP relaxation of [5] is succesgful 2P1€s. If we apply the same idea to the problem presented in
applied, as their particular application met the conditiéor S€ction Il., we obtain the Lagrangidnas
having no duality gap. The authors of [10] argue that extend-
ing [8] to a multi-period setting yields a SDP too large for L(P,Q.d.e, f, A7, 0. )
current solvers to be solved efficiently and suggest to relax = f(P)+cs-d

the time-coupling constraints using LR. However, it endpd u ® (t) 2 12
being computationally too heavy to make the B&B approach Z A (MP); — Z gig(ei”" + i
worthwhile. (EDEN T JEN()

Many papers consider the unit commitment problem over — _ o, _ FOFO) 4 b (e FO fgt)em)))
an AC network, which is an instance of a multi-period OPF v R e v
with discrete variables. For instance in [11], a generdlize 0 ) ® 0
Benders decomposition divides the problem in a linear maste Z v (M@ — Z (b” (e"¢;

(ti)ENXT JEN(3)

problem with discrete variables and non-linear multi-péri
2 2

supproblems. Benders cut are generated from the subpreblem fi(t)fj(_t) O gij(e;ﬂf;w _ fi“)e;-”)))

to tighten the MIP master problem.

(t) (1,2 ()2 (12
IV. RELAXATIONS DESCRIPTION + Z ;" (V7 —e" = f;77)

We are looking for a computationally affordable relaxation (tDENXT

of the problem stated in Section II. that would offer both  + Z BY (e;”? + o2 —V?)

a narrow optimality gap and a solution close to be feasible. () ENXT

The main complexity sources of problem (1)-(10) are the dis-

crete decision variables (2) and the non-convexity of (&)(

Furthermore the problem is large scale because of the timghere), v € RI7IV! anda, 3 € R'IHN' are the Lagrange
coupling constraints (5)-(7). If the set of constraints-(8)) multipliers for the relaxed constraints.

could be addressed independently, finding an optimal swluti

of (1)-(10) would result in solving less complex subprobdem Any value of the dual functiop defined as

This decomposition is particularly attractive because: gy, B) = Ilglin L(P.Q.d.e, f, A\, 3) (11)
e the large time-coupled problem is now a mixed-integer d.e.f
quadratic program (MIQP) or a mixed-integer linear pro- st (2)-(7) (12)
gram (MILP) which are much easier to solve than a
MINLP of comparable size; provides a lower bound on the optimal value of the originae T

agrangian dual bound is obtained by maximizingvhich is
own to be a concave function. Still following the approach
of [2], the relaxation is tightened by introducing, € T, the
constraints

e every constraint of (8)-(10) only involves period-specifi
variables and this non-convex program (NLP) can thus
splitin |7| smaller independent problems.

However, these two sets of constraints share the powetiojec

variables appearing in (5)-(7) and in the left-hand sides of Y vi< Z(e§“2 +f9% < ZV? (13)
(8)-(9). Thus some coordination between those subprobiems ieN ieN ieN

required to obtain a solution to (1)-(10).

Such a decomposition has already been proposed in (E%
for single-period continuous OPFs, where the coordinati
between the power and voltage subproblems was performedfore specifically we can rewrite the problem as
using LR. The extension of this work to the considered prob-

hey are redundant in the original problem, they are not in
)-(12) because (10) has been relaxed.

lem statement is presented in Section IV..1. In addition, we Iglaﬁ/xg(%"/,a,ﬁ) (14)
int.roduce in Sect.ion !V..2 a noyel flow-based relaxati_on_for B _ maX{L}g()\’.y) + Ly (A v, o, B)

this class of multi-period mixed-integer OPFs. The mairaide éz ®)er2 ()52

behind this relaxation is that the power flow equations 6g)-( Tt Z (o V5 — B Vi)}

can be formulated as a network flow with losses. (#HENXT



where the power subproblefiyx (A, ) is defined as . Ql(.;) is the reactive power injected in lin, j) € £ at bus

i, positive when power is withdrawn from bus
Lp(Ay) =win  [(P)+e¢;-d

, loss(t) H H in lid <
3 N Z Agt)(MP(t))i o P is the active power losses in lifk, j) € L.
(t)ENXT Using these variables, the conservation of the power flows
+ Z 71.(“ (MQ(“)i through links, taking the losses into account, can be writs
(t,))ENXT Y(i,5) € L:
s.t. 2)-(7)
PY 4 PO = ploss® (15)
and requires solving a MIQP (or MILP). The voltage subprob- i loss (D) losa(®)
lem Ly (X, v, a, 3) is on the other hand defined as Q + Q g_; P ( = Wij ) (16)
Ly(N\ v, a, B) and the flow conservation at bug B as:

=Tt DA X (ue s a0 MPO) = Y P )

iEN ) je/\/(i)2 JeNG)
+ gii e’ 1 f.(') — ei”e(‘t) — fi(t)f(.“ )
J( 7 J ) M Q t) Z Q(t) (18)

Z 7(t) Z ( (ei”e;t) + fl-(”f;-” JEN(3)

ieN JEN(3) . .
_ e<t>2 _ f_mz) +gij(e<_t)f(_t> _ f_me;_t))) A connection between these flow variables and the voltage

variablese and f is achieved through the following equations:

+ Z <t>2 f(t)Q) , ,
= P(t) = gi; (% + f© egwe;t) _ fi(t)fj(-t))
st (13) Fhig(e? F10 — F06L) (19

®) _p (o0 (t) () p(t) _ <t)2_ ()2
Qij =bij(e;"e;” + [;" f; = 1500)

and consists in solving7 | independent problems that, even

() p(¢) (t) (t)
though they are non-convex, can be reformulated as trgstire +g”( i fTe ) (20)
subproblems and solved efficiently in polynomial time. ploss(t) = gij(eM® + <'>2 f<f>2 f;.f)Q
The convex problem (14) belongs to the class of non-smooth EDWOR (_t) _ f_(t>f<_t)) ' (21)

(i.e. non-differentiable) optimization. If subgradietgarithms
[12] are frequently use to solve these problems, they hayich are used together with (15)-(18) to obtain a reforrioia
shown serious convergence issues for our particular a@lit of the original problem:

in the presence of a nonzero duality gap [8]. For this reasen,

suggest to use a bundle method algorithm [13] to solve (14). min f(P)+cs-d (22)
P.Q
d,e,f

IV..2 Network flow relaxation (2)-(7)

In the LR scheme presented in Section 1V..1, no information V(t,i) €T x B:

on the topology of the network is used in the power subproblem (10), (17)-(18)

Lp. Here we present a relaxation that uses the topological e

information by coupling the original problem with a network V(t,(i,5)) €T x L

flow. As the network flow formulation is a linear relaxation of (15)-(16), (19)-(21)

the power flow equations, it does not account for their non-
convexities. In particular it can be observed that in a linedhis problem is a mixed-integer quadratically constrained
network flow, the total amount of power produced is equaléo tifluadratic program (MIQCP), which is non-convex just as the
total amount of power consumed, which is rarely the caseiin o¥figinal problem. Itis important to note that there are medant
application. It is therefore important to tighten the fofation ~constraints in this formulation. For example, removing)¢15
by adding some new constraints that accounts for theseslosse(16) and (21) would produce an equivalent mathematical pro-
the lines. In particular, we rely on a reformulation-lineation ~9gram. However, it does not mean that the relaxed counterpart
technique (RLT) approach [14] that yields a convex enveloé these constraints will also be redundant. It has indeeth be
of the quadratic constraints coming from the power flow. As own in [15] that such redundancy helps generating tighter
prerequisite for the network flow formulation, we first indtece  relaxations.
some notations: Such a problem can be relaxed by replacing bilinear (i.e
z;z;) and quadratic (i.exz?) terms by their McCormick en-
. Pi(;) is the active power injected in link, j) € £ atbusi, velopes, which can be generated by following the procedure
positive when power is withdrawn from bus described in Table 1. However, before doing so, it is impor-



V. QUANTITATIVE ANALYSIS
Letx; € [l;,us] andzx; € [I;,uy] o
V..1 OPF applications
then TiT; —> Wij
with Wij > Wiy + Ui — i _ In order to benchmark the .relz?lxations presented in Sec-
tion IV., we focus on two applications of the OPF. The first
one is the common minimization of generation costs, where we

define the cost functiofi( P) as

R CLARTRAREY
Table 1: Procedure to replace a bilinear term by its convex t€T g€g
envelope.

Wij > limj —+ leCZ‘ — lilj
Wij < UiTj + leCZ‘ — uilj

wij < limj +ujxr; — liuj

with G the set of generators. In particular, we consider that
the generation costs can vary over time. This is modeled by
using time-varying parametefs’, b, ci’ }. In this context,
flexible load can be worthwhile to shift the demand when
generation costs are low.

tant to observe that such a relaxation converges towards th&@he second application is a curtailment minimization and is
original problem as the variable domain is getting smallean extension of the deterministic version of [3]. In thiseahe

i.e. max (z;x; — w;;) converges to zero a&E; — z;) and cost functionf (P) is defined as

(T; —z;) tends to zero too. In other words, the closer the .

bounds are, the tighter is the relaxation. Unfortunatéig t  foun(P) = Z {ccurtz (P, — P{) —i—qossesz P;”]
bounds ofe and f are initially quite loosee.” and £ belong teT 9€G deD

o [-v/Vi, +V Vil ¥(i,t) € T x B. In order to tighten where the first term represents the curtailment costs and the

the relaxed problem, it would be interesting to refine these
) . . Second term expresses the cost of network losses. Such a cost
bounds given the sé&t of feasible solutions of (1)-(10). Becaus

. . - Sunction is representative of the objective of a distribnti
computing such bounds in the original problem would result i e

. : - system operator that operates a network with distributed ge
the same time-complexity as the original problem, we relgaon

; " . : erators. Flexible loads can be profitable if their consuompti
Subset of perl_od-spegflc constraints of (2)'(:.1'0) to appnae és shifted when production from distributed generatorsghh
S. For each time period € 7, some constraints are remove

from the original problem to obtain an approximated Set €.9. to avoid qongestlons or over \_/oltgges without relyting
s L - much on curtailment. For both applications, the terind must
such thatS; c S; with S; the projection of the original set L - oL
. ) ; o . be added to the cost function in order to account for avditgbi
of feasible solutions to the set of peridepecific variables. In

. fees.
other words, the resulting boundsend f deduced from sets
S are guaranteed not to remove any feasible solution from t{}ez

L : z : Implementation details
original problem. In particular, the sét is defined as: :

The test program is written in C++ and uses several solver li-
{(PY,.QW e £ (3)-(4),(8)-(10) are not violatel  braries. For LR, a continuous relaxation of the originakpem
is first solved using IPOPT [17] to initialize Lagrange multi
and finding the upper and lower bounds of a voltage variablepliers and solving the non-smooth problem is done with Con-
(ie.ef” or f{",¥(i,t) € B x T) is equivalent to solving the ijcBundle [18]. The subproblethp is solved with MOSEK [19]

following problem: while Ly, after being casted into a minimal eigenvalue prob-
B ] lem, is addressed using Eigen [20]. For the network flow
v/u= ma(x)/ n(“in v (23)  relaxation (NFR), all SDP relaxations as well as the finalesn
P t 7Q t

relaxation are solved with MOSEK.

The primal solutions, computed to evaluate the optimality
gap of the relaxed solutions, were obtained using SCIP [21]
ﬁonfigured with IPOPT as NLP solver.

e(t),f(t)
st.  (PW,QW " rMyes, (24)

Even if this problem is much smaller than the original one,
is still non-convex. For this reason, the boundsecand f are V.3 Instances
finally computed by solving an SDP relaxation [16] of (23)- "
(24). These are the bounds used to build the RLT relaxation ofAn instance is defined by a cost function, a network and a
(22). number of periods. Table 2 presents the different netwasks u
in the test case (if the original test contains shunt adnita,
The last tightening step that we perform is to bound th@ey are ignored).

variablesPi(;), Pj(f), QE;), Qg) and P};’Ss(t) by solving the  The cost functionfgen is tested on (A)-(C) angicur on (A)-
SDP relaxation of (23)-(24) with as objective function thei(D). For the curtailment application on networks (A)-(Q)gmf

expression in equations (19)-(21). the generator (the slack bus) is modified to model a conrmectio



Bl | |G] | |F| | Source LR NFR

(A) 6 3 3 [22] Case || gap (%) | time (s) || gap (%) | time (s)

® | 9 3 3 [23] (A)gen 237 | 2037 4.27 11.1

©| 14| 5 4 [24] (B)gen 0.00 1.2 2.24 12.7

D) | 6 | 2 2 [3] (C)gen 0.11| 1430 5.16 84.2

(A)curt 79.69 45.0 || 225.72 16.0

(B)curt 9.07 20.1 12.53 235

Table 2: Networks used for the benchmark. (Ceurt || 64864\ 140.1) 593.58| 1633
(D)eurt 60.90 40.9 60.99 11.3

(a) Numerical results fof7| = 4.
with another network. The power injection at the correspiogd

bus can, within some limits, be either positive or negative. = (°/)LRt' = (°/I;“:Rt' .
The test instances are finally generated by considering thes 0 A;" °° gap2 5°1 ggssz gap4 5‘6 'm§857

. . . . en . - . .
7 (network, cost function) pairs over 4 and 8 periods to abtai (B)gen 0.00 4.1 220 40.7
a total of 14 instances. (C)gen 0.24| 7805 507 | 254.7
) (A)curt 124.86 83.9 || 255.16 82.7
V..4 Numerical results (B)curt 11.90 60.9 13.22| 111.0
. . . (Cheurt 879.68 | 414.8| 649.43| 12079
Numerical results on the 14 instances are presented in (D)o 6510 | 1125 60.09 64.1

Table 3-(a) and Table 3-(b). The relative optimality gapdme

puted as follow: (b) Numerical results fof7| = 8.

. _ [T1=4 [T1=8

gap= ub* — b Case || LR NFR [R NFR

b (A)gen 6.02 0.02 8.72 0.05
. . . . (B)gen || 70.87 | 99.33| 141.50| 196.21
wherelb is the optimal solution of the relaxed problem (i.e. a (Clgen 124 172 186 | 358
lower bound) which can vary for every relaxation used abd (Aeurt || 86.75 6.78 || 163.28| 13.46
is the best primal solution known, and is a fixed number. For (B)eurt || 179.86 | 152.51 | 142.72 | 162.40
: ; ; : (C)eurt || 456.88 6.91 57.57 | 16.35

each instance, the reported time is the duration of the progr O || 854.16 010 | 156437 To01s

before termination, running on a 2.6 GHz processor andéidnit
to a single core. We observe that both relaxations haveaimil
performance for the optimality gap, in the sense that it is
almost always within the same order of magnitude. Concgrnin Table 3: Results for the 14 instances.
the running time performance, there is not an approach that

outperforms the other as both relaxations show very diverse

results. . . . reformulation. While the lower bounds it produces are com-
We are also interested in evaluating another feature Oéthepsarable with the Lagrangian relaxation, the infeasibitithe
relaxations: the level of infeasibility of their solutioms the ... o4 solutions is reduced. This feature suggests that it

original proplem. Th_is feature. can indeed affect the efficie worthwhile to evaluate NFR beside the current state-ofatie
of a relaxation within a spatial B&B framework [25] Whenrelaxations (i.e. [2] and [5]) within a B&B framework.

seeking for a globally optimal solution of Problem (1)-(10) . . . .
Relaxed solutions that are closer to feasibility can spgetthe On the other hand, .th's reIa>.<at|on shogld still be improved
g8 two aspects. The first one is the quality of lower bounds,

discovery of feasible solutions and at the same time provi X . - .

upper bounds to the objective function earlier in the spaggpemally for curtailment appllcatl(_)ns. We believe thapa-

exploration procedure. Obtaining upper bounds is critfoal C'al_ care shou!d b_e taken concerning the upper bounds of_the

these approaches as it helps pruning nodes and reducesafﬁg/e losses in links. We obser.ved that thg SDP r.elaxatlop

computational budget required before termination. Tak(e)3 used _to comque these bounds is not very |n-format|ve and it
Ooenallzes the tightness of the overall relaxation. The rs&co

presents the sum of squared infeasibilities for the set of ¢ . . . . X
straints (8)-(10) (i.e. those relaxed in LR and NFR). We olse aspect to improve is on the computational side. For this pur-
pose, we would like to consider subnetworks instead of the

that NFR shows less infeasibility than LR on 9 out of 1Whole network to infer the bounds on the voltage and link-

instances. For some cases, NFR produces solutions thargre . ) X
close to be feasible (.g. (fthand (D)ur) while LR does not ¥Iow vanables_. If it would reduqe the size of SDP problems and
t peed up their convergence, it could also reduce the value of

exhibit similar performances even when it is able to close R

gap (e.g. (Ben. In addition, some of the solutions of LR arethe resulting bounds. For this reason, an iterative apprtreat

affected with a very high level of infeasibility (e.g. (G} and would increase the ;ize of specific_ subproblems to narrow the
(D)curt), which is orders of magnitude worse than NFR. most useful bounds is not to put aside.
Following the observations of this work, we think that an-
VI. CONCLUSION other interesting research direction would be to merge the
In this paper, we present a novel relaxation for multi-pgrictwo relaxations considered in this paper. Tightening thegyo
OPF with discrete variables that is based on a network-flaubproblem of a Lagrangian relaxation with a network-flow

(c) Sum of squared infeasibilities of relaxed solutions for
constraints (8)-(10).



relaxation could both improve the convergence of the noftl]
smooth problem of LR thanks to a tighter subproblem and
reduce the infeasibility of produced solutions.
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