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Abstract—This paper proposes a novel algorithm to optimally
size and place storage in low voltage (LV) networks based on
a linearized multiperiod optimal power flow method which we
call forward backward sweep optimal power flow (FBS-OPF).
We show that this method has good convergence properties,
its solution deviates slightly from the optimum and makes the
storage sizing and placement problem tractable for longer invest-
ment horizons. We demonstrate the usefulness of our method by
assessing the economic viability of distributed and centralized
storage in LV grids with a high photovoltaic penetration (PV).
As a main result, we quantify that for the CIGRE LV test grid
distributed storage configurations are preferable, since they allow
for less PV curtailment due to grid constraints.

Keywords—multiperiod optimal power flow, linear power flow
approximation, optimal battery sizing and placement

I. INTRODUCTION

The need of energy storage in power systems has emerged
due to the fact that excess energy from intermittent renewable
sources (RES) has increased. In the next years, it can be
expected that many battery systems will be installed in the
Low Voltage (LV) distribution grid to balance the high in-feed
of photovoltaics (PV) with the electricity demand. The main
advantage of distributed configurations (storage locations at
each single household) as compared with centralized storage
configurations (storage location at substation) is that it is
possible to reduce overvoltages, line overloadings and network
losses in the LV network by absorbing locally PV power at
times of high PV infeed, such that grid expansion or PV
curtailment can be mitigated. It can be foreseen that those
configurations can achieve higher PV hosting capacities than
centralized ones for the same aggregated storage size. In
contrast, centralized storage configurations reduce LV network
losses when they are used to absorb energy from higher voltage
levels and have lower investment costs.

In this paper we assess which storage configuration is
economically preferable if a group of residential customers
wants to invest in storage assets and to maximize its self-
consumption from their PV assets. For this purpose, we need
to solve an optimal storage sizing and placement problem that
considers grid and storage constraints. Some recent papers
propose methods that do either not consider grid constraints
[L]], [2] or can only be applied on the transmission level [3],
[4]]. By introducing the grid constraints the problem gets hard

to solve, since the incorporated non-linear AC power flow
equations make the sizing and placement problem intractable
for long investment horizons. To make the problem tractable
one can include convex approximations of the AC power
flow equations. This is done in [5], [6], where the AC
Optimal Power Flow (AC-OPF) can be approximated to a
Second Order Cone Programming (SOCP) problem, which
is solvable in polynomial time, but still hard to solve. The
authors of [7]] relax the AC-OPF to a convex Semi Definite
Programming (SDP) problem and ensure optimality under
certain assumptions. However, this is even harder to solve than
an SOCP problem. A linear approximation of the AC power
flow equations was reported in [8], but this approximation
does not exploit the structure of a radial system that is mainly
present in LV networks.

The contribution of this paper is two-fold. First, we in-
troduce a method to solve a distributed storage sizing and
placement problem that incorporates a linearized version of
the AC power flow equations. In fact, we recast the non-
linear AC-OPF into a Linear Programming (LP) problem by
exploiting the radial structure of an LV network. To enhance
optimality, our new Optimal Power Flow (OPF) method itera-
tively solves the LP problem by updating the voltages with a
combined forward backward sweep load flow [9]. Therefore,
we call our new OPF method Forward Backward Sweep
Optimal Power Flow (FBS-OPF). With the FBS-OPF we solve
a tractable multiperiod optimal power flow problem including
additional sizing and placement constraints.

Secondly, with our novel developed method we assess which
storage configuration (centralized or distributed) is more viable
under the assumption that a group of costumers has energy
market access and PV units in an LV network. As a result, we
will determine storage price levels that indicate at which point
storage integration is profitable depending on the centralized
and distributed scenario.

The paper includes following parts. Section [lI] presents the
FBS-OPF formulation including the linear power flow approx-
imations and a comparison between the AC-OPF. Section
copes with the optimal storage sizing and placement problem.
Section shows a case study that compares centralized and
distributed storage configurations in terms of viability and
storage cost. Section [V] concludes and provides an outlook
for future research.



II. FORWARD BACKWARD SWEEP OPTIMAL POWER FLOW
(FBS-OPF)

This Section deals with the recast of the non-linear AC-OPF
problem into an LP problem. Based on the Forward Back-
ward Sweep (FBS) power flow method from [9] we linearly
approximate voltage, power losses and branch flow limits as
a function of the nodal reactive and active power for a radial
network. These approximations are then incorporated into our
linear FBS-OPF problem.

In general, we can calculate the per unit complex nodal

current injection vector ¢ € R"*! by
i = diag{1/vy,...,1/v,}"[p+jq]" (1

de

where p € R™*! and q € R™*! are the balanced three-phase
real and reactive per unit power injections at each bus n.
The variables v, ..., v,, are the complex nodal line to neutral
voltages in per unit. According to [9] we can define a matrix
M € R™ that maps the nodal current injection vector & to
the branch current vector 3, € R with

b, =Mt 2

where [ denotes the number of branches in a radial network.
The matrix M € RIX™ is also called bus-injection to branch-
current (BIBC) matrix. Here, we also define a reduced version
of M indicated with M € R*™=1 in which the column of
the involved slack bus is deleted.

A. Voltage Approximation

By applying Ohm’s law the voltage drops across the lines
can be exactly expressed by

Av = MT[Rq+jXq)MVilp+jq* . )

where Rq = diag{rq1, ...,7a;} € R"*is the branch resistance
matrix in per unit and X4 = diag{zq1, ..., vq;} € R*! is the
reactance matrix in per unit. However, (EI) is complex, such
that we have to find a linear and real approximation in reactive
and active power for our linear optimization problem. If we
assume that the nodal voltage angles are small (< 10°) and
the R/X ratio is high (> 2), which is usually the case for LV
networks, we can approximate (3) to absolute voltage drops
with respect to the slack bus voltage v, € R*! by

v — v, ~ [MTRde|zdf| MTXde\zdf@ [ g } .

B,
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B. Loss Approximation
We can approximate the losses by

p = Riiyoi . ©
~ Ra(M;:|V 4|p)* + Ra(M:|V lq)*.  (6)
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Note that we also assume here that the voltage angles are small
to neglect the contribution of the voltage’s imaginary part.
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Figure 1. Example of the piecewise linear loss approximation for a two-bus

system with one line. The blue surface approximates the exact losses (red
surface) by defining four planes.

To find linear expressions in p and g, we approximate their
quadratic functions into piecewise linear functions. For this
purpose, we divide the quadratic functions into four regions
that are defined by the branch currents i® and ¢! and the branch
resistances. We thus obtain following convex formulation for
the power losses that are induced by the active bus power
injections

p} = max{Lop, —Lop, Lip+b,—Lip+b} , (7)
where

Ly = diag{i,...,i{)YRaM;|V 4| ®)

Ly = diag{i®+i},...,3) + i }JR4M:|V 4| , (9)

b = —[rai%il, ..., rqidi]” (10)

Equations (8)-(I0) define hyperplanes for the power losses.
As an example, we show the loss approximation for a two bus
system with one line in Fig. [I] The red surface is the exact
solution of (6). By defining four planes with supporting points
+i% and £(i% + i!) the blue surface represents the piecewise
linear approximation (7). In the same straightforward way, we
can express the losses caused by the reactive bus power by

p!! = max {Loq,—Loq,L1q+b,—Liq + b} (11)
C. Branch Flow Approximation
The branch flow currents are exactly given by
iy, = MVip+jal* (12)

If we assume that the reactive power injections are much
smaller than the active power injections, which holds for nor-
mal grid operation in LV grids, we can neglect the contribution

on the reactive power by approximating (I12) into
i, ~ M| V| p (13)
———

B.



D. FBS-OPF Formulation

With the approximations from the previous Sections the
AC-OPF problem can be recasted into a computationally less
complex problem. We define following optimization vector
x = [pgenaqgen,pf),p?,v]T. If we consider positive linear
prices ¢, for the active generator powers the OPF problem
can be approximated to the following LP problem:

J(jw))* = min el pe,

st. (@) 17Cyp,., —17p} —17pl! =17p,
b B,| SPen | - B, [ as } - v,
C%Qgen dq

© pl — LoCygPyen, > —Lopy

(d)  p + LoCgPyey, > Lopg

(e) pf) - Llcgpgen > _Llpd +b
()  pl+ LiCypye, > +Lipg +b
(& p = LoCyqye, > —Logqy

(h) P? + LOnggen Z Lqu

(i) p! —LiCyqye, > —L1gq+b
G P +L1Cgqye, > +L1gq +b
(k) _iglax + B.py < Brcgpgen < ibmax + B.py
(1) Umin S v S VUmax

(III) Piin S pgcn S DPrax

(Il) Qmin S qgen S 9max >
(14)

where py € R"*! and g4 € R™*! are the active and reactive
load consumption for n buses. Further, the active and reactive
ng generator bus injections p,,, € R"=*! and g, € R"=*!
are mapped to the buses with the Matrix C, € R"*"s.
Equation (I4h) specifies the power balance in the grid. The
voltage approximation () is included in (I4p). The constraints
(T4k-j) incorporate epigraph formulations of (7) and that
approximate the power losses. Since and are convex,
we convert the max operator into equivalent inequalities. Note
to get an optimal solution the solver can only select values
for p{’ and p{' that lie on the defined hyperplanes. Constraint
(T4k) include branch flow limits, and the constraints (T4]-n)
specify the lower and upper bounds for the voltage, active and
reactive generator powers. In this formulation, we consider
boxed-bounded active and reactive power settings. However,
we could also include a piecewise-linear approximation to
allow for a specific power factor range as reported in [10].

E. Forward Backward Sweep (FBS) Algorithm

The matrices By,B;, Ly, and L; depend on the nodal
voltage magnitudes |v|. By setting the initial voltages to
1 we overestimate the voltage drops and branch flows to
some extent, which leads to the fact that the optimal solution
deviates slightly. However, we can reduce this error if we
iteratively solve the optimization problem with the FBS power
flow algorithm, described as Algorithm [I] below. In step [I]
we initialize the start voltages with the slack bus voltages.
In addition, we calculate the hyperplane parameters for two
operating currents. The maximum current on the branches
we expect is i +i' = M:C,p,,.«- The second region we
define is at 25% of this maximum current. After solving the
problem (step [3) in stage h, we calculate in the forward stage

the currents (step ). Then, the voltages are updated in the
backward stage at step [5] These steps are iteratively repeated
until the mean absolute error is below a predefined threshold e
(step [7). Since forward/backward sweep methods have a high
convergence rate, typically A is small (h < 4) [9].

Algorithm 1 FBS-OPF algorithm.

1 QO = v, h = 071:0 = 0.25Mfcgpmax7
’l:l = 0~75Mfcgpmax
2: do

x = min J(|v"|)

’ . *—1 .
4 i =diag{v"}" [(CgPyen —Pa) — 1(Celgen — q0)]
5: Qh—H Z’Us-‘rMT[Rd—l—de]Mfih

6: h=h+1
7: while mean(jv"~! — v"|) > €

F. Multiperiod FBS-OPF

With the introduction of storage the FBS-OPF problem (T4)
is coupled in time, since the energy can be transferred from one
time step to another. As a consequence we need to extend the
single step OPF problem into a multiperiod OPF problem. To
do so, let X = [xy,---,zxn]7 the new optimization vector,
then we can specify following multiperiod problem over a
given horizon N:

N

: T
w75 (Bt
st. Ve 1= — 1\ ),

where T is the sample time of a time-variable price profile
¢y (k). Depending on the energy product 7' can range from
minutes (intraday trading) to hours (spotmarket, base prod-
ucts).

15)

G. Comparison between AC-OPF and FBS-OPF

We aim to compare our FBS-OPF method with a standard
AC-OPF in terms of convergence and optimality. In addition,
we also compare the execution times between the aforemen-
tioned methods in our case study (s. Section [[V).

1) Testsystem: For our comparison, we use the European
CIGRE LV benchmark grid [11]] which is depicted on Fig. [
We solve problem (T4) with the parameters that are listed in
Table [Il For this configuration, the solver tries to maximize
the PV infeed while satisfying voltage and line constraints.

2) Convergence: At first we investigate the convergence
rate of our proposed FBS-OPF algorithm. Figure (3| shows
the voltage mean absolute error (MAE) as a function of
the iteration number h. To compute the MAE, we take the
difference between the voltages (v) from the optimization (I4)
and the correct voltage values that were found by running
a power flow with the generator setpoints pge,, @gen from
the optimization . As a result, the voltages from the
optimization are higher than the correct ones. This means that
we obtain voltage projections that always lie within the voltage
limits. For one iteration (h = 1) the voltage error already



Table 1
PARAMETERS FOR OPF COMPARISON.

Load Pd1; .-, Pd18 SkW
qd1; -+ 4d18 1kVar
PV Generators p‘gnezr‘]xl, ...,pg‘e‘z"ls 30kW
Pgents > Pgen1g  OkW
q'gg;’i sy qéne;’j 3 10k Var
q‘gnell?l S eees quelr?ls -10kVar
Cpl, .-, Cpl8 20€/kWh
Feeder p‘gfr‘]’(‘) 1MW
Dy IMW
q'gf;’(‘) 1MVar
glelrlfo -1MVar
Cpo 30€/kWh
Line Parameters  from [11]
£R14 R15£
ﬁ R13 g X
o
/g; R12 /g R17
ds | Baat
| | =GR R rRe = G R10
R0 R]1 R2 I :%; R5 I R7 R8 R9 I
¢l§7 /1? Ry - . R16 /L§ e /L? R18
3 £ 3

Figure 2. CIGRE test grid from [11] configured with a high PV infeed

penetration.
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Figure 3. Voltage convergence rate of the Forward Backward Sweep Optimal
Power Flow (FBS-OPF) as a function of the iteration A.

constitutes 2.5e-3 p.u., which is small related to possible
network parameter inaccuracies. Due to these findings we
think that one iteration is reasonable for sizing and placement
of storage.

3) Optimality: Due to its non-linear constraints the
AC-OPF problem is known to be non-convex. The non-
linear AC-OPF problem can be solved with an Interior Point
(IP) method [12]. However, this solving technique does not
guarantee an optimal solution, which means that it is difficult
to assess optimality with regard to an IP method. But it
is still worthwhile to compare the objective values of the
AC-OPF with the FBS-OPF, since this gives us a better insight
on the performance of the FBS-OPF. Figure [ shows the
objective value error of the FBS-OPF related to the AC-OPF.
We can observe that at the first iteration the FBS-OPF value
is 2% above the AC-OPF value, while for higher iteration

0.03
0.02F
0.01+

—0.01}
—0.02+

—0.03 ‘
1 2 3

iteration A

objective value error A.J
s}

Figure 4.  Forward Backward Sweep Optimal Power Flow (FBS-OPF)
objective value error related to the AC Optimal Power Flow (AC-OPF)
objective value.

numbers the FBS-OPF value is smaller. The smaller value can
be explained by that the branch flow limit at the feeder is
slightly violated due to the approximation (13) meaning more
apparent power is exported by the feeder than allowed. Still we
observe, by using the one iteration approximation, the problem
is feasible in the constraints, but slightly diverges to the exact
solution. Again, we think that this is reasonable for sizing and
placement strategies, since such strategies imply long planning
horizons that are also subject to uncertainties.

III. INTERTEMPORAL COUPLED MULTI-PERIOD OPF

In this Section we focus on how we incorporate battery
storage to the presented multiperiod FBS-OPF problem (T3).
This enables us to formulate a storage sizing and placement
problem.

A. Incorporation of Storage

Storage introduces an intertemporal coupling to the mul-
tiperiod problem, since the available storage energy can be
delivered within certain time intervals. We can express the
time-varying energy level e of ng storages with following

gen

discrete state space equation
6(]{? + 1) = Ie(k) + B |: s,ch :| )
pgen

~——

S
Pgen

s,dis
p (16)

where p@ﬁ%p@@? € Pgen represent the discharging and

charging powers of the storages. The input matrix B is

B = T[_diag{n;ii,v M) nc?l;,ng} - diag{nch,h +++3 Tlch,ng }] ’

a7
where 7cn i, Nais,; are the charging and discharging efficiencies.
To incorporate the complete energy level evolution E =

[e(1),...,e(N)]T we can write
I B 0 Pgen(0)
E=|:le+| ' - : , (18)
I B - B Pgen(N)
——

S Sy U



where e is the initial energy level vector. Consequently, we
can define with (18] two following inequalities for the multi-
period optimization problem

€min — Ser < SuU < €max — Ser ) (19)
to operate the storages between the allowed storage level limits
€min and emax.

B. Optimal Sizing and Placement of Storage

Given the results from the previous Section we can now
define the storage sizing and placement problem. To do so, we
make the maximum storage limit e, variable and transform
it to the decision variable z. If we set ey, to 0, we can
rewrite into following inequalities

S.U — 1V @ diag{1™*'}] 2 < —S,eo , (20)
-S, U <S.ep (21)

We can now include this result into the problem (15), such
that we get

N
* . T T
J* = min T Z c, (k)Pgen(k) | + c5 2

k=
st Va (14h) — ()
0, 1) ;

(22)

where ¢! is the storage cost vector.

IV. CASE STUDY

To illustrate potential applications of our optimal sizing and
placement approach we perform a number of simulations to
compare the scenarios of centralized and distributed storage
in distribution grids. We assume that a group of (pro-)sumers
has access to the energy market (selling to the grid and
buying from the grid) and tries to minimize its energy bill
by dispatching their own PV and storage assets. As a main
result, we optimally size and place the storage assets for both
configurations in dependence of future storage costs and PV
share by using yearly spot market prices [13].

A. Definition

For our simulations we use the CIGRE testgrid [L1]] with
18 households shown in Fig. [2| with a PV share of 100% for a
time period of 31 days. We consider a centralized storage at the
RO bus for the centralized case and storages at the buses R1-
R18 for the distributed case. To study the economic viability
of battery storage in distribution grids, we compare the two
scenarios of a centralized storage that is placed at the feeder
bus and a decentralized storage configuration with a storage
at every single node. The parameters of the two scenarios are
shown in Table

Table 11
SIMULATION PARAMETERS FOR STORAGE COST ANALYSIS.

Centralized  Distributed
Storage Node 0 1-18
Storage Apparent Power 180 kVA 10 kVA
Storage Power Factor 0-1 box bounded
PV Share 100 % (= 18)
PV Power 30 kW
Storage Cost 25- 300 €/kWh
Battery Calendar Life 10 years
Storage Charging Efficiency 88%
Storage Discharging Efficiency 88%
Simulation Horizon 31d
Time-steps/Resolution 744@1h

Busses 19
Energy Price Profile EEX Spotmarket [13]

PV Energy produced 147.13 MWh
Consumed Energy 4.84 MWh
Households 18

105 + FBS-OPF (CPLEX)
Fit FBS-OPF (CPLEX)

S + FBS-OPF (GUROBI)
Q 104 Fit FBS-OPF (GUROBI) i
~ AC-OPF (IPOPT)
Q Fit AC-OPF (IPOPT)
E103t ]
=]
2
E 1
=
o
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o
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Figure 5. Recorded computation time as a function of the simulation horizon
and the corresponding lin-log regression fits.

B. Implementation

To perform the simulations a MATLAB simulation frame-
work based on MATPOWER |[[12] was created. The non-linear
AC-OPF problems were solved using the solver Pardiso [14]]
bundled with IPOPT [15] and for the FBS-OPF problem we
use the CPLEX [16] and GUROBI [17] solver. For gener-
ating the consumer load profiles, the load profile generator
developed in [18] was used. For the FBS-OPF algorithm a
MATPOWER extension was developed.

C. Computation Time

With the introduction of storage we gain the possibility to
take energy from a certain point in time and release it in
another time-step which introduces a coupling between the
different time-steps. Unfortunately due to the coupling the
problem we have to solve also increases in complexity by
N - n buses.

The computation time depends on the simulation horizon
N, which is shown in Fig. E] for the FBS-OPF and the non-
linear AC-OPF. We observed that the FBS-OPF and AC-OPF
grow approximately polynomially with the computation time.
However, the AC-OPF problem grows with a higher exponent.
Due to this property, the introduced FBS-OPF algorithm
enables us to perform studies with significantly larger time



horizons. While for the conventional AC-OPF approach, the
simulation time is limited by the size of the problem to a
couple of days, the FBS-OPF allows us to perform simulations
for an entire year.

With the FBS-OPF, the non-linear AC-OPF problem has
been simplified to an LP problem that can be solved using
industry grade LP-solvers such as CPLEX [16] and GUROBI
[L7]. Standard solving methods for LP problems are the dual
simplex method and the IP method. While the IP method
assures polynomial runtime, the simplex algorithm can have
exponential runtime for degenerated problems. For similar
problems such as the storage sizing for different prices,
the simplex algorithm can however be initialized with the
solution of the similar problem and therefore can have better
convergence properties. Taking the convergence properties of
the LP problem of the FBS-OPF into account, we can only
assure polynomial runtime as an upper boundary when using
the IP method to solve the LP problem.

D. Economic Viability

The results from the economic assessment are shown in
Fig. [6] Since the simulation horizon is smaller than the
expected battery lifetime, we transform the storage cost from
the simulation horizon to their expected calendar life. We
define the storage revenue as the objective value difference
between a configuration with and without storage. For a
centralized scenario we can identify a cost of ~100 €/kWh, at
which a storage installation becomes profitable. While for the
distributed scenario, this point is at ~ 230 €/kWh. This can be
explained by the less utilization of PV energy in the centralized
case, since excess PV energy has to be curtailed due to line
and transformer overloading and/ or voltage violations.

It becomes also evident that the distributed configuration is
generally superior in terms of profit to the centralized solution.
On the one hand, this means that distributed configurations
achieve profitability for higher storage cost. On the other hand,
storage cost for centralized configurations might be lower than
for distributed ones. But we think that the cost for centralized
storage will not be lower by factor 2 than for distributed
storage in future [19]. Hence, it can be anticipated that
distributed configurations will be in this regard economically
preferable. Observing Fig.[7] we again find the profitable points
as described before. Analyzing the optimization result for the
storage size we can see that the storage size for the distributed
storage is higher than for the centralized configuration.

E. Placement of Distributed Storage

Simulating a distributed scenario with more than one storage
we get implicitly information about the storage placement
within the network. Optimizing the storage size of several
storages will as well optimize the distribution of the total
storage capacity within the network. Hence not only the
question of the optimal size, but also the question where to
place a storage unit of which size is implicitly solved by the
optimization. Figure | shows a placement for the given testgrid
shown in Fig. 2] For this grid thermal line constraints are more
dominant than voltage constraints. This means that the storage
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Figure 7. Storage size as a function of the storage cost for the distributed

and centralized storage configuration.

at node 1 is not selective to reduce PV curtailment, since the
allowable transformer overloading is higher than for the line
between node 1 and 2. For higher storage cost it is better
to place the storages rather in the middle of the root of the
grid (2,3,4,6) than at the end of the branches. This can be
explained that this placement allows for less PV curtailment,
but also saves network losses to increase the profit of energy
arbitrage on the market.

V. CONCLUSION

In this paper we present a novel OPF method for radial
networks that approximates the AC-OPF problem to an LP
problem. This FBS-OPF iteratively solves the LP problem
with a combined forward backward sweep load flow. For the
first iteration we show that this new OPF has a low error
in optimality and is feasible in the voltage constraints. Our
approximative method can be incorporated into an optimal
sizing and placement problem for distributed storage. We
demonstrate the usefulness of our method in a case study
where we assess the viability of distributed and centralized
storage configurations. For the studied test system it turns out
that distributed storage configurations are preferable, since the
economic impact of curtailing PV energy is higher than the
saved network losses from the energy market transactions. It



storage

cost (€/kWh) node ID

Figure 8. Storage placement for the distributed storage configuration as a
function of storage investment costs.

remains to be investigated how general this conclusion is, but
it can be anticipated that for typical LV grid configurations
it holds. We show that the AC-OPF based optimal sizing and
placement problem is intractable for long time horizons, while
the FBS-OPF based problem can solve yearly investment hori-
zons in reasonable time. However, to study the applicability
of our approach for bigger networks with a higher number of
storages, it can be foreseen that the problem gets too complex
due to the storage coupling and therefore also intractable.
Hence, future work relates to further decompose the sizing
and placement problem by using distributed optimization
techniques. Furthermore, in this paper we consider calendar
battery life for the economic assessment, but battery wear also
depends on the operational management. Therefore, we also
aim to incorporate a battery degradation model in our sizing
and placement problem to further investigate the impact of
battery degradation on the profitability.
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