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Abstract—As renewable wind energy penetration rates continue to
increase, one of the major challenges facing grid operators the question
of how to control transmission grids in a reliable and a costefficient
manner. The stochastic nature of wind forces an alteration btraditional
methods for solving day-ahead and look-ahead unit commitme and
dispatch. In particular, uncontrollable wind generation increases the risk
of random component failures. To address these questions,eanpresent
an N-1 Security and Chance-Constrained Unit Commitment (SCUC)
that includes the modeling of generation reserves that regmd to wind
fluctuations and tertiary reserves to account for single comonent outages.
The basic formulation is reformulated as a mixed-integer seond-order
cone problem to limit the probability of failure. We develop three different
algorithms to solve the problem to optimality and present a étailed case
study on the IEEE RTS-96 single area system. The case studysasses
the economic impacts due to contingencies and various de@® of wind
power penetration into the system and also corroborates theffectiveness
of the algorithms.

Index Terms—Unit commitment, wind uncertainty, security con-
straints, mixed-integer second-order conic programs

. INTRODUCTION

Transmission grids play a vital role in the supply and theveel
ery of electric power. As renewable wind energy penetratiates
continue to grow, reliable and cost-efficient operationrahmission
grids becomes increasingly important. However, the s&tahaature
of wind power necessitates an alteration of traditional hods

proposed. In [6], a stochastic UC variant was consideredravhe
the authors developed a two-stage dual-decompositionritigg
accounting for wind via a scenario-based approach. Theoappr
was validated on a 225 bus model of the California power gyste
the average computation time for a solving a 42-scenarioemnod
approximately 6 hours. A variation of this problem was stddin
[7], [8], where the authors developed a sampling-basedoagpr to
account for wind uncertainty via a chance-constrained €dation
(without [7] and with [8] generation reserves modeling) dacher
corroborated their algorithms using Monte Carlo simulagi@against
their deterministic variant on a modified IEEE 118-bus nekmand
the IEEE 30-bus network respectively. Reference [9] dpedoa
transmission-constrained UC formulation where the uageft is
modeled using an interval formulation. They test their ioved
interval formulation against existing stochastic, int#rand robust
UC techniques in terms of solution robustness and cost otERE
RTS-96 test system. In contrast to this paper, none of thaperp
consider N-1 security constraints and the associategtgntéserves
modeling.

Within the literature, the number of papers that do consider
contingency modeling is limited. For instance, in [5], arthsolved
a simpler OPF problem (without UC modeling) using a standard
sampling-method to account for wind and N-1 security ca@msts. In

for solving day-ahead and look-ahead Unit Commitment (U@) a terms of model comprehensiveness, the model most simileur®is

generation dispatch. The fluctuations caused by uncoatrolind

that of [10]. They developed a two-stage adaptive robust W@eh

generation can bring system components closer to theirigalys with security constraints and nodal net injection uncettai The

limits, making generator and line outages more likely touncés
a result, power system operators are interested in secthgrid
against component failures in the presence of these resmurc

More formally, the security of a power grid refers to its kil
to survive contingencies, while avoiding disruption of\éeg [1].
The failure to secure a power system could potentially tesul
cascading events [2]. The concept of N-1 security assesswas
developed to quantify this notion of security (see [3] anfénences
therein). A power system is N-1 secure if it can survive atigi
component outages. While N-1 is an important security rgaitean
N-1 secured power system still faces the risk of cascadirantsv
if one does not take into account the uncertain deviationwiafl
from its forecast value. One approach for controlling riskchance
constraints, where an upper bound on the probability of tcaim
violation is included in the OPF [4], [5]. Here, we adopt tlatér
approach and develop a comprehensive model that incogsoedkt
aspects of day-ahead planning and security discussed abb¥@
for generators, N-1 security constraints for a line or a gztoe
outage, chance constraints to ensure reliability with éespo wind
in a stochastic sense, reserves from generators and yegj@nning)
reserves.

model includes a deterministic uncertainty set, unlike ghabability
distribution of this paper, to model the wind. They proposed
Benders-based decomposition algorithm to handle lineirngancies
over a real-world large scale system, however they do nosiden
generator contingencies. It is the combination of both $ymd
contingencies, especially the generator contingendies,nhakes our
problem more difficult to solve. Given the complexity of ounplem
resulting from the size of the network (24 buses) and N-1 rsigcu
constraints on lines and generators for each one-hour time s
over 24 hours, our algorithm compares favorably from a &iliha
perspective.

In this paper, we formulate the SCCUC as a large Mixed-Intege
Second-Order Cone Program (MISOCP), leveraging the regerk
in [4], [11]. This formulation models two kinds of reservemmely
the generator reserves and the tertiary/spinning resémaecount for
the wind fluctuations and single line or generator outagmeetively.
We develop three approaches to solve the MISOCP with each ap-
proach building on its predecessor. The first algorithm isditional
sequential linear outer approximation for the Second-OW@ene
(SOC) constraints [4]. The second algorithm, the scenaaised de-
composition, in addition to using the sequential outer apipnation

Literature review: We review briefly some of the variations oftechnique, exploits a block diagonal structure of the gqairst matrix

the model explored in the literature and the algorithms thate

to decompose the formulation. The third algorithm is a Besde
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like algorithm incorporating the classical Benders felfisibcuts to
invalidate solutions to small SOC feasibility subproblerfagtensive
computational experimentation based on the single arek EES-96
system is used to compare the effectiveness of each of theaghes.

p>™" - time i has been on before= 0, hrs
p; oMt - time i has been on before= 0, hrs
P - on-off status ofi at¢ = 0 (1 if p™™* > 0, 0 otherwise)

pi(0) - power output of generataratt = 0, MW

We also make a detailed comparison of the SCCUC formulation RU; - ramp-up limit ofi, MW/hr

the deterministic variant of the problem to illustrate thdvantages
of solving the SCCUC over its deterministic counterpart.

II. SCCUC FORMULATION

RD; - ramp-down limit ofi, MW/hr
cis - cost of blocks of stepwise start-up cost function af $
T;. - upper limit of blocks of the stepwise start-up cost afhrs

Throughout this paper we utilize the linearized DC power floy(¢) - constant forecast output of wind farm at bugor hour ¢,

model. While this model has its limitations, it is the modebsh
generally used in the unit commitment literature. In oradequantify
the primary complexities and benefits of this paper’s corgrdaution
(chance constrained response to wind fluctuations) we tesdtas
modification to the traditional unit commitment model. Fetwvork
will consider more realistic power flow models.

A. Nomenclature

(i) Sets:

B - set of buses, indexed by

L - set of lines, indexed by

G - set of all generators, indexed by

Gp - subset of generators located at thus

S - set of generating units’ start-up cost blocks, indexed by

K - set of generating units’ production cost blocks, indexgdkb
W - set of buses with wind farms

T - set of discretized times (hours), indexed by

C - set of contingencies, indexed lay

(ii) Binary decision variables:

zi(t) - generator on-off status at time

yi(t) - generator 0-1 start-up status

zi(t) - generator 0-1 shut-down status

w;s(t) - generator start-up block identificatioh;if ¢ is started up at
the beginning of hout after being down fors hours,0 otherwise
(iif) Continuous decision variables:

sc;(t) - start-up cost of at hourt, $
i ( ) - power output ofi for hour ¢, MW
r(t) - generation up reserve power outputicdt hourt, MW
r; (t) - generation down reserve power outputiadt hourt, MW
T u (t) - tertiary reserve power output @éfat hourt, MW
g¥(t) - power output on segmeiit of cost curve ofi att, MW
a;(t) - participation factor ofi at hourt
fe(t) - real power flow over line at hourt, MW
05 (t) - power provided byi for contingencyc at hourt, MW
o (t) - participation factor ofi for contingencyc at hourt

fl( ) - real power flow over ling for contingencyc at hourt, MW
(iv) Parameters:
B¢ - susceptance of liné

min

pi™ - minimum output of generatat, MW

pit™* - maximum output of generatar MW

p‘fz" maximum power output of in production cost block, MW
dy(t) - demand at busé for hour ¢, MW

ad - no-load cost of the generator $

al - linear cost coefficient for;” andr; for i, $IMW

a? - linear cost coefficient for'? for i, /MW

KF - slope of thek'" segment of the cost curve for $/IMW
[ - capacity of lined, MW

T, - upper limit of blocks of the stepwise start-up cost af hrs
Mw
wsp(t) - actual wind deviations from forecagt (¢), at hourt

r - index of the reference bus
R - bounds on the amount of reserves that can be purchased, MW
B - bus admittance matrix for the network
- bus admittance matrix for the network under contingeacy

In the rest of the article, bold symbols denote random véetabin
particular,w(t) is the random variable that models(t) for hourt.
In the SCCUC, we assume that the deviatiangt) are independent
and normally distributed with zero mean and variamGét)? (see
[4]). We assume thab,(t) are not correlated in time or across space
geographically, however, this assumption can be relaxexdertain
degree w.l.0.g. =These wind deviations drive the randontifatons
in the controllable generator injectogg(t), and line flowsf ().

Finally, we letQ(t) = >,,, w(t) denote the total deviation
in the wind from the forecast. For notional convenience, vge u
Bt), A(t), d(t), @(t), 5°(t), alt), a°(t), 7 (1), 7 (1), 77(1) to
denote the vector of power generation, constant wind feteeand
deviations, additional generation during contingencjEsticipation
factors of the controllable generators, the participafamors during
contingencies, generation up and down reserves and jeréserves
respectively.

B. Generation control

As mentioned previously, we assume that the random wind de-
viations drive the controllable generator injections dgreach time
period. Thus, the controllable generators respond pripaity to
the wind fluctuations [4], [11] as

p;(t) = pi(t) — ai(t)2(t). ()

Here, a;(t) > 0 is the participation factor for the controllable
generatori. It was shown in [4] that wher}_, o (t) = 1, Eq. (1)
guarantees balance of generation and load for every timedoer

C. Line flows

The random fluctuations in line flowg,(t) for the line¢ depend
on the wind fluctuations implicitly, through the random buwgles
0,(t) which satisfy

pt) + a(t) - Qt)a(t) = )

The bus admittance matri® is invertible after removing the row
and column corresponding to the reference besB. Following the

DC power flow model [12], the flowg,(¢) are a linear function of
the bus angles, hence we denote [tBex |B| matrix M as the linear

d(t) + @(t) — BO(t).

L; - min. time i has to run from the start of planning horizon, hrs map from power injections to line flows. Then the random lirwevd
L, - min. time i has to be off from the start of planning horizon, hrdor each line/ are computed as:

UT; - minimum up-time ofi, hrs
DT; - minimum down-time ofi, hrs

Folt) = My (p(t) + A(t) — d(t) + w(t) — Q)at) . (3)



D. Reserve generation 2) Generation limits:

In the SCCUE:, we model two types of reserves: generationymin . ;. 4y < p () < p™ . g(t) VieG,teT, (10)
reserves«; (t),r; (t)) and the tertiary reserves;{ (t)). The gener-
ation reserves are used to respond to wind fluctuations anigttiary 0 <7, (t),ri(t),r?(#) < R-xi(t) VieG,teT, (11)
reserves are used to respond to generator outages. The dosa
coefficients for purchasing generation reserves and terteserves  §7(t) < riP(t) Vie G,t€ T,c€C, (12)
from a generatot at time is given bya; anda?, respectively.
AL(t) > pi(t) YieGteT, 13
E. Post-contingency generation outputs %T Bz pilt) Vieg T (13)
The generation output of the generatomfter the outage of a B i _
generatorc during hourt is modeled as pi(t) —ri () 2 pi"" - wit) Vie G teT, (14)
pi (1) = pi(t) — i ()8(1) + 67 (1) @) pilt) (@) ) <pPai(t) ViegteT, (15)
where,o$ (t) > 0 is the new participation factor for the controllable Pr(ri (1) > Q)ai(t) > 1 —e; VieGteT (16)

generator; corresponding to the outage of generatcand pg(t) is
the random generator injection during the outage. To engaveer Pr(rf(t) > - Qt)i(t)) >1—¢; VieGteT, a7)
balance we enforce

Za?(t) =1, Zéf(t) =0, andéﬁ(t) = —pe(t) (5) Pr(r; (t) > Q(t)af(t)) >1—¢ Vieg,teT,cel, (18)

. o Pr(rf(t) > —Qt)ai(t) >1—e; VieG,teT,ceC, (19
For an outage of line: during time¢, the participation factors do r(ri (8) 2 (B)ei (1)) 2 c i€GteT,ce (19)
not changgi.e., ;i (t) = a;(t) and 67 (t) = 0 for all the controllable <ai(t),af(t) <xi(t) VieG,teT,cel. (20)
generators.
. . The constraints in (10) — (15) enforce the generation linaitsl

F. Post-contingency line flows the reserve capacity limits for the generatoat every hourt. In

The effect of a line or generator outagechanges the topology particular, constraint (13) ensures that the total tertieserves from
of the system, which is represented by the malixdefined in Sec. all the generators during an houmust be greater than the maximum
II-C. Let M° denote the matrix\/ corresponding to the topology Power generated by any generator during that hour. Thisagtees
after an outage. For generator outages, we havé = M°. Using that enough tertiary reserves are purchased at each hooweo for

these notations, we model the line flow during a contingengs any generator outage. The constraints in (16) — (19) are hace
follows: constraints on the generation limits. They ensure that rg¢éioe

. . - _ - . reserves respond to wind fluctuations feasibly with highbphility
Fe(t) = MGy (p(t) +0°(t) + a(t) — d(t) + @(t) — Q(t)a“(t))  both during normal operation and contingencies. The caimgsr (20)
(6) impose the bounds on the participation factors.

where, £5(¢) is the random line flow on the lineduring contingency ~ 3) Piecewise linear production cost of the generators:

c at timet. pi(t) =Y gi(t) VieGteT, (21)
G. Optimization problem hex

With the notations and modeling considerations in Sec. HUF, 0<gl(t) <pie™-z(t) Vieg,teT, kek. (22)

we present a formulation of the SCCUC. The objective fumctid c int (21) def h db h )
the SCCUC minimizes the operating cost of the generatorgtwhi onstraint (21) defines the power generated by each gener,
at each hout as the sum of power generated on each block of the

includes the no-load cost, start-up cost, the running cbstliahe . . A
generators and the cost of the generation and tertiar dire. production cost curve and the constraint (22) enforcesithisl on
the power generated on each block.

min Y > {ai - @i(t) + Y K- gi (1) + scilt)+ 4) Stepwise start-up cost of the generators:
ieG teT ke @) Zwis (t)=yi(t) VieGteT, (23)
[ai - (i (t) + 77 (1) + ai - P (1)] } ses
The choice of the objective function is motivated by the niede Tis
[9], [13], [14]. The optimization is subject to constrair({ts)-(6) and wis(t) < zi(t—s) VieG,teT,seS, (24)
the following constraints: T;,

1) Binary variable logic:
yi(t) — z:i(t) = xi(t) —xi(t —1) VteT,ie€g, (8)

9) The start-up cost for a generator varies with the number of
consecutive time periods has been off before it is started up.
Constraint (8) determines if the generator is started upatr down at Constraint (23) ensures exactly one start-up cost from #teos
hour ¢ based of its on-off status between hewandt — 1. Constraint start-up cost blocks is chosen for the generato€Constraint (24)
(9) ensures that a generatois not started up and shut down in theidentifies the appropriate start-up block by implicitly ctag the
same houtt. number of consecutive time periods the generator has bednein

sci(t) =Y wis(t) - cis Vi€G,teT. (25)
seS

yi(t) +2z:(t) <1 VteT,i€q.



off state. Finally, constraint (25) selects the actualtaigrcost that
shows up in the objective function.
5) Minimum up and down time, ramping:

on-off

t
> wiln) <ai(t) VieGt>Lit=t-UT +1, 27)
n=t
t
zi(n) <1—zi(t) VieG,t>L,t=t—DT; +1, (28)
n=t
RD; > pi(t—1)—pi(t) Vieg,teT, (29)
RU; > pi(t) —pi(t—1) VieG,teT. (30)

The constraint in Eq. (26) sets the on-off status of the gener
¢ based on the initial conditions. Notice that bath and L; will
not take positive values simultaneously. The constraim&ds. (27)

and (28) enforce the minimum up time and minimum down time

constraints for generatar for the remaining time intervals of the
planning horizon. The constraints (29) and (30) enforcerémeping
limits on consecutive periods on every generator

6) Power flow:

> af(t)=1a5(t)=0 VteT,ceC, (31)
1€G
> ai(t)=1an(t)=0 VteT, (32)
i€G
> (po(t) + p(t) — do(t)) =0 VEET, (33)
beB
> 67(t) =0 anddi(t) = —pe(t) VteT,ceC, (34)
i€G
Pr(f,(t) < f™)>1—e YLeL,teT, (35)
Pr(f,(t) > —f™)>1—e VLeLl,teT, (36)
Pr(fi(t) < f™™)>1—¢; WeLl,teT,cel, (37)
Pr(fe(t) > —f™)>1—-¢; WeLl,teT,ceC. (38)

The power flow equations are adapted from [4], [11] for midtigime
periods. Constraints (31) — (32) are the constraints ondhticfpation
factors that guarantees balance of generation and load (BBc
and II-E). Constraints (33) and (34) impose the demandig¢ne
balance during normal operations and contingencies fortiglé
periods. Finally, constraints (35) — (38) are the chancesttaimts for
the line flows during normal operations and during contirmies

I1.
In this section, we present three different algorithms téveso

A LGORITHMS

the problem. Each algorithm presented in this section ifie steps
(i) and (iii). All algorithms are implemented within a simgbranch-
and-bound tree by using solver callbacks.

A. Outer approximation

The formulation in Sec. Il contains chance constraints (B§)—
(38)) that can be reformulated as Second-Order Cone (SO&) co
straints. The chance constraints in Eq. (16)—(19) are aiapegse
where the reformulation is linear (see [11]). While thisorefiulation
of chance constraints as SOC constraints is useful, [4] @iserved
that off-the-shelf commercial solvers were not able to tearddrge
scale CCOPF instances i.e., continuous SOC problems. &ddtess
this issue, we use the following approach: we omit the refdated
SOC constraints corresponding to Eq. (35)—(38) from theidation
we provide to the solver. Whenever the solver obtains amgénte
feasible solution to this relaxed problem, we check if itisfas
all the SOC constraints that were ignored. If not, we add ealin
outer approximation of the infeasible SOC constraint anldtinue

apprOX|mat|0ns of violated SOC constraints sequentlahg been
observed to be computationally efficient for the CCOPF ariiliso
CCOPF problems [4], [11].

We provided the formulation, as stated in Sec. |I-G, to thelatiog
tool JuMPChance [15], which enables the user to select lagtwe
solutions via sequential outer approximation or via refalation to
an SOC problem. Despite using sequential outer approxamatio
address the issue of the SOC constraints, solving the falblem,
as is, can be time consuming even for small SCCUC instances. W
also observe that the constraints of the SCCUC formulatiave h
an inherent block-diagonal structure with a few couplingstoaints
that can be exploited to develop more efficient exact aligorit In
the following section, we discuss a modified version of aitiackl
scenario-based decomposition algorithm that exploitsstitock diag-
onal structure of the constraint matrix to compute optin@iligons
to the SCCUC.

B. Scenario-based decomposition

In this section, we present a scenario-based decompo$BiBD)
approach to solve the SCCUC. This algorithm is an improverten
the outer approximation algorithm. We handle the SOC camgf in
exactly the same way as for the outer approximation. In sxditve
also leave out constraints corresponding to a subset oing@micies
C1 and solve the relaxed problem. Whenever the solver obtains a
feasible solution to the relaxed problem, in addition toakteg if all
the SOC constraints are satisfied by the current feasibpattis, we
also check if the dispatch violates any of the contingenici€s . The
violated SOC constraints are added as linear outer appadiimcuts
and the constraints corresponding to the infeasible cgeticies in
setC; are directly added to the relaxed problem. We note that olhce a
the constraints corresponding to an infeasible contingéme; € C;
are added to the relaxed problem, this contingency will eotiblated
by any subsequent feasible solutions and hence&an be removed

the SCCUC problem. The common underlying ideas for all thieom the list of contingencie€;. Checking if the contingencies in

three algorithms are: (i) we relax the formulation by igngria
few constraints and provide the relaxed formulation to antina
and-bound solver, (i) whenever a feasible solution is iolet to
this relaxed problem, we check if the solution is feasible the
constraints that were ignored, (iii) if one or more constimiare
violated for the current feasible solution, then we add atouthe
original problem that invalidates the solution and corgirsolving

C, are feasible for the current dispatch involves solving anCSO
feasibility problem for every hout and every contingency;: € C1,
given by the constraints (12), (18), (19), (20), (31), (3®7), and
(38). These are small SOC feasibility problems and can piatgnbe
solved in parallel. This small improvement to the outer agpnation
algorithm results in a speed up of a factor of two as we willests

in Sec. IV.



C. Benders decomposition

The SBD approach is effective when only a few of the contingern

cies are “active” in the final solution. However, we foundttivaa
number of cases, especially when we decrease the allowbdlmlity

. . . . . 0
violationse¢g, a large fraction of the contingencies needed to be addeéo

before convergence is achieved. As an alternative, we cigsdl
a Benders-like decomposition. The relaxed problem we peowd
the solver is the entire formulation defined in Section |l eptcfor
the constraints (37)-(38). Instead of treating these caimgs as is,
we use an extended formulation which avoids forming (andrsgo
in memory) the entire dense matrix/¢ defined in Section II-F
for each contingency. Benders decomposition (generaliaeslOCP
subproblems) is then applied to this extended formulatghenever
an integer feasible solution is found by the solver, we irvdke
Benders cut generation procedure briefly described below.

For a contingency: € C, define LF.(p(t),5¢(t), a°(t)) as the set
of (8°,~°, f¢) € RBIFILI satisfyingye = 6 = 0,

D Binbn = [pi(t) + 55 (1)) + po(t) — do(t) Vb€ B, (39)

neB i€Gy
> Buvn= > ai(t) VbeB\{r} (40)
neB,n#r 1€Gy
fﬁ’m = an(a'in - 9161) V(m7 TL) € ['c7 (41)
Pr(fon + Bmn2(t) (vn — ) + ﬂmn“:’T(t)(chn - )
(42)
S f'rrrrzlix) 2 1- Efnn V(m, TZ) € ‘Ccv
Pr(frn + BmnQ(t) (v, = ¥im) + Brn@” () (w5, — 771) @)
43

> —fmn) 21— €nn V(m,n) € L,

where,; is thebth row of the inverse of the admittance matis¢,
after excluding the row and column corresponding to theresiee
busr. The setL° is defined asC \ {c} if ¢ is a line contingency and
L for generator contingencies.

By [4], [11], the constraints (37)-(38) are satisfied if andlyo

TABLE I. COMPUTATION TIMES IN SECONDS
W% = 10% W% = 20% W% = 30%
L% OA SBD Benders OA SBD Benders OA SBD Benders
1483 586 58 507 467 110 1230 467 54
1467 743 63 1262 580 130 1641 571 115
90 1046 691 106 951 803 39 1736 552 121
100 1117 713 94 1353 720 85 984 716 112

A. Test system and wind data

We use the IEEE single-area RTS-96 system with modifications
performed on the base system similar to the ones describg®l.in
The system comprises of 24 buses including 17 load buses, 38
transmission lines and 32 conventional generators. Tla¢itttalled
capacity of the generators is 3405 MW. Among the 32 genesator
2 are nuclear and 1 is a hydro generator. The NREL Western Wind
dataset [20] provides the wind data. Wind farms locatioesnaapped
to the IEEE RTS-96 respecting the lengths of the lines (speTée
test system contains a total of 9 wind farms with a total gatiem
capacity of 3900 MW. The locations of the wind farms, the vidlial
generation capacity of each wind farm; the stepwise geioerabst,
start-up cost, ramping restrictions, up and down-timeriggins for
each generator; and the load profile data for a 24-hour pesed for
the case study are made available by authors in [9] and [Zlhd.the
1000 wind generation scenarios for each wind farm generat§®j
via various statistical methods, the mean and standarafitmviof the
wind power injection for each time period was estimated r=$sg
that the wind power injections for each hour are independentally
distributed random variables. The cost coefficietfts a}, anda? for
the generation and tertiary reserves, respectively, avptad directly
from the IEEE RTS-96 generation cost coefficient data andnine
power is assumed to have zero marginal cost.

B. Performance of proposed algorithms

The SCCUC formulation has four user-defined parameters Ilgame
€i, €5, €, and e;. For the rest of the computational experiments
in the paper, we set their values s, 2%, 10%, and 20%
respectively. We then sequentially vary the loading lewats the
wind penetration levels and solve the resulting SCCUC imtsa
using each of the algorithms proposed in Sec. Ill. The firgb@thm

if the set LF.(p(t),6¢(t), a°(t)) is not empty. We therefore testis the sequential linear outer approximation algorithm YOthe

feasibility of the solution which the solver finds by solviribe
SOCP feasibility problem corresponding fof. (p(t), 6¢(¢), a°(t))
for each contingency and time period. If the problem is isiele,

second is the SBD presented in Sec. IlI-B, and the last onkeis t
Benders decomposition in Sec. llI-C. For the SBD, the(seis the
set of all generator contingencies. The computations wenéec out

we compute, via SOCP duality, a cut analogous to the Bendems a Dell Precision T5500 workstation (Intel Xeon E5630 pasor

feasibility cut which invalidates the solutigip(t), 6°(t), a°(t)) [16,

Prop. 2.4.2]. These cuts are added by using solver callbeithis the

branch-and-bound tree as previously discussed. A tedtofiedlenge
we encountered was obtaining valid dual rays to infeasi@€Bs, a
feature not supported by CPLEX [17]. Instead, we used Mo&8k [
which has this functionality, to solve the SOCP subproblems

IV. CASE STUDY

In this section, we demonstrate the benefits of solving th€$C
relative to the deterministic version of the unit commitmproblem

2.53GHz, 12GB RAM). For all the runs, the optimality tolecan
was set to 1%. The algorithms were implemented using Julih an
JuMPChance [22] with CPLEX and Mosek [17], [18] as the LP
and conic solvers respectively. Table | shows the computaiime

of the three algorithms for varying wind penetratiod’ %) and
load levels £.%). We observe from the results in Table I that the
Benders decomposition outperforms the other two algosthHor

all the test instances. We also note that this trend was waider
consistently for different choices of subsets of of contimgjes,C1,

in the SBD. Hence, throughout the rest of the article, we tmee t
Benders decomposition algorithm for all the runs.

using the single area IEEE RTS-96 system [19]. The compariso

is based on a variety of factors including nominal operatiarost,
number of line and generator violations, amount of genematind
tertiary reserves allotted, etc. We also investigate théopmance of
proposed algorithms with regards to computation time aathbdity.

C. Comparison of the SCCUC to its deterministic counterpart

We now compare the performance of the SCCUC with its de-
terministic counterpart, which assumes(¢t) = 0. Both the deter-
ministic and chance constrained unit commitment with N-dusigy
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Figure 1. Total cost and value of the different cost comptnéor the deter-
ministic and chance constrained unit commitment (left)e Tost difference
(right) shows the change in cost when moving from the detastic to the
chance constrained unit commitment.

Figure 2. Empirical violation probability of each geneoatiand line con-
straint in the deterministic (left) and the chance cons&di(right) solution.

8
TABLE Il. N UMBER OF COMMITTED UNITS AND ALLOCATED RESERVES §§ Chance—
%_g ° Constrained
Committed Tertiary Generation g% ©  Deterministic
Units Reserves [MW] Reserves [MW] EN
Deterministic 417 5383.7 482.1 Hour
Chance constrained 421 5357.5 954.3

Figure 3. The number of wind fluctuation samples (out of 1(0@j lead to
one or more constraint violations.

constraints are solved for a case where the forecast windempow

production accounts for 20% of the total load. Since therdgtéstic ~ The empirical violation probabilities, evaluated for eadmstraint
unit commitment with N-1 security constraints assumesetfege no separately, are shown in Fig. 2. We observe that the maximaloev
wind fluctuations, it will not require any generation reseso cover of the empirical violation probabilities for the optimalsgiatch of
for the wind power fluctuations. In order to make a fair congr, the deterministic problem is 50% for both the generator and |
we assume that the system operator maintains a minimumajener |imit constraints. Interestingly, the optimal solution tfe chance-
reserve requirement equal to 0.5% of the load and impose thisnstrained problem is able to effectively limit the emgativiolation

constraint as a part of the optimization problem. Furtheen@o probabilities to 2% and 20% for generators and lines, reimy

obtain a more interesting case, the transmission capaaifithe We note that these violations include the ones that occlinglsingle
IEEE RTS-96 system were decreased to 90% of their originsé bacomponent outages.

case value in [9]. For a system operator, it is tantamount not only to limit the
The total cost of the unit commitment and the different cosfjolation probability for a specific line or generator lingbnstraint,
components are shown in Fig. 1, with the deterministic arahcd byt also to reduce the frequency at which @my line or generator
constrained cost on left and the cost differences to thet.rihe |imit is violated during a 24-hour period. Hence, Fig. 3 cargs
number of committed units and the amount of allocated reseave the number of wind realizations out of 1000 that actuallydi¢a
shown in Table Il. We observe that the total cost of the SCCUg |east one constraint violation during each hour of the diais

solution is only slightly greater than the cost of its deteistic clear from the Fig. 3 that for the optimal dispatch obtaineahrf
counterpart, with a major difference showing up in the cobt qne deterministic problem, the empirical probability tlteast one
generation reserves and a minor one in the no-load cost. &N constraint is violated during each hour varies from 20 to %00
for the increased cost of generation reserves in the cheowstrained \yhile for the optimal solution to the chance constrainedsicer of
version is that it allocates twice as much generation reseas the problem, the risk is much lower, with a meager 10-20 sampl
the deterministic case in order to accommodate the wind powgeating violations for most hours of the day and with 225pehe

fluctuations; as mentioned previously the deterministianterpart maximum number of samples with violations during any houthef
is immune to wind fluctuations and it allocates the bare mimm ¢y

amount of generation reserves as required by the systenatoper
(0.5% of the load). The same reason is valid for the higherbamm
of committed units for the chance-constrained case anchttreased
no-load cost (see Table II). To assess the influence of wind power penetration and winc&pow
Next, we compare the two variants in their ability to handi@edv variability on the cost of unit commitment and amount of ress, we
fluctuations during normal operations and contingenciesdd so, generate two classes of test instances. In the first clagsstanices,
we solve both the variants and obtain the correspondingmapti we fix the wind penetration level and vary the normalized chad
solution. To assess the performance of both the deterncimist the deviation of the wind fluctuation linearly and in the secondss,
chance constrained solutions under simulated wind powmditons, we do the vice-versa. The Table Il shows the variation of the
we evaluate the line flows and generator outputs using thienapt number of committed units, the amount of generation researel
dispatches for 1000 wind realizations and compute the nurobe the total SCCUC cost for different levels of wind penetratitVe
generator and line violations that occur for each of theizetibn. The observe that the increase in the wind penetration leveleedse the
samples are drawn from the multivariate normal distributichose overall SCCUC cost. The amount of generation reserves i€ roor
means and variances were known a priori and were used as injgss constant because the normalized standard deviatithe ofind
to the SCCUC i.e., we assume perfect knowledge of the priityabi fluctuations is a constant for the first class of test instandde
distribution of the wind fluctuations. decrease in the number of units committed can also be expldig

D. Influence of wind penetration and wind variability



the fact that power production from the conventional getogsain
the system decreases with increasing levels of wind pdimtra

TABLE Ill. N UMBER OF COMMITTED UNITS, GENERATION RESERVES

(MW), AND SCCUCCOST($) FOR VARYING LEVELS OF WIND
PENETRATION

Wind Committed Generation Total SCCUC
penetration [%)] Units Reserves [MW] Cost [$]
5 469 284.47 1177691.41
10 443 292.04 1111250.49
15 431 292.64 1050269.73
20 415 290.09 996352.13
25 395 284.09 966712.09

The results in Table IV indicates that the number of units com 5!

mitted remains a constant as the variation in wind power wutp
is increased. One might expect the number of committed uaits
increase similar to the previous study, but instead themopéition
problem chooses to increase the amount of generation essbeing
produces from the already committed units. This revealsdetoff
between the cost of the generation reserves and the no-gsadror
the test instances chosen, the no-load cost was observedstightly
greater than generation reserve cost and hence the behassults.
The same reasoning holds for the cost of the generationvesser

TABLE IV. NUMBER OF COMMITTED UNITS, GENERATION RESERVES

(MW), AND GENERATION RESERVE COSK$) FOR VARYING LEVELS OF
NORMALIZED STANDARD DEVIATION

Normalizedos [%] Committed Generation Total Gen.
Units Reserves [MW] Reserves Cost [$]
5 414 305.58 1830.12
10 414 321.39 1928.40
15 414 334.80 2005.43
20 413 349.41 2093.09
25 414 364.01 2180.74

[10]

[11]
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