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Abstract—As renewable wind energy penetration rates continue to
increase, one of the major challenges facing grid operatorsis the question
of how to control transmission grids in a reliable and a cost-efficient
manner. The stochastic nature of wind forces an alteration of traditional
methods for solving day-ahead and look-ahead unit commitment and
dispatch. In particular, uncontrollable wind generation increases the risk
of random component failures. To address these questions, we present
an N-1 Security and Chance-Constrained Unit Commitment (SCCUC)
that includes the modeling of generation reserves that respond to wind
fluctuations and tertiary reserves to account for single component outages.
The basic formulation is reformulated as a mixed-integer second-order
cone problem to limit the probability of failure. We develop three different
algorithms to solve the problem to optimality and present a detailed case
study on the IEEE RTS-96 single area system. The case study assesses
the economic impacts due to contingencies and various degrees of wind
power penetration into the system and also corroborates theeffectiveness
of the algorithms.

Index Terms—Unit commitment, wind uncertainty, security con-
straints, mixed-integer second-order conic programs

I. I NTRODUCTION

Transmission grids play a vital role in the supply and the deliv-
ery of electric power. As renewable wind energy penetrationrates
continue to grow, reliable and cost-efficient operation of transmission
grids becomes increasingly important. However, the stochastic nature
of wind power necessitates an alteration of traditional methods
for solving day-ahead and look-ahead Unit Commitment (UC) and
generation dispatch. The fluctuations caused by uncontrolled wind
generation can bring system components closer to their physical
limits, making generator and line outages more likely to occur. As
a result, power system operators are interested in securingthe grid
against component failures in the presence of these resources.

More formally, the security of a power grid refers to its ability
to survive contingencies, while avoiding disruption of service [1].
The failure to secure a power system could potentially result in
cascading events [2]. The concept of N-1 security assessment was
developed to quantify this notion of security (see [3] and references
therein). A power system is N-1 secure if it can survive all single
component outages. While N-1 is an important security criteria, an
N-1 secured power system still faces the risk of cascading events
if one does not take into account the uncertain deviations ofwind
from its forecast value. One approach for controlling risk is chance
constraints, where an upper bound on the probability of constraint
violation is included in the OPF [4], [5]. Here, we adopt the latter
approach and develop a comprehensive model that incorporates all
aspects of day-ahead planning and security discussed above- UC
for generators, N-1 security constraints for a line or a generator
outage, chance constraints to ensure reliability with respect to wind
in a stochastic sense, reserves from generators and tertiary (spinning)
reserves.
Literature review: We review briefly some of the variations of
the model explored in the literature and the algorithms thatwere

proposed. In [6], a stochastic UC variant was considered where
the authors developed a two-stage dual-decomposition algorithm,
accounting for wind via a scenario-based approach. The approach
was validated on a 225 bus model of the California power system;
the average computation time for a solving a 42-scenario model
approximately 6 hours. A variation of this problem was studied in
[7], [8], where the authors developed a sampling-based approach to
account for wind uncertainty via a chance-constrained formulation
(without [7] and with [8] generation reserves modeling) andfurther
corroborated their algorithms using Monte Carlo simulations against
their deterministic variant on a modified IEEE 118-bus network and
the IEEE 30-bus network respectively. Reference [9] developed a
transmission-constrained UC formulation where the uncertainty is
modeled using an interval formulation. They test their improved
interval formulation against existing stochastic, interval and robust
UC techniques in terms of solution robustness and cost on theIEEE
RTS-96 test system. In contrast to this paper, none of these papers
consider N-1 security constraints and the associated tertiary reserves
modeling.

Within the literature, the number of papers that do consider
contingency modeling is limited. For instance, in [5], authors solved
a simpler OPF problem (without UC modeling) using a standard
sampling-method to account for wind and N-1 security constraints. In
terms of model comprehensiveness, the model most similar toours is
that of [10]. They developed a two-stage adaptive robust UC model
with security constraints and nodal net injection uncertainty. The
model includes a deterministic uncertainty set, unlike theprobability
distribution of this paper, to model the wind. They proposeda
Benders-based decomposition algorithm to handle line contingencies
over a real-world large scale system, however they do not consider
generator contingencies. It is the combination of both types of
contingencies, especially the generator contingencies, that makes our
problem more difficult to solve. Given the complexity of our problem
resulting from the size of the network (24 buses) and N-1 security
constraints on lines and generators for each one-hour time step
over 24 hours, our algorithm compares favorably from a scalability
perspective.

In this paper, we formulate the SCCUC as a large Mixed-Integer
Second-Order Cone Program (MISOCP), leveraging the recentwork
in [4], [11]. This formulation models two kinds of reserves,namely
the generator reserves and the tertiary/spinning reservesto account for
the wind fluctuations and single line or generator outage, respectively.
We develop three approaches to solve the MISOCP with each ap-
proach building on its predecessor. The first algorithm is a traditional
sequential linear outer approximation for the Second-Order Cone
(SOC) constraints [4]. The second algorithm, the scenario-based de-
composition, in addition to using the sequential outer approximation
technique, exploits a block diagonal structure of the constraint matrix
to decompose the formulation. The third algorithm is a Benders-
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like algorithm incorporating the classical Benders feasibility cuts to
invalidate solutions to small SOC feasibility subproblems. Extensive
computational experimentation based on the single area IEEE RTS-96
system is used to compare the effectiveness of each of the approaches.
We also make a detailed comparison of the SCCUC formulation to
the deterministic variant of the problem to illustrate the advantages
of solving the SCCUC over its deterministic counterpart.

II. SCCUC FORMULATION

Throughout this paper we utilize the linearized DC power flow
model. While this model has its limitations, it is the model most
generally used in the unit commitment literature. In order to quantify
the primary complexities and benefits of this paper’s core contribution
(chance constrained response to wind fluctuations) we isolate this
modification to the traditional unit commitment model. Future work
will consider more realistic power flow models.

A. Nomenclature

(i) Sets:
B - set of buses, indexed byb
L - set of lines, indexed byℓ
G - set of all generators, indexed byi
Gb - subset of generators located at busb

S - set of generating units’ start-up cost blocks, indexed bys

K - set of generating units’ production cost blocks, indexed by k

W - set of buses with wind farms
T - set of discretized times (hours), indexed byt

C - set of contingencies, indexed byc
(ii) Binary decision variables:
xi(t) - generator on-off status at timet
yi(t) - generator 0-1 start-up status
zi(t) - generator 0-1 shut-down status
wis(t) - generator start-up block identification;1 if i is started up at
the beginning of hourt after being down fors hours,0 otherwise
(iii) Continuous decision variables:
sci(t) - start-up cost ofi at hourt, $
pi(t) - power output ofi for hour t, MW
r+i (t) - generation up reserve power output ofi at hourt, MW
r−i (t) - generation down reserve power output ofi at hourt, MW
r
up
i (t) - tertiary reserve power output ofi at hourt, MW
gki (t) - power output on segmentk of cost curve ofi at t, MW
αi(t) - participation factor ofi at hourt
fℓ(t) - real power flow over lineℓ at hourt, MW
δci (t) - power provided byi for contingencyc at hourt, MW
αc
i (t) - participation factor ofi for contingencyc at hourt

fc
ℓ (t) - real power flow over lineℓ for contingencyc at hourt, MW

(iv) Parameters:
βℓ - susceptance of lineℓ
pmin
i - minimum output of generatori, MW

pmax
i - maximum output of generatori, MW

pmax
i,k - maximum power output ofi in production cost blockk, MW

db(t) - demand at busb for hour t, MW
a0
i - no-load cost of the generatori, $

a1
i - linear cost coefficient forr+i andr−i for i, $/MW

a2
i - linear cost coefficient forrupi for i, $/MW

Kk
i - slope of thekth segment of the cost curve fori, $/MW

fmax
ℓ - capacity of lineℓ, MW
Li - min. time i has to run from the start of planning horizon, hrs
Li - min. time i has to be off from the start of planning horizon, hrs
UTi - minimum up-time ofi, hrs
DTi - minimum down-time ofi, hrs

p
up,init
i - time i has been on beforet = 0, hrs

p
down,init
i - time i has been on beforet = 0, hrs

pon-offi - on-off status ofi at t = 0 (1 if p
up,init
i > 0, 0 otherwise)

pi(0) - power output of generatori at t = 0, MW
RUi - ramp-up limit of i, MW/hr
RDi - ramp-down limit ofi, MW/hr
cis - cost of blocks of stepwise start-up cost function ofi, $
T is - upper limit of blocks of the stepwise start-up cost ofi, hrs
T is - upper limit of blocks of the stepwise start-up cost ofi, hrs
µb(t) - constant forecast output of wind farm at busb for hour t,
MW
ωb(t) - actual wind deviations from forecastµb(t), at hourt
r - index of the reference bus
R - bounds on the amount of reserves that can be purchased, MW
B - bus admittance matrix for the network
Bc - bus admittance matrix for the network under contingencyc

In the rest of the article, bold symbols denote random variables. In
particular,ωb(t) is the random variable that modelsωb(t) for hour t.
In the SCCUC, we assume that the deviationsωb(t) are independent
and normally distributed with zero mean and varianceσb(t)

2 (see
[4]). We assume thatωb(t) are not correlated in time or across space
geographically, however, this assumption can be relaxed toa certain
degree w.l.o.g. =These wind deviations drive the random fluctuations
in the controllable generator injectorspi(t), and line flowsf ℓ(t).

Finally, we let Ω(t) =
∑

b∈W ω(t) denote the total deviation
in the wind from the forecast. For notional convenience, we use
p̄(t), µ̄(t), d̄(t), ω̄(t), δ̄c(t), ᾱ(t), ᾱc(t), r̄+(t), r̄−(t), r̄up(t) to
denote the vector of power generation, constant wind forecast, wind
deviations, additional generation during contingencies,participation
factors of the controllable generators, the participationfactors during
contingencies, generation up and down reserves and tertiary reserves
respectively.

B. Generation control

As mentioned previously, we assume that the random wind de-
viations drive the controllable generator injections during each time
period. Thus, the controllable generators respond proportionally to
the wind fluctuations [4], [11] as

pi(t) = pi(t)− αi(t)Ω(t). (1)

Here, αi(t) ≥ 0 is the participation factor for the controllable
generatori. It was shown in [4] that when

∑

i
αi(t) = 1, Eq. (1)

guarantees balance of generation and load for every time period t.

C. Line flows

The random fluctuations in line flowsf ℓ(t) for the lineℓ depend
on the wind fluctuations implicitly, through the random bus angles
θb(t) which satisfy

p̄(t) + µ̄(t)− d̄(t) + ω̄(t)−Ω(t)ᾱ(t) = Bθ(t). (2)

The bus admittance matrixB is invertible after removing the row
and column corresponding to the reference busr ∈ B. Following the
DC power flow model [12], the flowsf ℓ(t) are a linear function of
the bus angles, hence we denote the|L|× |B| matrixM as the linear
map from power injections to line flows. Then the random line flows
for each lineℓ are computed as:

f ℓ(t) = M(ℓ,·)

(

p̄(t) + µ̄(t)− d̄(t) + ω̄(t)−Ω(t)ᾱ(t)
)

. (3)



D. Reserve generation

In the SCCUC, we model two types of reserves: generation
reserves (r+i (t), r

−
i (t)) and the tertiary reserves (r

up
i (t)). The gener-

ation reserves are used to respond to wind fluctuations and the tertiary
reserves are used to respond to generator outages. The linear cost
coefficients for purchasing generation reserves and tertiary reserves
from a generatori at time is given bya1

i anda2
i , respectively.

E. Post-contingency generation outputs

The generation output of the generatori after the outage of a
generatorc during hourt is modeled as

p
c
i (t) = pi(t)− α

c
i (t)Ω(t) + δ

c
i (t) (4)

where,αc
i (t) ≥ 0 is the new participation factor for the controllable

generatori corresponding to the outage of generatorc andpc
i (t) is

the random generator injection during the outage. To ensurepower
balance we enforce

∑

i

α
c
i (t) = 1,

∑

i

δ
c
i (t) = 0, and δ

c
c(t) = −pc(t) (5)

For an outage of linec during time t, the participation factors do
not changei.e.,αc

i (t) = αi(t) andδci (t) = 0 for all the controllable
generatorsi.

F. Post-contingency line flows

The effect of a line or generator outagec changes the topology
of the system, which is represented by the matrixM defined in Sec.
II-C. Let Mc denote the matrixM corresponding to the topology
after an outagec. For generator outages, we haveM = Mc. Using
these notations, we model the line flow during a contingencyc as
follows:

f
c
ℓ(t) = M

c
(ℓ,·)

(

p̄(t) + δ̄
c(t) + µ̄(t)− d̄(t) + ω̄(t)−Ω(t)ᾱc(t)

)

(6)

where,fc
ℓ(t) is the random line flow on the lineℓ during contingency

c at time t.

G. Optimization problem

With the notations and modeling considerations in Sec. II-A– II-F,
we present a formulation of the SCCUC. The objective function of
the SCCUC minimizes the operating cost of the generators which
includes the no-load cost, start-up cost, the running cost of all the
generators and the cost of the generation and tertiary reserves, i.e.

min
∑

i∈G

∑

t∈T

{

a
0
i · xi(t) +

∑

k∈K

K
k
i · gki (t) + sci(t)+

[

a
1
i · (r

+
i (t) + r

−
i (t)) + a

2
i · r

up
i (t)

]}

(7)

The choice of the objective function is motivated by the models in
[9], [13], [14]. The optimization is subject to constraints(1)-(6) and
the following constraints:

1) Binary variable logic:

yi(t)− zi(t) = xi(t)− xi(t− 1) ∀t ∈ T , i ∈ G, (8)

yi(t) + zi(t) ≤ 1 ∀t ∈ T , i ∈ G. (9)

Constraint (8) determines if the generator is started up or shut down at
hour t based of its on-off status between hourt andt−1. Constraint
(9) ensures that a generatori is not started up and shut down in the
same hourt.

2) Generation limits:

p
min
i · xi(t) ≤ pi(t) ≤ p

max
i · xi(t) ∀i ∈ G, t ∈ T , (10)

0 ≤ r
−
i (t), r+i (t), r

up
i (t) ≤ R · xi(t) ∀i ∈ G, t ∈ T , (11)

δ
c
i (t) ≤ r

up
i (t) ∀i ∈ G, t ∈ T , c ∈ C, (12)

∑

n∈G

r
up
n (t) ≥ pi(t) ∀i ∈ G, t ∈ T , (13)

pi(t)− r
−
i (t) ≥ p

min
i · xi(t) ∀i ∈ G, t ∈ T , (14)

pi(t) + r
+
i (t) + r

up
i (t) ≤ p

max
i · xi(t) ∀i ∈ G, t ∈ T , (15)

Pr(r−i (t) ≥ Ω(t)αi(t)) ≥ 1− εi ∀i ∈ G, t ∈ T , (16)

Pr(r+i (t) ≥ −Ω(t)αi(t)) ≥ 1− εi ∀i ∈ G, t ∈ T , (17)

Pr(r−i (t) ≥ Ω(t)αc
i (t)) ≥ 1− εi ∀i ∈ G, t ∈ T , c ∈ C, (18)

Pr(r+i (t) ≥ −Ω(t)αc
i (t)) ≥ 1− εi ∀i ∈ G, t ∈ T , c ∈ C, (19)

0 ≤ αi(t), α
c
i (t) ≤ xi(t) ∀i ∈ G, t ∈ T , c ∈ C. (20)

The constraints in (10) – (15) enforce the generation limitsand
the reserve capacity limits for the generatori at every hourt. In
particular, constraint (13) ensures that the total tertiary reserves from
all the generators during an hourt must be greater than the maximum
power generated by any generator during that hour. This guarantees
that enough tertiary reserves are purchased at each hour to cover for
any generator outage. The constraints in (16) – (19) are the chance
constraints on the generation limits. They ensure that generation
reserves respond to wind fluctuations feasibly with high probability
both during normal operation and contingencies. The constraints (20)
impose the bounds on the participation factors.

3) Piecewise linear production cost of the generators:

pi(t) =
∑

k∈K

g
k
i (t) ∀i ∈ G, t ∈ T , (21)

0 ≤ g
k
i (t) ≤ p

max
i,k · xi(t) ∀i ∈ G, t ∈ T , k ∈ K. (22)

Constraint (21) defines the power generated by each generator i and
at each hourt as the sum of power generated on each block of the
production cost curve and the constraint (22) enforces the limits on
the power generated on each block.

4) Stepwise start-up cost of the generators:
∑

s∈S

wis(t) = yi(t) ∀i ∈ G, t ∈ T , (23)

wis(t) ≤

T is
∑

T
is

zi(t− s) ∀i ∈ G, t ∈ T , s ∈ S , (24)

sci(t) =
∑

s∈S

wis(t) · cis ∀i ∈ G, t ∈ T . (25)

The start-up cost for a generatori varies with the number of
consecutive time periodsi has been off before it is started up.
Constraint (23) ensures exactly one start-up cost from the set of
start-up cost blocks is chosen for the generatori. Constraint (24)
identifies the appropriate start-up block by implicitly counting the
number of consecutive time periods the generator has been inthe



off state. Finally, constraint (25) selects the actual start-up cost that
shows up in the objective function.

5) Minimum up and down time, ramping:

xi(t) = p
on-off
i ∀i ∈ G, t ≤ Li + Li, (26)

t
∑

n=t

yi(n) ≤ xi(t) ∀i ∈ G, t ≥ Li, t = t− UTi + 1, (27)

t
∑

n=t

zi(n) ≤ 1− xi(t) ∀i ∈ G, t ≥ Li, t = t−DTi + 1, (28)

RDi ≥ pi(t− 1) − pi(t) ∀i ∈ G, t ∈ T , (29)

RUi ≥ pi(t)− pi(t− 1) ∀i ∈ G, t ∈ T . (30)

The constraint in Eq. (26) sets the on-off status of the generator
i based on the initial conditions. Notice that bothLi and Li will
not take positive values simultaneously. The constraints in Eqs. (27)
and (28) enforce the minimum up time and minimum down time
constraints for generatori for the remaining time intervals of the
planning horizon. The constraints (29) and (30) enforce theramping
limits on consecutive periods on every generatori.

6) Power flow:
∑

i∈G

α
c
i (t) = 1, αc

r(t) = 0 ∀t ∈ T , c ∈ C, (31)

∑

i∈G

αi(t) = 1, αr(t) = 0 ∀t ∈ T , (32)

∑

b∈B

(pb(t) + µb(t)− db(t)) = 0 ∀t ∈ T , (33)

∑

i∈G

δ
c
i (t) = 0 andδcc(t) = −pc(t) ∀t ∈ T , c ∈ C, (34)

Pr(f ℓ(t) ≤ f
max) > 1− εℓ ∀ℓ ∈ L, t ∈ T , (35)

Pr(f ℓ(t) ≥ −f
max) > 1− εℓ ∀ℓ ∈ L, t ∈ T , (36)

Pr(fc
ℓ(t) ≤ f

max) > 1− ε
c
ℓ ∀ℓ ∈ L, t ∈ T , c ∈ C, (37)

Pr(fc
ℓ(t) ≥ −f

max) > 1− ε
c
ℓ ∀ℓ ∈ L, t ∈ T , c ∈ C. (38)

The power flow equations are adapted from [4], [11] for multiple time
periods. Constraints (31) – (32) are the constraints on the participation
factors that guarantees balance of generation and load (Sec. II-B
and II-E). Constraints (33) and (34) impose the demand-generation
balance during normal operations and contingencies for alltime
periods. Finally, constraints (35) – (38) are the chance constraints for
the line flows during normal operations and during contingencies.

III. A LGORITHMS

In this section, we present three different algorithms to solve
the SCCUC problem. The common underlying ideas for all the
three algorithms are: (i) we relax the formulation by ignoring a
few constraints and provide the relaxed formulation to a branch-
and-bound solver, (ii) whenever a feasible solution is obtained to
this relaxed problem, we check if the solution is feasible for the
constraints that were ignored, (iii) if one or more constraints are
violated for the current feasible solution, then we add a cutto the
original problem that invalidates the solution and continue solving

the problem. Each algorithm presented in this section differs in steps
(i) and (iii). All algorithms are implemented within a single branch-
and-bound tree by using solver callbacks.

A. Outer approximation

The formulation in Sec. II contains chance constraints (Eq.(35)–
(38)) that can be reformulated as Second-Order Cone (SOC) con-
straints. The chance constraints in Eq. (16)–(19) are a special case
where the reformulation is linear (see [11]). While this reformulation
of chance constraints as SOC constraints is useful, [4] alsoobserved
that off-the-shelf commercial solvers were not able to handle large
scale CCOPF instances i.e., continuous SOC problems. So, toaddress
this issue, we use the following approach: we omit the reformulated
SOC constraints corresponding to Eq. (35)–(38) from the formulation
we provide to the solver. Whenever the solver obtains an integer
feasible solution to this relaxed problem, we check if it satisfies
all the SOC constraints that were ignored. If not, we add a linear
outer approximation of the infeasible SOC constraint and continue
solving the original problem. This process of adding linearouter
approximations of violated SOC constraints sequentially has been
observed to be computationally efficient for the CCOPF and robust
CCOPF problems [4], [11].

We provided the formulation, as stated in Sec. II-G, to the modeling
tool JuMPChance [15], which enables the user to select between
solutions via sequential outer approximation or via reformulation to
an SOC problem. Despite using sequential outer approximations to
address the issue of the SOC constraints, solving the full problem,
as is, can be time consuming even for small SCCUC instances. We
also observe that the constraints of the SCCUC formulation have
an inherent block-diagonal structure with a few coupling constraints
that can be exploited to develop more efficient exact algorithms. In
the following section, we discuss a modified version of a traditional
scenario-based decomposition algorithm that exploits this block diag-
onal structure of the constraint matrix to compute optimal solutions
to the SCCUC.

B. Scenario-based decomposition

In this section, we present a scenario-based decomposition(SBD)
approach to solve the SCCUC. This algorithm is an improvement to
the outer approximation algorithm. We handle the SOC constraints in
exactly the same way as for the outer approximation. In addition, we
also leave out constraints corresponding to a subset of contingencies
C1 and solve the relaxed problem. Whenever the solver obtains a
feasible solution to the relaxed problem, in addition to checking if all
the SOC constraints are satisfied by the current feasible dispatch, we
also check if the dispatch violates any of the contingenciesin C1. The
violated SOC constraints are added as linear outer approximation cuts
and the constraints corresponding to the infeasible contingencies in
setC1 are directly added to the relaxed problem. We note that once all
the constraints corresponding to an infeasible contingency in c1 ∈ C1

are added to the relaxed problem, this contingency will not be violated
by any subsequent feasible solutions and hence,c1 can be removed
from the list of contingenciesC1. Checking if the contingencies in
C1 are feasible for the current dispatch involves solving an SOC
feasibility problem for every hourt and every contingencyc1 ∈ C1,
given by the constraints (12), (18), (19), (20), (31), (34),(37), and
(38). These are small SOC feasibility problems and can potentially be
solved in parallel. This small improvement to the outer approximation
algorithm results in a speed up of a factor of two as we will observe
in Sec. IV.



C. Benders decomposition

The SBD approach is effective when only a few of the contingen-
cies are “active” in the final solution. However, we found that in a
number of cases, especially when we decrease the allowed probability
violationsǫcℓ, a large fraction of the contingencies needed to be added
before convergence is achieved. As an alternative, we developed
a Benders-like decomposition. The relaxed problem we provide to
the solver is the entire formulation defined in Section II except for
the constraints (37)-(38). Instead of treating these constraints as is,
we use an extended formulation which avoids forming (and storing
in memory) the entire dense matrixMc defined in Section II-F
for each contingency. Benders decomposition (generalizedto SOCP
subproblems) is then applied to this extended formulation.Whenever
an integer feasible solution is found by the solver, we invoke the
Benders cut generation procedure briefly described below.

For a contingencyc ∈ C, defineLFc(p̄(t), δ̄
c(t), ᾱc(t)) as the set

of (θc, γc, fc) ∈ R
2|B|+|L| satisfyingγc

r = θcr = 0,

∑

n∈B

B
c
bnθ

c
n =

∑

i∈Gb

[pi(t) + δ
c
i (t)] + µb(t)− db(t) ∀b ∈ B, (39)

∑

n∈B,n6=r

Bbnγ
c
n =

∑

i∈Gb

α
c
i (t) ∀b ∈ B \ {r}, (40)

f
c
mn = βmn(θ

c
m − θ

c
n) ∀(m,n) ∈ Lc

, (41)

Pr(fc
mn + βmnΩ(t)(γc

n − γ
c
m) + βmnω̄

T (t)(πc
m − π

c
n)

≤ f
max
mn ) ≥ 1− ǫ

c
mn ∀(m,n) ∈ Lc

,

(42)

Pr(fc
mn + βmnΩ(t)(γc

n − γ
c
m) + βmnω̄

T (t)(πc
m − π

c
n)

≥ −f
max
mn ) ≥ 1− ǫ

c
mn ∀(m,n) ∈ Lc

,

(43)

where,πc
b is thebth row of the inverse of the admittance matrixBc,

after excluding the row and column corresponding to the reference
busr. The setLc is defined asL\{c} if c is a line contingency and
L for generator contingencies.

By [4], [11], the constraints (37)-(38) are satisfied if and only
if the set LFc(p̄(t), δ̄

c(t), ᾱc(t)) is not empty. We therefore test
feasibility of the solution which the solver finds by solvingthe
SOCP feasibility problem corresponding toLFc(p̄(t), δ̄

c(t), ᾱc(t))
for each contingency and time period. If the problem is infeasible,
we compute, via SOCP duality, a cut analogous to the Benders
feasibility cut which invalidates the solution(p̄(t), δ̄c(t), ᾱc(t)) [16,
Prop. 2.4.2]. These cuts are added by using solver callbackswithin the
branch-and-bound tree as previously discussed. A technical challenge
we encountered was obtaining valid dual rays to infeasible SOCPs, a
feature not supported by CPLEX [17]. Instead, we used Mosek [18],
which has this functionality, to solve the SOCP subproblems.

IV. CASE STUDY

In this section, we demonstrate the benefits of solving the SCCUC
relative to the deterministic version of the unit commitment problem
using the single area IEEE RTS-96 system [19]. The comparison
is based on a variety of factors including nominal operational cost,
number of line and generator violations, amount of generation and
tertiary reserves allotted, etc. We also investigate the performance of
proposed algorithms with regards to computation time and scalability.

TABLE I. COMPUTATION TIMES IN SECONDS.

W% = 10% W% = 20% W% = 30%

L% OA SBD Benders OA SBD Benders OA SBD Benders

70 1483 586 58 507 467 110 1230 467 54
80 1467 743 63 1262 580 130 1641 571 115
90 1046 691 106 951 803 39 1736 552 121
100 1117 713 94 1353 720 85 984 716 112

A. Test system and wind data

We use the IEEE single-area RTS-96 system with modifications
performed on the base system similar to the ones described in[9].
The system comprises of 24 buses including 17 load buses, 38
transmission lines and 32 conventional generators. The total installed
capacity of the generators is 3405 MW. Among the 32 generators,
2 are nuclear and 1 is a hydro generator. The NREL Western Wind
dataset [20] provides the wind data. Wind farms locations are mapped
to the IEEE RTS-96 respecting the lengths of the lines (see [9]). The
test system contains a total of 9 wind farms with a total generation
capacity of 3900 MW. The locations of the wind farms, the individual
generation capacity of each wind farm; the stepwise generation cost,
start-up cost, ramping restrictions, up and down-time restrictions for
each generator; and the load profile data for a 24-hour periodused for
the case study are made available by authors in [9] and [21]. Using the
1000 wind generation scenarios for each wind farm generatedin [9]
via various statistical methods, the mean and standard deviation of the
wind power injection for each time period was estimated assuming
that the wind power injections for each hour are independentnormally
distributed random variables. The cost coefficientsa0

i , a
1
i , anda2

i for
the generation and tertiary reserves, respectively, are adopted directly
from the IEEE RTS-96 generation cost coefficient data and thewind
power is assumed to have zero marginal cost.

B. Performance of proposed algorithms

The SCCUC formulation has four user-defined parameters namely
ǫi, ǫci , ǫℓ, and ǫcℓ. For the rest of the computational experiments
in the paper, we set their values to1%, 2%, 10%, and 20%
respectively. We then sequentially vary the loading levelsand the
wind penetration levels and solve the resulting SCCUC instances
using each of the algorithms proposed in Sec. III. The first algorithm
is the sequential linear outer approximation algorithm (OA), the
second is the SBD presented in Sec. III-B, and the last one is the
Benders decomposition in Sec. III-C. For the SBD, the setC1 is the
set of all generator contingencies. The computations were carried out
on a Dell Precision T5500 workstation (Intel Xeon E5630 processor
2.53GHz, 12GB RAM). For all the runs, the optimality tolerance
was set to 1%. The algorithms were implemented using Julia and
JuMPChance [22] with CPLEX and Mosek [17], [18] as the LP
and conic solvers respectively. Table I shows the computation time
of the three algorithms for varying wind penetration (W%) and
load levels (L%). We observe from the results in Table I that the
Benders decomposition outperforms the other two algorithms for
all the test instances. We also note that this trend was observed
consistently for different choices of subsets of of contingencies,C1,
in the SBD. Hence, throughout the rest of the article, we use the
Benders decomposition algorithm for all the runs.

C. Comparison of the SCCUC to its deterministic counterpart

We now compare the performance of the SCCUC with its de-
terministic counterpart, which assumesωb(t) = 0. Both the deter-
ministic and chance constrained unit commitment with N-1 security
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Figure 1. Total cost and value of the different cost components for the deter-
ministic and chance constrained unit commitment (left). The cost difference
(right) shows the change in cost when moving from the deterministic to the
chance constrained unit commitment.

TABLE II. N UMBER OF COMMITTED UNITS AND ALLOCATED RESERVES

Committed Tertiary Generation
Units Reserves [MW] Reserves [MW]

Deterministic 417 5383.7 482.1
Chance constrained 421 5357.5 954.3

constraints are solved for a case where the forecast wind power
production accounts for 20% of the total load. Since the deterministic
unit commitment with N-1 security constraints assumes there are no
wind fluctuations, it will not require any generation reserves to cover
for the wind power fluctuations. In order to make a fair comparison,
we assume that the system operator maintains a minimum generation
reserve requirement equal to 0.5% of the load and impose this
constraint as a part of the optimization problem. Furthermore, to
obtain a more interesting case, the transmission capacities of the
IEEE RTS-96 system were decreased to 90% of their original base
case value in [9].

The total cost of the unit commitment and the different cost
components are shown in Fig. 1, with the deterministic and chance
constrained cost on left and the cost differences to the right. The
number of committed units and the amount of allocated reserves are
shown in Table II. We observe that the total cost of the SCCUC
solution is only slightly greater than the cost of its deterministic
counterpart, with a major difference showing up in the cost of
generation reserves and a minor one in the no-load cost. The reason
for the increased cost of generation reserves in the chance-constrained
version is that it allocates twice as much generation reserves as
the deterministic case in order to accommodate the wind power
fluctuations; as mentioned previously the deterministic counterpart
is immune to wind fluctuations and it allocates the bare minimum
amount of generation reserves as required by the system operator
(0.5% of the load). The same reason is valid for the higher number
of committed units for the chance-constrained case and the increased
no-load cost (see Table II).

Next, we compare the two variants in their ability to handle wind
fluctuations during normal operations and contingencies. To do so,
we solve both the variants and obtain the corresponding optimal
solution. To assess the performance of both the deterministic and the
chance constrained solutions under simulated wind power conditions,
we evaluate the line flows and generator outputs using the optimal
dispatches for 1000 wind realizations and compute the number of
generator and line violations that occur for each of the realization. The
samples are drawn from the multivariate normal distribution whose
means and variances were known a priori and were used as input
to the SCCUC i.e., we assume perfect knowledge of the probability
distribution of the wind fluctuations.

Generators Lines Generators Lines
0

0.2

0.4

0.6

Deterministic                       Chance Constraints

E
m

pi
ric

al
 V

io
la

tio
n 

   
   

P
ro

ba
bi

lit
y 

pe
r 

C
on

st
ra

in
t

Figure 2. Empirical violation probability of each generation and line con-
straint in the deterministic (left) and the chance constrained (right) solution.
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Figure 3. The number of wind fluctuation samples (out of 1000)that lead to
one or more constraint violations.

The empirical violation probabilities, evaluated for eachconstraint
separately, are shown in Fig. 2. We observe that the maximum value
of the empirical violation probabilities for the optimal dispatch of
the deterministic problem is 50% for both the generator and line
limit constraints. Interestingly, the optimal solution ofthe chance-
constrained problem is able to effectively limit the empirical violation
probabilities to 2% and 20% for generators and lines, respectively.
We note that these violations include the ones that occur during single
component outages.

For a system operator, it is tantamount not only to limit the
violation probability for a specific line or generator limitconstraint,
but also to reduce the frequency at which anyany line or generator
limit is violated during a 24-hour period. Hence, Fig. 3 compares
the number of wind realizations out of 1000 that actually lead to
at least one constraint violation during each hour of the day. It is
clear from the Fig. 3 that for the optimal dispatch obtained from
the deterministic problem, the empirical probability thatat least one
constraint is violated during each hour varies from 20 to 100%,
while for the optimal solution to the chance constrained version of
the problem, the risk is much lower, with a meager 10-20 samples
creating violations for most hours of the day and with 225 being the
maximum number of samples with violations during any hour ofthe
day.

D. Influence of wind penetration and wind variability

To assess the influence of wind power penetration and wind power
variability on the cost of unit commitment and amount of reserves, we
generate two classes of test instances. In the first class of instances,
we fix the wind penetration level and vary the normalized standard
deviation of the wind fluctuation linearly and in the second class,
we do the vice-versa. The Table III shows the variation of the
number of committed units, the amount of generation reserves and
the total SCCUC cost for different levels of wind penetration. We
observe that the increase in the wind penetration levels decrease the
overall SCCUC cost. The amount of generation reserves is more or
less constant because the normalized standard deviation ofthe wind
fluctuations is a constant for the first class of test instances. The
decrease in the number of units committed can also be explained by



the fact that power production from the conventional generators in
the system decreases with increasing levels of wind penetration.

TABLE III. N UMBER OF COMMITTED UNITS, GENERATION RESERVES

(MW), AND SCCUCCOST ($) FOR VARYING LEVELS OF WIND

PENETRATION

Wind Committed Generation Total SCCUC
penetration [%] Units Reserves [MW] Cost [$]

5 469 284.47 1177691.41
10 443 292.04 1111250.49
15 431 292.64 1050269.73
20 415 290.09 996352.13
25 395 284.09 966712.09

The results in Table IV indicates that the number of units com-
mitted remains a constant as the variation in wind power output
is increased. One might expect the number of committed unitsto
increase similar to the previous study, but instead the optimization
problem chooses to increase the amount of generation reserves being
produces from the already committed units. This reveals a trade-off
between the cost of the generation reserves and the no-load cost. For
the test instances chosen, the no-load cost was observed to be slightly
greater than generation reserve cost and hence the behaviour results.
The same reasoning holds for the cost of the generation reserves.

TABLE IV. N UMBER OF COMMITTED UNITS, GENERATION RESERVES

(MW), AND GENERATION RESERVE COST($) FOR VARYING LEVELS OF

NORMALIZED STANDARD DEVIATION

Normalizedσ [%] Committed Generation Total Gen.
Units Reserves [MW] Reserves Cost [$]

5 414 305.58 1830.12
10 414 321.39 1928.40
15 414 334.80 2005.43
20 413 349.41 2093.09
25 414 364.01 2180.74

V. CONCLUSIONS

In this paper, we have presented a MISOCP formulation for the
SCCUC problem in the presence of wind fluctuations. To the best
of our knowledge, this is the first UC formulation in the literature
that includes N-1 security constraints on lines and generators, wind
fluctuations, and generator and tertiary reserves. Three algorithms
were developed to compute an optimal solution to the SCCUC.
The effectiveness of the proposed approach and its advantages over
its deterministic counterpart was demonstrated through extensive
computational experiments on the single area IEEE RTS-96 system.
The results indicate that the proposed formulation is effective and can
result in better technical performance including fewer violations of
transmission line limits and generator limits during normal operations
and during single line or generator outages when compared toits
deterministic counterpart. Future work includes (i) generalizations to
account for errors in estimating the parameters of the probability
distributions for the wind fluctuations, (ii) developing a computa-
tionally tractable method to handle correlated wind fluctuations, and
(iii) extension of the SCCUC formulation to consider more realistic
power flow models.
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