
InnerCircle: A Parallelizable Decentralized
Privacy-Preserving Location Proximity Protocol

Per Hallgren
Chalmers University of Technology,

Sweden

Martı́n Ochoa
Siemens AG & Technische Universität München,

Germany

Andrei Sabelfeld
Chalmers University of Technology,

Sweden

Abstract—Location Based Services (LBS) are becoming in-
creasingly popular. Users enjoy a wide range of services from
tracking a lost phone to querying for nearby restaurants or
nearby tweets. However, many users are concerned about sharing
their location. A major challenge is achieving the privacy of
LBS without hampering the utility. This paper focuses on the
problem of location proximity, where principals are willing to
reveal whether they are within a certain distance from each
other. Yet the principals are privacy-sensitive, not willing to reveal
any further information about their locations, nor the distance.
We propose InnerCircle, a novel secure multi-party computation
protocol for location privacy, based on partially homomorphic
encryption. The protocol achieves precise fully privacy-preserving
location proximity without a trusted third party in a single
round trip. We prove that the protocol is secure in the semi-
honest adversary model of Secure Multi-party Computation, and
thus guarantees the desired privacy properties. We present the
results of practical experiments of three instances of the protocol
using different encryption schemes. We show that, thanks to its
parallelizability, the protocol scales well to practical applications.

I. INTRODUCTION

Location Based Services (LBS) are becoming increasingly
popular. The ubiquity of mobile interconnected devices creates
tremendous opportunities for services that utilize location
information. A single online resource features 2206 companies
within LBS at the time of writing [1]. Logistics compa-
nies make extensive usage of tracking the location of cargo
throughout the land, sea, and air. Enforcement authorities use
location tracking technology for devices carried by people and
embedded in vehicles. Individual users enjoy a wide range of
location-based services from tracking a lost phone to querying
for nearby restaurants or nearby tweets.

Location Privacy Challenge Unfortunately, privacy-
sensitive location information of end users is commonly
sent to the LBS. The privacy of users is often neglected,
perhaps not surprisingly as there are no readily available
privacy-preserving solutions to the problem at hand. An
illustrative trilateration attack on a dating service has been
detailed by Include Security [31], revealing exact position
of a chosen user. In a similar vein, the smartphone app
Girls around me allowed users to find other users (profiled
as female) who recently had checked in on Foursquare [4].
Deemed as a serious privacy violation, the app had since
been banned from using the Foursquare API and removed
from the app store. Recent research systematizes these attacks
and identifies a number of LBS where it is possible to reveal
the user’ location even if some of the LBS approximate and
obfuscate distance information [27], [22].

There is fundamental tension between utility and privacy:
privacy can be achieved by keeping location information
secret but this may result in rendering LBS useless. A major
challenge is to address the privacy of LBS without hampering
the utility of the services [19], [30].

Privacy in Location Proximity This paper focuses on the
problem of location proximity, where principals are willing
to reveal whether they are within a certain distance from
each other. Yet the principals are privacy-sensitive, not willing
to reveal any further information about their locations, nor
the exact distance. Both mutual location proximity, when
the result of a proximity check is shared between the two
participating principals, and one-way location proximity, when
only one principal finds out whether the other principal is in
the proximity, are important scenarios.

Mutual location proximity is useful for collision prevention
for vehicles, vessels, and aircraft when revealing their exact
location is undesirable. Another example is discovering friends
in the vicinity [33], [32], without finding out the location of the
friends or distances among them. One-way location proximity
is of interest for discovery of nearby people (e.g., doctors
and police officers) without giving out the principal’s location.
The asymmetric case of friend discovery also falls under this
category with one principal checking if there are friends nearby
without the friends learning the result of the proximity check.

The current practice is that a third party is trusted to handle
principals’ locations for scenarios as above. However, privacy
concerns call for avoiding trust to third parties. In line with
the efforts on decentralizing certificate authorities [7], [21] and
the Internet itself [34], our goal is a decentralized solution for
the privacy-preserving proximity problem.

NO
???

???
Bob

YES

Alice
r

Bob

Fig. 1. Privacy-preserving
location proximity

Figure 1 illustrates the general
scenario. Principal Alice (A) wants
to know if principal Bob (B) is
within a certain distance. While Bob
is allowed to find out that Alice is
interested in knowing if he is in her
proximity, the goal is that Bob learns
nothing else about Alice. Similarly,
the goal is that Alice learns noth-
ing about Bob’s location other than
knowing if he is in the proximity.

Decentralized Privacy-Preserving Location Proximity Mo-
tivated by the challenge of location privacy for the proximity

1

problem, we set out to provide unhampered functionality with-
out compromising privacy through means of secure multi-party
computation (SMC), where participants can jointly compute a
function based on private inputs.

Attacker Model Our assumption is that A and B are
honest but curious, in the sense they follow the format of the
protocol but may log all messages and attempt to infer some
further knowledge. We do not protect against attacks parties
provide fake coordinates. These attacks are orthogonal, and
can be mitigated by using tamper-resistant location devices or
strategies such as location tags [25].

Single- vs. Multi-run security As is common [35], [9], [24],
[33], [32], this paper focuses on the security of one run of
the protocol. Re-running a precise proximity protocol may
allow trilaterating the location of the users, as in the Include
Security attack [31]. In general, multi-run security is a difficult
problem which calls for additional countermeasures, and is a
worthwhile subject to future studies. Collusion, where multiple
parties run a single run of the protocol is in our setting, from
Bob’s point of view, equivalent to one principal re-running
the protocol. We remark that our framework readily provides
multi-run security for one-way location proximity when the
protocol-initiating principal is statically positioned (e.g., a user
stationed at a coffee shop looking for nearby friends). In this
case the static principal’s input into the protocol is supplied
once and for all runs, breaking a necessary prerequisite for
trilateration.

Bob

Alice

Bob
r

Fig. 2. Grid-based testing

Discretization degree Our goal
is to provide exact proximity result
given a chosen metric and unit mea-
surement, rather than approximating
the result. An approach which is
not precise up to the unit of the
coordinate system can have both
false negatives and false positives.
Consider Figure 2, which visualizes
the worst case of an approach where
A ’s proximity is approximated by the gray cell, the approach
considers the top-right B nearby, but the bottom-left B far.
Even if A ’s position is in the center of such a grid, one can
only exclude either false positives or false negatives, but not
both. Narayanan et al. [25] discuss how a grid-based approach
can be useful for multi-run security. However a grid-based
solution has weaknesses to a multi-run attacker when crossing
cell boundaries [6].

As most of the related work, we assume a Euclidian
plane, which is a a reasonable local approximation for most
applications. Approximations that take the curvature of the
Earth into consideration can be performed in our setting, as
outlined in the full version of the paper [14].

Parallelizability As efficiency is one of our goals, it is de-
sirable to make use of parallelizability. Generic SMC solutions
are not readily suitable to parallel execution. In contrast, we set
out to design a protocol that can benefit from parallelization.

Contributions The paper proposes InnerCircle, a novel de-
centralized protocol for privacy-preserving location proximity.
In contrast to most of the related work, we fully dispense with
any third parties. Moreover we require only one round trip
using a parallelizable algorithm. Further, we do not degrade

the protocol by approximating the principals’ positions by
grid blocks. Instead, we offer full precision for the chosen
coordinate system and the Euclidean metric.

The protocol’s key phases are distance and proximity
calculation (see Section II). Essentially, A provides an en-
crypted (under her public key) aggregate that allows B to
homomorphically compute the encrypted distance. Then a
novel technique for homomorphically computing “less than”
without any roundtrips between the participants is used to
estimate proximity within a public range r. As discussed in
Section IV, implementations of the same functionality using
state-of-the-art generic SMC approaches with a one roundtrip
protocol are significantly less efficient than our solution for a
wide range of practical applications. In Section III we discuss
the security of InnerCircle for the standard definitions for
semi-honest adversaries in SMC [12].

We report on practical experiments with a prototype im-
plementation in Section IV. Asymptotic complexity results
are reported in the full version [14]. This allows us to study
the performance of the protocol for various homomorphic ci-
phers under different key sizes and different proximity ranges.
We empirically show the effectiveness of the parallelization
strategy by running our benchmarks on a multi-core machine
with different configurations. Our evaluation indicates that the
protocol scales well to practical applications.

II. PROTOCOL DESCRIPTION

This section describes InnerCircle in detail, for an unspeci-
fied additively homomorphic encryption scheme. The protocol
consists of one roundtrip, where Alice sends one message to
Bob, to which he responds with a boolean value encoded inside
a list of randomized ciphertexts telling Alice whether she is
close to Bob or not. First, Alice uses ICA to construct the
content of her message to Bob. Bob then creates the proximity
result through a procedure ICB , which defines the second
message of the protocol. ICB makes use of two procedures
L2 and lessThan, computing the distance and proximity
result, respectively. The proximity result is encoded within an
encrypted and shuffled list, which contains exactly one zero
(after decryption) if the distance is less than the queried range
r, and no zero otherwise. Finally, a procedure inProx is defined
to show how Alice converts the answer array into a boolean
value.

The protocol description (Figure 3) is given in pWHILE [3].
For the convenience of the reader a few constructs used in the
paper are outlined here, but for details the reader is directed
to [3]. a← b means assigning a value b to a variable a, while
a $← [0..n] means assigning a random value between 0 and n
to a. L :: l denotes appending the item l to the list L.

Additively Homomorphic Encryption Schemes A homo-
morphic cryptosystem allows to evaluate some functions of
plaintexts while only holding knowledge of their corresponding
ciphertexts and the public key. This feature is central for
the construction of InnerCircle, further it is required that the
cryptosystem is semantically secure. For a standard definition
of semantic security see [14].

In the following, k and K is the private/public key pair
of Alice. For the purpose of this paper, let the plaintext space

2

M be isomorphic to the ring (Zm, ·,+) for some m and the
ciphertext space C such that encryption using public key K
is a function EK : M → C and decryption using a private
key k is Dk : C → M. The vital homomorphic features
which will be used later in the paper is addition function
⊕, a unary negation function ¬, a multiplication function �
and a randomizing function R, as defined in Equations (1-
4). For readability, these functions as well as the encryption
and decryption functions E and D are not indexed with the
keys used in the operation, however it is assumed that K is
available when the respective function is computed and that k
is available to Alice for decryption. The 	 symbol is used in
the following to represent addition by a negated term, that is,
c1⊕¬c2 is written as c1	c2.

E(m1)⊕E(m2) =E(m1 +m2) (1)
¬E(m1) =E(−m1) (2)

E(m1)�m2 =E(m1 ·m2) (3)

R(E(m1)) =

{
E(0) if m1 = 0
E(l) otherwise (4)

Where m1 ∈ M, m2 ∈ M and l is a (uniform) random
element in M\ {0}.

A. Distance Calculation

This section explains how InnerCircle makes use of ad-
ditive homomorphism to compute the distance between two
principals without sending unencrypted coordinates to either
party. Zhong et al. [35] present three protocols which all
include a step in which the distance between two principals
is computed homomorphically. This process has been distilled
into the following formulae.

The euclidean distance between two points (xA, yA) and
(xB , yB) is computed as d =

√
(xA − xB)2 + (yA − yB)2.

The square of d is thus:

D = d2 = x2A + x2B + y2A + y2B − (2xAxB + 2yAyB)

By the additive (Equation (1)), negation (Equation (2)) and
multiplicative (Equation (3)) properties of the cryptosystem, D
can be computed homomorphically as shown in Equation (5),
separating the principals respective input.

E(D) =E(x2A + y2A)⊕E(x2B + y2B) (5)
	 ((E(2xA)�xB)⊕ (E(2yA)�yB))

A procedure L2 (xB , yB , a0, a1, a2) through which Bob
computes the (encrypted) distance given three ciphertexts
a0 = E(x2A + y2A) and a1 = E(2xA) and a2 = E(2yA) from
Alice and his own coordinates (xB , yB) is now defined as:

Procedure L2 (xB , yB , a0, a1, a2) :
E(D)← a0⊕E(x2B + y2B)	 ((a1�xB)⊕ (a2�yB)) ;
return E(D);

B. Proximity Calculation

As Bob is unwilling to disclose his position and his distance
to Alice, he must compute the proximity result so that it
reveals no such information. This section details how this
is accomplished in InnerCircle. The procedure to compute

the privacy-preserving proximity result consists of two parts,
where the first part makes use of the obfuscation method used
in the Pierre protocol [35].

First the squared distance is subtracted by each value from
0 to the threshold r2. The result is randomized using R() and
stored in a list. Each separate list element is thus a random
number except for when the subtraction results in a zero (in
which case the list element contains a zero). The number of
zeroes in the list is either zero or one. Second, the content of
the list must also be shuffled, to make sure that the position
in the list which produces a zero is not leaked to Alice as
a part of the result. Note that since the encryption scheme is
semantically secure, Bob can not deduce any information about
the plaintext while constructing this list. This is formalized as
a generic procedure lessThan (x, y) below, which homomor-
phically computes an intermediate value that can be used by
Alice to decide whether x is less than y without learning x.
This function is used to compute whether D is less than r2 in
the final protocol:

Procedure lessThan (x, y) :
L← [];
for i← 0 to i← y − 1 :

l← R (x	E(i)) ;
L← L :: l;

return shuffle(L);

shuffle returns a uniformly shuffled copy of its input. The
following lemma follows directly from the definition of R and
the shuffle function:

Lemma 1: If x, y ≥ 0 then the output of lessThan (x, y)
is determined by the inputs as follows. Case x ≥ y: A list
drawn uniformly at random from the set of all lists of length
y such that all elements are different from zero. Case x < y:
A list drawn uniformly at random from the set of all lists of
length y such that all elements are different from zero except
exactly one.

Note that for this lemma to hold, it is crucial that R
randomizes its input uniformly, which is not the case for all
instantiations of the cipher (for a discussion see [14]).

The list returned from lessThan are sent by Bob to Alice.
Alice decrypts the list and can conclude that if any element
is equal to zero, it means that D < r2, which in turns means
that she and Bob are within r of each other.

C. Protocol

The protocol is formally described in Figure 3. Alice must
send three separate ciphertexts to Bob as depicted through
ICA in Figure 3-1. From this Bob computes the distance
between Alice and himself, encrypted under Alice’s public key.
Bob applies the lessThan algorithm to the distance, in effect
making the response binary, using ICB seen in Figure 3-2.
Finally, Alice sees either noise or a zero, encrypted using
her public key, after she analyzes the result using a simple
procedure inProx described in Figure 3-3.

III. PRIVACY CONSIDERATIONS

This section details some of InnerCircle’s requirement and
its privacy properties. Authentication is outside the scope of

3

1. Proc. ICA(xA, yA) :
a0 ← E(x2A + y2A);
a1 ← E(2xA);
a2 ← E(2yA);
return a0, a1, a2;

3. Procedure inProx(L) :
for i← 0 to i← r2 :

if D(L[i]) = 0 then :
return 1

return 0

2. Proc. ICB(xB , yB , a0, a1, a2):
D ← L2 (xB , yB , a0, a1, a2) ;
L← lessThan

(
D, r2

)
;

return L

Fig. 3. The procedures of InnerCircle

this paper, but can easily be solved by using e.g. SSL with
mutual certificate authentication.

Intuitively, the goal of a privacy-preserving proximity pro-
tocol is to allow Alice to learn whether she is in the proximity
of Bob, without either of the parties having to disclose their po-
sition or the exact distance between them, and preventing third
parties from learning anything from the protocol execution.
This is precisely captured by the standard definitions of secure
multi-party computation in the semi-honest adversarial model
[12], [23], which guarantee that involved parties learn only a
functionality, jointly computed from the parties private inputs.
For simplicity of exposition, in the following we assume that
parameters such as public keys and the proximity threshold r
are considered to be previously known by both parties.

Formally, let x1, . . . , xp be the inputs of the p parties.
Then a function that specifies the intended output fi for each
party f(x1, . . . , xp) = (f1(x1, . . . , xp), . . . , fp(x1, . . . , xp)) is
called the functionality.

Definition 1 (Privacy, [23]): Given a deterministic func-
tionality f , a protocol π computes it privately in the semi-
honest adversarial model if there exist probabilistic algorithms
Si for i = 1, . . . , p such that:

{Si(xi, fi(x1, . . . , xp))}
c≡ {viewπi (x1, . . . , xp)}

Where viewπi (x1, . . . , xp) = (ri, xi,m1, . . . ,mt), ri rep-
resents the coin tosses made by party i in a normal execution
of the protocol for inputs x1, . . . , xp. m1, . . . ,mt are the
messages observed by party i during the execution of the
protocol and

c≡ denotes computational indistinguishability of
distributions.

In other words, a protocol is secure with respect to its
functionality if we can completely simulate what a party would
see in a normal run of the protocol just using its input and the
intended output to that party. From this it immediately follows
that the parties can not learn more than their inputs and their
intended outputs. For a detailed recap of Negligible functions
and Indistinguishability, we refer the reader to [14].

Therefore to show that our protocol is secure in the semi-
honest adversary setting, we need to construct so-called simu-
lators for each party in the computation. These simulators are
non-deterministic algorithms that by construction only receive
the private inputs of a given party (and not the others) and
its intended output as defined by the functionality, and such
that their resulting output is computationally indistinguishable
from a real protocol run.

Instantiation for Proximity Testing

In the case of proximity protocols, the desired functionality
is: f((xA, yA), (xB , yB), (xC , yC)) = (d, λ, λ), where λ is an
empty string (Bob and third parties learn nothing) and:

d =

{
1 if (xA, yA) ∈ prox(r, (xB , yB))
0 otherwise

Here prox(r, (xB , yB)) is a connected set whose area is
a function of r and which contains (xB , yB). This can be a
disc of radius r centred in (xB , yB), as depicted in Figure 1,
a square of side r as in [24], or a hexagon as in [25].

Theorem 1 (Privacy guarantee): InnerCircle computes
the location proximity functionality f privately according to
Definition 1.

A key observation is that the view of Alice can be simulated
based on the value of d independently of the exact coordinates
of Bob. The views of Bob and Claire are essentially easy
to simulate due to the semantic security of the encryption
mechanism. The proof of the theorem can be found in [14].

Towards automatic verification The above statements are
amenable to semi-automatic verification. Similar proofs for
semi-honest adversaries were constructed in [2]. Although
automatic verification is outside the scope of this paper, our
definitions and proof strategy is an initial step in this direction.

IV. IMPLEMENTATION

This section reports on an evaluation of prototypes of
InnerCircle written in Python and compares the results against
alternative approaches that yield the same functionality.

General state-of-the-art SMC frameworks are able to im-
plement any protocol, the motivation behind creating a special-
purpose solution is to improve performance over these. There-
fore, our benchmarks focus on comparing processing time.
Generic and efficient implementations of SMC are openly
available, which facilitate our experiments.

Three cryptosystems are used, which, under certain as-
sumptions on the inputs, respect the conditions of Section II:
these are Paillier [26] and two variants of ElGamal [10]. The
first variant of ElGamal is referred to as ElGamalZ and uses
a group in the integers, the second one is referred to as
ElGamalECC and uses a group in elliptic curve cryptogra-
phy [16]. Details about instantiating the protocol using these
three schemes can be found in [14]. For Paillier, the protocol
is secure only under some input restrictions. As Paillier uses
an RSA modulus n = p · q with p and q prime, the used
coordinates must be less than both q and p to be secure against
a curious Alice. For an honest Alice on earth, this should hold,
as discussed in [14]. The results are shown in Figure 4. Details
and further experiments can be found in [14].

An example of a location-based service is when users want
to get notified when a set of principals arrive at a location,
but only want to use the feature for user-specified periods of
time , along the lines of Glympse [11]. If this service grants a
precision of 10 meter when the area polled is 500 meters wide,
it could use InnerCircle for better results than when using
any competitor. Using TASTY, the time taken to execute the
protocol is 411 ms, while using InnerCircle with ElGamalZ
gives a response time of 211 ms.

4

Fig. 4. Time consumption for different algorithms and values of r using 80
bits of security

V. RELATED WORK

The two main solutions within SMC are homomorphic
encryption and garbled circuits. Section IV compared Inner-
Circle to FasterGC by Huang et al. [15], which is a prominent
work in the field of garbled circuits. The benchmarks show
that for this particular functionality garbled circuits on their
own do not catch up to an approach based on homomorphic
encryption. This has been shown also for privacy-preserving
face recognition [28]. In general it is hard to determine which
approach is suitable for a specific application [20], [18]. Our
comparison to TASTY (which uses both Garbled Circuits
and homomorphic encryption, see Section IV) shows that
an implementation based merely on homomorphic encryption
such as ours can be better for practical applications.

Orthogonal to SMC, there is a large body of work in the
overall area of privacy for location-based services. We refer
the readers to the surveys by Krumm [19] and Terrovitis [30]
for an overview. The following focuses on the most closely
related work on the proximity problem.

A recent work by Costantino et al. [5] solves a different
problem with similar methods. In this work, the setting is
a network where people with similar interests want to share
information. To compute similarity, interest integer vectors of
size n are compared in each dimension This is a generalisation
of the proximity problem to multiple dimensions. The paper
discusses the utility of variations of such metrics, where not
all values are compared, but only a random subset.

An important source of inspiration for this work is the
Louis and Pierre protocols by Zhong et al. [35]. The Louis
protocol computes precise distances using additive homomor-
phism in the same manner as described in Section II-A, but
uses a third party to check whether the principals are within
r from each other. The Pierre protocol obfuscates specific
distance comparisons similarly to Section II-B, however, it
does not incorporate a general inequality method and maps
the principals coordinates to a grid.

There are several published works about testing proximity
privately by concealing locations through cloaking the users
position within a partition of the plane, called a granule [9],
or a set of granules. However, these approaches lead to false
positives and false negatives. In some cases over 66% of
reported positives can be false [24]. We discuss the most
prominent approaches in relation to InnerCircle.

Šeděnka and Gasti [29] homomorphically compute dis-
tances using the UTM projection, ECEF (Earth-Centered

TABLE I. COMPARISON OF PROXIMITY PROTOCOLS

Protocol

Precise

D
ecentralized

Fully
Privacy-
preserving

Single
R

ound-trip

Narayanan 2 [25]
Narayanan 1,3 [25] X X
Pierre[35] X X
Louis[35] X X
Lester[35] X X X
Hide&Crypt[9]
C-Hide&Hash[24] X X
FriendLocator[33] X
VicinityLocator[33] X X
PP-[HS,UTM,ECEF][29] X X X
InnerCircle X X X X

Earth-Fixed) coordinates, and using the Haversine formula.
Haversine and ECEF are both useful when considering the
curvature of the earth. Results using these three distance
functions are combined with both the inequality function from
Erkin et l. [8], and using garbled circuits using a technique
from a work by Kolesnikov et al. [17]. InnerCircle is less
resource-consuming both in terms of bandwidth and processing
time when r is not large, and requires fewer round trips
to complete the protocol. As argued above, small values of
r makes sense for many practical applications of proximity
testing. Being a recent and prominent work, an effort to
compare the performance of this work and InnerCircle, which
showed that it has similar performance to TASTY. The results
are expanded in [14].

The Hide&Crypt protocol by Mascetti et al. [9] consists
of two steps. The first step is a filtering done between a third
party and the initiating principal. The next step uses a more fine
grained granularity, and is executed between the two principals.
In both steps, the granule which a principal is located is sent
to the other party. C-Hide&Hash, also by Mascetti et al. [24],
is a centralized protocol, where the principals do not need to
communicate pairwise but otherwise share many aspects with
Hide&Crypt.

FRIENDLOCATOR by Šikšnys et al. [33] presents a cen-
tralized protocol where clients map their position to different
granularities, similarly to Hide&Crypt, but instead of refining
via the second principal each iteration is done via the third
party. VICINITYLOCATOR, also by Šikšnys et al. [32] is an
extension of FRIENDLOCATOR, which allows the proximity
of a principal to be represented not only in terms of squares,
but instead can have any shape.

Narayanan et al. [25] present three protocols for location
proximity. The first two make use of private equality testing
to find whether three hexagons are overlapping, however with
the second protocol being centralized. The third makes use of
private set intersection to compute whether the two principals
has an overlap in location tags, which makes it very hard for
attackers to spoof their location, but rely severely on how much
data can be collected about the environment (through WiFi,
GPS, Bluetooth, etc).

In Table I each protocol is classified as precise, decentral-
ized, fully privacy-preserving and the number of round-trips
needed to conclude the protocol. Justifications for Table I can
be found in the full version of the paper[14]. By precise is

5

meant that granted enough computational power, the protocol
can give proximity verdicts without false positives and false
negatives, down to the precision of the coordinate system. A
decentralized protocol does not rely on a third party. A fully
privacy-preserving proximity protocol conforms to the security
definitions of Section III.

It is concluded that InnerCircle is the only ad-hoc current
protocol to uphold all four properties. Note that due to the
restricted availability of prototypes implementing the related
work, we were not able to benchmark the protocols in Ta-
ble I, and we restricted ourselves to the comparison presented
previously against generic SMC (which has most features in
common with our approach).

VI. CONCLUSIONS

We have proposed InnerCircle, a parallelizable protocol
which achieves fully privacy-preserving location proximity
without a trusted third party in a single round trip.

Our experiments show that compared to other solutions
InnerCircle excels when the queried radius is small and when
many threads can be executed in parallel. The former is a
common case in the scenario of geofencing [13]. The latter
two means that the usability of the protocol will be boosted
by future hardware development. The key size necessary to
preserve privacy inherently grows over time, and processors
gain most of their processing capacity from more cores, rather
than from an increase in CPU frequency.

Our future work is on protection against stronger attackers
that tamper with the message format and re-run the protocol.

Acknowledgments Thanks are due to Jorge Cuellar for gen-
erous feedback, to Daniel Hedin for insights on cryptographic
games, to Dan Boneh for pointers to related work, and to
Enrico Lovat for optimization ideas. This work was funded by
the European Community under the ProSecuToR and WebSand
projects and the Swedish agencies SSF and VR.

REFERENCES

[1] AngelList. Location based services startups, Mar. 2015. https://angel.
co/location-based-services.

[2] G. Barthe, G. Danezis, B. Gregoire, C. Kunz, and S. Zanella-Beguelin.
Verified computational differential privacy with applications to smart
metering. In CSF, 2013.

[3] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification
of code-based cryptographic proofs. In POPL, 2009.

[4] D. Coldewey. “Girls Around Me” creeper app just might get people to
pay attention to privacy settings. TechCrunch, March 2012.

[5] G. Costantino, F. Martinelli, and P. Santi. Investigating the privacy
versus forwarding accuracy tradeoff in opportunisticinterest-casting.
IEEE Trans. Mob. Comput., 13(4):824–837, 2014.

[6] J. Cuéllar, M. Ochoa, and R. Rios. Indistinguishable regions in
geographic privacy. In SAC, 2012.

[7] P. Dewan and P. Dasgupta. P2P reputation management using dis-
tributed identities and decentralized recommendation chains. IEEE
Trans. Knowl. Data Eng., 22(7):1000–1013, 2010.

[8] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft. Privacy-preserving face recognition. In PETS, 2009.

[9] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen.
Preserving location and absence privacy in geo-social networks. In
CIKM, 2010.

[10] T. E. Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[11] Glympse Inc. Glympse. https://www.glympse.com/, 2015. [Online;
accessed 01-February-2015].

[12] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applica-
tions, volume 2. Cambridge university press, 2009.

[13] A. Greenwald, G. Hampel, C. Phadke, and V. Poosala. An economically
viable solution to geofencing for mass-market applications. Bell Labs
Technical Journal, 16(2):21–38, 2011.

[14] P. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A Parallelizable
Decentralized Privacy-Preserving Location Proximity Protocol. http:
//www.cse.chalmers.se/∼andrei/innercircle-full.pdf, 2015. Full version.

[15] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security, 2011.

[16] N. Koblitz. Elliptic curve cryptography. Mathematics of Computation,
48(177), 1987.

[17] V. Kolesnikov, A. Sadeghi, and T. Schneider. Improved garbled circuit
building blocks and applications to auctions and computing minima. In
CANS, 2009.

[18] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. A systematic approach
to practically efficient general two-party secure function evaluation
protocols and their modular design. Journal of Computer Security,
21(2):283–315, 2013.

[19] J. Krumm. A survey of computational location privacy. Personal and
Ubiquitous Computing, 13(6):391–399, 2009.

[20] R. L. Lagendijk, Z. Erkin, and M. Barni. Encrypted signal processing
for privacy protection: Conveying the utility of homomorphic encryption
and multiparty computation. IEEE Signal Process. Mag., 30(1):82–105,
2013.

[21] N. Leavitt. Internet security under attack: The undermining of digital
certificates. IEEE Computer, 44(12):17–20, 2011.

[22] M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu, and K. Ren. All
your location are belong to us: breaking mobile social networks for
automated user location tracking. In J. Wu, X. Cheng, X. Li, and
S. Sarkar, editors, MobiHoc, 2014.

[23] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality, 1(1):5,
2009.

[24] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia. Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies. VLDB J., 20(4):541–566, 2011.

[25] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh.
Location privacy via private proximity testing. In NDSS, 2011.

[26] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT, 1999.

[27] G. Qin, C. Patsakis, and M. Bouroche. Playing hide and seek with
mobile dating applications. In SEC, 2014.

[28] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-
preserving face recognition. In ICISC, 2009.

[29] J. Sedenka and P. Gasti. Privacy-preserving distance computation and
proximity testing on earth, done right. In ASIACCS, 2014.

[30] M. Terrovitis. Privacy preservation in the dissemination of location
data. SIGKDD Explorations, 13(1):6–18, 2011.

[31] M. Veytsman. How i was able to track the location of any tinder user,
February 2014. Web resource: http://blog.includesecurity.com/.

[32] L. Šikšnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu. Private and
flexible proximity detection in mobile social networks. In Mobile Data
Management, 2010.

[33] L. Šikšnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and O. Andersen. A
location privacy aware friend locator. In SSTD, 2009.

[34] X. Zhang, H. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. Andersen.
SCION: scalability, control, and isolation on next-generation networks.
In S&P, 2011.

[35] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre:
three protocols for location privacy. In PETS, 2007.

6

