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Abstract—In this paper we present the formalisation of three
well-known Identity Management protocols - SAML, OpenID and
OAuth. The formalisation consists of two steps: formal specifica-
tion using HLPSL (High-Level Protocol Specification Language)
and formal verification using a state-of-the-art verification tool
for security protocols called AVISPA (Automated Validation
of Internet Security Protocols and Applications). The existing
formalisation initiatives using AVISPA are based on SAML and
OpenID, leaving OAuth entirely, even though OAuth is one of the
most widely-used Internet protocols. Furthermore, the motivation
of the existing initiatives was to identify any weakness. In this
paper, we have taken an opposite approach as we are keen to
present how to model these protocols correctly. Moreover, our
formalisation is based on a model of identity and also captures
the authentication mechanism; both of these are missing in the
existing works.

Index Terms—Identity Management, Formalisation, SAML,
OpenID, OAuth, AVISPA.

I. Introduction
With the proliferation of the Internet and web-enabled

services, a great deal of online services have been introduced
which deal with extremely sensitive information. This has
raised the need for providing such services only to the au-
thenticated and authorised users and similarly, accessing such
services in a secure manner. To ensure that only authenticated
and authorised users can access the respective online services
while maintaining security and privacy, the concept of Identity
Management (IdM, in short) has been introduced which re-
sulted in various different Identity Management Systems (IMS,
in short). Shibboleth [1] based on Security Assertion Markup
Language (SAML) [2], OpenID [3] and OAuth [4] are the
three most widely-used IMS.

Since these protocols are used to exchange sensitive per-
sonal information, it is extremely important to analyse the
security of such protocols. Analysing a security protocol is a
tricky task and can be carried out in many ways, for example,
by security protocol experts or by utilising automated tools.
Among these two, using an automated tool is the preferred
approach as there is evidence of identifying security flaws even
after the protocol was carefully analysed by experts [5, 6]. A
protocol analysis tool, in essence, leverages different formal
methods and computational models such as mathematical logic
or inductive verification to identify flaws in a security protocol.
One of the widely used tools is called AVISPA (Automated
Validation of Internet Security Protocols and Applications)

which uses mathematical logics to analyse security properties
of an Internet protocol [7, 8].

AVISPA tool internally depends on the formal modelling of
a security protocol in which a formal specification is defined
using a specification language called High-Level Protocol
Specification Language (HLPSL). There are existing works in
which AVISPA has been utilised to model SAML and OpenID
and then identify flaws in different SAML and OpenID im-
plementations. For example, Armando et. al. identified severe
flaws in the SAML-based authentication used for Google Apps
using AVISPA [9]. They proposed a fix and based on this fix a
correct modelling of SAML in HLPSL has been published in
[10]. Similarly, AVISPA tool has been utilised to find exploits
in OpenID implementations [6, 11]. Unfortunately, the existing
approaches have the following shortcomings:

• None of the existing models considered the inclusion of
an authentication step in the respective protocol flow.

• The modelling was carried out without considering a
model of digital identity. Without a model of identity,
the flow is incomplete. For example, how attributes are
exchanged was not included in the protocol flow.

• The security goals of the existing approach were quite
narrow in the sense they did not consider the security of
many constructs of the respective protocol.

• There is no analysis of the OAuth protocol using AVISPA
even though OAuth is one of the most widely used
Internet protocols.

• The existing formalisations of OpenID (in [6, 11]) were
more focused to identify flaws in the protocol and then
to propose fixes. After proposing the fixed, the correct
formalisation has not been published.

In this paper we address all of the identified shortcomings
by presenting a formalisation of SAML, OpenID and OAuth
using a model of identity and considering the authentication
step in the protocol flow. The paper is organised as follows. In
Section II, we present a model of identity. A brief introduction
of SAML, OpenID and OAuth is presented in Section III
along with the mathematical notations for presenting different
constructs of these protocols. We briefly describe the AVISPA
tool in Section IV and present the formalisation in Section V.
A brief discussion of our approach is presented in Section VI
and finally, we conclude in Section VII.



II. Digital Identity Model
An entity, for example a user or an organisation, is a

physical or logical object which has a separate distinctive
existence either in a physical or logical sense [12]. To define
the identity of a user, we utilise the Digital Identity Model
(DIM) introduced in [13]. According to this model, the (whole)
identity of a user is actually distributed in different partial
identities which are valid within a security domain (context)
of an enterprise (organisation). Since the partial identity of a
user is only valid within a domain, it is essential to specify the
domain whenever a partial identity is mentioned. Each such
partial identity consists of a number of attributes and their
corresponding values, valid within the domain of a particular
organisation.

Let us assume that D denotes the set of domains and d
defines the domain of a single organisation whereas Ud denotes
the set of users, Ad denotes the set of attributes and AVd denotes
the set of values for those attributes within d. Then, we can
relate users and their attributes in a domain by the following
partial function:

Definition 1: Let atEntToVald : Ad×Ud → AVd be the (par-
tial) function that for an entity and attribute returns the
corresponding value of the attribute in domain d.

The function is partial as not all entities have a value for
each attribute. This also makes sense in practical systems as
in many such systems, users are required to provide values
for a number of attributes (e.g. email, telephone number,
etc.). However, there remain some optional attributes (e.g. age,
postal addresses, etc.) for which users may not provide any
values.

Then, we can define the partial identity of a user (u) using
the following definition.

Definition 2: For a domain d, the partial identity of a user
u ∈Ud within d, denoted parIdentu

d , is given by the set:

{(a,v) |a ∈ Ad , atEntToVald(a,u) is defined and equals v} .

If we consider that there are n valid attribute-value pairs for
a user u, the partial identity of u in d can also be defined as:

parIdentu
d = {(a1,v1),(a2,v2),(a3,v3)...(an,vn)} .

The (total/whole) identity of an entity can be defined as the
union of all her partial identities in all domains.

Definition 3: For an entity u ∈U , the identity of u is given
by the set:

identu =
⋃
{(d,parIdentu

d) |d ∈ DOMAIN such that u ∈Ud}.

The concept of Identity Management (IdM) has been pro-
posed to facilitate the management of digital identities [12].
Formally, IdM consists of technologies and policies for rep-
resenting and recognising entities with their digital identities
[14]. A system that is used for identity management is called
an Identity Management System (IMS). Each IMS involves
the following parties:

User. A user receives services from a service provider (see
below).

Service Provider. A Service Provider (SP, in short) is an
organisation that provides services to the users or to other
SPs. It is also known as the Relying Party (RP, in short).

Identity Provider. An Identity Provider (IdP, in short) is an
organisation that provides digital identities to allow clients to
receive services from an SP.

One of the functionalities of an IMS is to enable users to
share their partial identities between different organisations
(e.g. an IdP and SP). During this process, for the sake of pri-
vacy, users usually do not share their full partial identities be-
tween two organisations. Instead, a privacy-friendly approach
is to share a limited view of a user’s data across organisational
boundaries. Such a limited view is defined as the profile of a
user. Mathematically, a profile is a subset of the partial identity
of a user within a domain: PROFILEu

d ⊆ parIdentu
d . Hence,

we can define the profile of a user u ∈Ud in domain d in the
following way, where j ≤ n:

PROFILEu
d = {(a1,v1),(a2,v2),(a3,v3)...(a j,v j)} .

III. Identity Management protocols
In this section we present a brief overview of SAML,

OpenID and OAuth and introduce the mathematical notations
of different constructs of these protocols.

A. SAML
SAML is one of the most widely deployed federated

identity management technologies [2]. It is an XML (EX-
tensible Markup Language)-based standard for exchanging
authentication and authorisation information between different
autonomous domains. It relies on a request/response protocol
in which one party (an SP) requests particular identity infor-
mation about a user and the other party (an IdP) responds with
the information using an assertion.

A SAML protocol flow between a user, an IdP and an SP
is as follows. When a user tries to access a resource/service
provided by the SP, the SP forwards the user to a service called
the Discovery Service or the Where Are You From (WAYF)
Service, where a pre-configured list of trusted IdPs is shown to
the user. The user chooses her preferred IdP and then the user
is forwarded to the IdP with a SAML authentication request.
The authentication request consists of an identifier and the
entity ID of the SP. We denote a SAML authentication request
with AuthnReq and model it as presented in Table I, where
idreq denotes the identifier in each SAML request and idsp
denotes the identifier of the SP which is represented as the
entityID in SAML.

The IdP authenticates the user and a SAML response
containing a SAML assertion with user attributes is sent back
to the SP. The assertion consists of the profile of the user as
released by the IdP. We denote the assertion with SAMLAssrtn
and model it as presented in Table I. The SAML assertion is
at first digitally signed and then embedded inside a SAML
response which also consists of the request identifier, the entity
ID of the IdP and the entity ID of the SP. We denote a SAML
response with SAMLResp and model it as presented in Table



TABLE I
SAML, OPENID AND OAUTH NOTATIONS

SAML Authentication Request: AuthnReq = (idreq, idsp)
SAML Assertion: SAMLAssrtn = (PROFILEu

id p)
SAML Response: SAMLResp = (idreq, idsp, idid p,({SAMLAssrtn}K−1

id p
))

OpenID Request: OpenIDReq = (idreq, idid p, idrp,urlsp)
OpenID Response: OpenIDResp = (idreq, idid p, idrp,{PROFILEu

id p}K−1
id p

)

OAuth Request: OAuthReq = (idreq,urlsp)
OAuth Response: OAuthResp = (idreq, idrs,{PROFILEu

rs}K−1
rs
)

I, where idid p denotes the entity ID of the IdP. Furthermore,
{SAMLAssrtn}K−1

id p
represents a digitally signed assertion with

the private key of IdP (K−1
id p).

When the SP receives the response, it extracts the SAML
assertion and its signature is validated using the public key of
the IdP. If the signature is valid, the SP retrieves the embedded
user attributes (the profile, PROFILEu

idp) from the assertion and
takes an authorisation decision.

To enable the protocol flow discussed above, a notion of
trust needs to be established between an IdP and an SP. This is
achieved by exchanging the respective metadata, an XML file
in specified formats containing different required information,
of the IdP and SP and then storing such metadata at the
appropriate repositories. This enables each party to build up
the Trust Anchor List (TAL). After this, the IdP and SP are
said to be part of the same federation, the so called Circle of
Trust (CoT).

B. OpenID

OpenID is a decentralised IMS which provides SSO solu-
tions for web services over the Internet [3]. Like SAML, the
involved parties in OpenID are : Users, OpenID Providers (also
known as Providers) and Service Providers, known as Relying
Parties (RPs) in OpenID terminology. OpenID is based on the
open trust concept where every party trusts each other and
hence, there is no need to establish trust like SAML.

The protocol flow in OpenID is similar to SAML. A user
submits a request to access a service provided by an SP.
The SP provides an HTML form where the user submits
her OpenID identifier. The identifier is used to discover the
OpenID provider. Next, the user is forwarded to the provider
where the user is authenticated. Then, an authentication re-
sponse is returned back to the SP. The SP validates the
response and if validated, the user is considered authenticated
at the SP. The response may also consist the profile of the user
as released by the provider. In this case, the user attributes are
extracted from the response and then the SP takes an authorisa-
tion decision. Like SAML, we denote the OpenID request and
response with OpenIDReq and OpenIDResp respectively. They
are modelled as presented in Table I, where idreq denotes an
identifier for the request, idid p denotes the OpenID endpoint
of the provider where the request is sent, idrp denotes the
RP identifier and urlsp denotes the URL of the SP where
the respective response is returned. Here, {PROFILEu

id p}K−1
id p

represents a user profile consisting of user attributes and their

respective values which is digitally signed with the private key
of the provider.

C. OAuth

OAuth, based on the notion of open trust like OpenID, is
one of the fastest growing community-based specifications that
allows any user to delegate her access right in a more user-
friendly and secure way [4]. OAuth protocol comprises of four
different classes of entities.

Resource Owners. Resource owners (or owners in short)
own and control the protected resources and are capable of
granting (delegating) limited access rights to third parties for
accessing protected resources. They take the role of users as
in SAML and OpenID.

Clients. Clients are third party applications that can make
requests to protected resources on a user’s behalf.

Authorisation Servers. Authorisation servers are responsi-
ble for granting access tokens to clients.

Resource Servers. Resource servers host protected re-
sources and are responsible of accepting requests and pro-
viding resources. In many settings, resource and authorisation
servers may be the same entity.

A simplified abstract protocol flow in OAuth is as follows.
Let us assume that a resource owner wants to delegate access
rights to a client (an application) so that the client can access
some protected resources of the owner, hosted at the resource
server. The flow starts with the client asking for authorisation
of the owner to access those resources. Once the request is
authorised, a credential known as the authorisation grant is
returned to the client. The client then authenticates itself to
an authorisation server and requests an access token using the
authorisation grant. The authorisation server validates the grant
and if valid, issues an access token. Then, the client requests
access to the protected resources by presenting the access
token to the resource server. The resource server validates the
access token and if valid, the access request is granted and the
requested resource is returned to the client.

In OAuth, user attributes are also considered as resources
which can be retrieved via the OAuth response. We denote an
OAuth request and response with OAuthReq and OAuthResp
respectively and abstractly model them as presented in Table
I, where idreq denotes an identifier for the request, idrs denotes
the identifier of the resource server and urlsp denotes the URL
of the SP where the respective response is returned to. Here,
{PROFILEu

rs}K−1
rs

represents a user profile consisting of user



attributes and their respective values which is digitally signed
with the private key of the resource server.

IV. AVISPA
AVISPA [7, 8] tool is utilised for formal modelling and

analysing security protocols automatically to determine if
certain security properties are satisfied. The structure of the
AVISPA tool is illustrated in Figure 1.

HLPSL

Translator

HLPSL2IF

IF

On-the-fly 
Model-Checker

OFMC

Cl-based
Attack-Searcher

CL-AtSE

SAT-based 
Model-Checker

SATMC

Tree-Automata-based 
Protocol-Analyzer

TA4SP

Output

Fig. 1. AVISPA structure.

AVISPA utilises a formal specification language called
High-Level Protocol Specification Language (HLPSL). The
HLPSL is based on Lamport’s Temporal Logics of Actions
(TLA) [15] and allows anyone to specify security languages
formally in a more human readable way. In HLPSL, different
entities of a security protocol are modelled using roles which
emulate entities. Each role defines different constructs consist-
ing of variables that it needs to handle, agents emulating other
roles in the protocol and channels exposing the communication
interfaces of the role. In addition, within each role, the
interactions with other roles using the defined channels are
also specified. In essence, each interaction models a transition
from one input state of the role to an output state. The full set
of transitions defines the formal behaviour of each role of the
security protocol. The security goals of the protocol are also
specified in the HLPSL along with the attacker’s knowledge.
The AVISPA tool supports only the Dolev-Yao attacker model
in which it is assumed that the intruder (attacker) has full
access to all communication channels. It is also assumed that
the attacker can intercept all messages sent and received over
the specified channels as well as modify such messages, only if
the intruder has knowledge about the cryptographic constructs
and possesses the correct cryptographic credential (key).

The AVISPA tool is equipped with a translator called the
HLPSL2IF translator which translates any security protocol
model written in HLPSL into a low level protocol language
called Intermediate Format (IF). In summary, the AVISPA
tool functions as follows. The security protocol and its goals
are specified in HLPSL. This is then fed into the HLPSL2IF
translator which translates the HLPSL into an IF. The IF is
then fed into one of the back-ends which determines if the

security goals are satisfied. Currently, four different back-
ends are supported: the On-the-fly Model-Checker (OFMC),
Constraint-Logic-based Attack Searcher (CL-AtSe), the SAT-
based Model-Checker (SATMC) and the Tree Automata based
on Automatic Approximations for the Analysis of Security
Protocols (TA4SP).

In practice, protocol formalisations using AVISPA is a two
step process: specification and verification.
• A protocol specification is carried out using two steps:

– writing the protocol itself in Alice-Bob (A-B) notation,
explained later and

– specifying the protocol and its security goals in HLPSL
and saving it in a file.

• Verification of the modelled protocol is carried out by
executing the AVISPA tool using the HLPSL file to
determine if the security goals are satisfied.

The A-B notation is merely a simplified flow of a security
protocol specifying the interactions among different entities in
the protocol. A protocol presented in A-B notation provides
a clear illustration of the entities involved and the messages
exchanged between them. An example of the A-B notation of
the well-known Wide Mouth Frog protocol [16] is presented
in Listing 1. Here, two entities A and B would like to setup a
new session key KAB using a trusted server S. Furthermore,
KAS represents a key shared between A and S whereas KBS
represents a shared key between B and S. A generates and
sends KAB encrypted with KAS to S and then S forwards it
to B encrypted with KBS. After this, A and B will share the
new session key to interact with each other.

1. A->S: {KAB}_KAS
2. S->B: {KAB}_KBS

Listing 1: Alice-Bob Notation

In the next step, the protocol is modelled using HLPSL
along with a set of security goals. HLPSL supports two
different types of security goals: secrecy and authentication.
Here, secrecy refers to the goal which asserts that a certain
value should be kept secret between only two entities. The
format for specifying a secrecy goal is: secrecy_of id. The id
represents a protocol id variable in HLPSL. The id is then
embedded inside a goal fact which is written in HLPSL as:
secret(value, id,A,B). This represents that the goal represented
using id asserts that the value should be kept secret between
entities A and B. Then, the security fact is added as part of
the transitions of the entity which generates the value. Finally,
the secrecy goal is added at the section called goal inside the
HLPSL file.

On the other hand, the authentication goal checks if an
entity is correct in believing that the other entity is the intended
peer of their interaction in the current session and agrees
on a certain value upon reaching a certain state. The format
for specifying an authentication goal is: authentication_on id,
where id represents a protocol id variable in HLPSL. The



1. U->SP:{KU.U.SP.URI}_KSP
2. SP->U:{SP.U.IDP.{AuthnReq(ID.SP).URI}_inv(SAMLKSP)}_KU

3. U->IDP:{U.IDP.{AuthnReq(ID.SP).URI}_inv(SAMLKSP)}_KIDP
4. IDP->U:{IDP.U.Resource(LogInURI).N}_KU

5. U->IDP:{U.IDP.UName.Pass.N}_KIDP
6. IDP->U:{IDP.U.SP.{{SAMLResp(ID.IDP.SP.SAMLAssrtn)}_inv(SAMLKIDP).URI}_inv(KIDP)}_KU

7. U->SP:{U.SP.{{SAMLResp(ID.IDP.SP.SAMLAssrtn)}_inv(SAMLKIDP).URI}_inv(KU)}_KSP
8. SP->U:{{Resource(URI)}_inv(SP)}_KU

Listing 2: SAML protocol flow using Alice-Bob Notation

1 role user (
2 U,IDP,SP : agent, KU,KSP,KIDP,SAMLKIDP : public_key,
3 SSP,RSP,SIDP,RIDP : channel(dy),
4 Resource,PROFILE,SAMLAssrtn : hash_func, AuthnReq,SAMLResp

: message)↪→
5 played_by U def=
6 local
7 State, N,N1 : nat,
8 ID,URI,UName,Pass,LogInURI : text
9 const u_idp_n,u_idp_uname,u_idp_pass: protocol_id

10

11 init
12 State := 0
13

14 transition
15

16 1. State=0 /\ RSP(start) =|> State’:=2 /\ URI’:=new() /\
SSP({KU.U.SP.URI’}_KSP)↪→

17 2. State=2 /\ RSP({{U.IDP.AuthnReq(ID’.SP).URI}_inv(KSP)}
_KU) =|> State’:=4 /\ SIDP({U.IDP.AuthnReq(ID’.SP).
URI}_KIDP)

↪→
↪→

18 3. State=4 /\ RIDP({IDP.U.Resource(LogInURI).N’}_KU) =|>
State’:=6 /\ SIDP({U.IDP.UName.Pass.N’}_KIDP) /\
request(U,IDP,u_idp_n,N’) /\ witness(U,IDP,
u_idp_uname,UName) /\ witness(U,IDP,u_idp_pass,Pass)

↪→
↪→
↪→

19 4. State=6 /\ RIDP({IDP.{U.SP.{SAMLResp(ID’.IDP.SP.
SAMLAssrtn(PROFILE(UName’)).N1’)}_SAMLKIDP}_inv(KIDP
)}_KU) =|> State’:=8 /\ SSP({{U.SP.{SAMLResp(ID’.IDP
.SP.SAMLAssrtn(PROFILE(UName’)).N1’)}_inv(SAMLKIDP)}
_inv(KU)}_KSP)

↪→
↪→
↪→
↪→

20 5. State=8 /\ RSP({{Resource(URI)}_inv(KSP)}_KU) =|> State
’:=10↪→

21 end role

Listing 3: Modelling a User in SAML using HLPSL

goal facts related to the authentication goal are witness and
request. One of this goal fact appears in the transition of
one entity whereas the other goal fact appears in the tran-
sition of the other entity. Examples of these goals facts are
request(A,B, id,value) and witness(B,A, id,value) added in the
transitions of A and B respectively to check that if these entities
are authenticated to each other by agreeing on the same value
between themselves. Finally, the authentication goal is added
at the section called goal inside the HLPSL file.

In the last step, the AVISPA tool is invoked with the
HLPSL file for verification using the following command:
% avispa file.hlpsl –{ofmc | satmc | clastse | ta4sp} with one
of the backends.

V. Protocol formalisations
At first, the SAML protocol is illustrated in Alice-Bob

notation in Listing 2. Next, we model the involved entities in
SAML using HLPSL by defining each role (entity) and then
specifying their interactions in Listing 3, Listing 4, Listing 5
and Listing 6.

The modelling of a user in SAML using HLPSL starts with
defining some variables as presented in Listing 3. Among
these variables, the agent variables represent the entities the
current entity interacts with in the role. KU, KIDP and
KSP represent the public keys of the user, IdP and the SP
respectively. SAMLKIDP and SAMLKSP represent the public
keys of the IdP and SP which are exchanged when the IdP
and SP exchange their respective metadata and are hence are
not public to the user and other entities. SSP represents the

channel used by the user to send any message to the SP
whereas RSP represents the receiving communication channel
from the SP. Similarly, SIDP and RIDP represent the sending
and receiving communication channels to and from the IdP
respectively from the perspective of the user. The protocol_id
variables (e.g. c_idp_n) represent the ids that are used while
defining the security goals explained below. The transitions
in each role essentially define the interactions of the entity
with other entities. The role starts from an initial state (for
the user it is 0) and upon receiving a message in a receiving
channel it switches to its next state. The receiving and sending
of messages for the role are analogous to the respective
interactions presented in the A-B notation.

It is to be noted that HLPSL does not support secure
(HTTPS) channel. Therefore, to ensure security and simulate
the behaviour of a secure channel, all messages need to be
encrypted with the corresponding keys before they are sent
over any (insecure) channel. To achieve this, each sender
encrypts every message with the public key of the receiver
and then sends it over the defined channel. For example,
SSP({KU.U.SP.URI′}_KSP) indicates that the message con-
sisting of the user agent U , his corresponding public key KU ,
the URL of the requested service URI and the SP user agent
SP is encrypted with the public key of the SP (KSP) and then
is sent over the SSP channel.

One important role is the session (Listing 6) which models
a whole session for one single run of a protocol and contains
the initialisation of all other roles with appropriate parameters.



1 role serviceProvider (
2 U,IDP,SP : agent, KSP : public_key,
3 SAMLKSP,SAMLKIDP : public_key, SND,RCV : channel(dy),
4 Resource,PROFILE,SAMLAssrtn : hash_func, AuthnReq,SAMLResp

: message)↪→
5 played_by SP def=
6 local
7 State,N1 : nat,
8 ID,UName : text,
9 KU : public_key,

10 URI : text
11 const sp_idp_samlresponse,sp_idp_n1 : protocol_id
12

13 init

14 State:=1
15

16 transition
17

18 1. State=1 /\ RCV({KU’.U.SP.URI’}_KSP) =|> State’:=
3 /\ ID’:=new() /\ SND({{U.IDP.AuthnReq(ID’.SP).URI}
_inv(SAMLKSP)}_KU’)

↪→
↪→

19 2. State=3 /\ RCV({{U.SP.{SAMLResp(ID.IDP.SP.SAMLAssrtn(
PROFILE(UName’)).N1’)}_inv(SAMLKIDP)}_inv(KU)}_KSP)
=|> State’:=5 /\ SND({{Resource(URI)}_inv(KSP)}_KU)
/\ request(SP,IDP,sp_idp_n1,N1’) /\ request(SP,IDP,
sp_idp_samlresponse,SAMLResp) /\ secret(Resource(URI
),u_sp_resource,{U,SP})

↪→
↪→
↪→
↪→
↪→

20 end role

Listing 4: Modelling an SP in SAML using HLPSL

1 role identityProvider (
2 U,IDP,SP : agent, KU,KIDP : public_key, SAMLKSP,SAMLKIDP :

public_key,↪→
3 SND,RCV : channel(dy), Resource,PROFILE,SAMLAssrtn :

hash_func,↪→
4 AuthnReq,SAMLResp : message)
5 played_by IDP def=
6

7 local
8 ID,UName,Pass : text,
9 URI,LogInURI : text,

10 State,N,N1 : nat
11 const u_idp_n,sp_idp_n1,u_idp_uname,u_idp_pass,

sp_idp_samlresponse : protocol_id↪→
12

13 init
14 State:=7

15

16 transition
17

18 1. State=7 /\ RCV({U.IDP.AuthnReq(ID’.SP).URI’}_KIDP) =|>
State’:=9 /\ N’ := new() /\ SND({IDP.U.Resource(
LogInURI).N’}_KU) /\ witness(IDP,U,u_idp_n,N’)

↪→
↪→

19 2. State=9 /\ RCV({U.IDP.UName’.Pass’.N’}_KIDP) =|> State’
:=11 /\ N1’:=new() /\ SND({IDP.{U.SP.{SAMLResp(ID.
IDP.SP.SAMLAssrtn(PROFILE(UName’)).N1’)}_inv(
SAMLKIDP)}_inv(KIDP)}_KU) /\ secret(N,u_idp_n,{U,IDP
}) /\ secret(UName’,u_idp_uname,{U,IDP}) /\ secret(
Pass’,u_idp_pass,{U,IDP}) /\ secret(N1,sp_idp_n1,{SP
,IDP}) /\ secret(SAMLResp,sp_idp_samlresponse,{SP,
IDP}) /\ witness(IDP,SP,sp_idp_n1,N1’) /\ witness(
IDP,SP,sp_idp_samlresponse,SAMLResp) /\ witness(IDP,
U,u_idp_uname,UName)

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

20 end role

Listing 5: Modelling an IdP in SAML using HLPSL

1 role session (
2 U,IDP,SP : agent,
3 KU,KSP,KIDP,SAMLKIDP,SAMLKSP : public_key,
4 Resource,PROFILE,SAMLAssrtn : hash_func,
5 AuthnReq,SAMLResp : message)
6 def=
7 local SUSP,RUSP,SUIDP,RUIDP : channel(dy)
8 composition
9 user(U,IDP,SP,KU,KSP,KIDP,SAMLKIDP,SUSP,RUSP,SUIDP,RUIDP,

Resource,PROFILE,SAMLAssrtn,AuthnReq,SAMLResp)↪→
10 /\ serviceProvider(U,IDP,SP,KSP,SAMLKSP,SAMLKIDP,SUSP,

RUSP,Resource,PROFILE,SAMLAssrtn,AuthnReq,SAMLResp)↪→
11 /\ identityProvider(U,IDP,SP,KU,KIDP,SAMLKSP,SAMLKIDP,

SUIDP,RUIDP,Resource,PROFILE,SAMLAssrtn,AuthnReq,
SAMLResp)

↪→
↪→

12 end role
13

14 role enviroment()
15 def=
16 const u_sp_resource,sp_idp_samlresponse,u_idp_uname,

u_idp_pass,u_idp_n,sp_idp_n1 : protocol_id,↪→
17 u,idp,sp : agent,
18 ku,ksp,kidp,ki,samlkidp,samlksp : public_key,

19 resource,profile,samlassrtn : hash_func,
20 authnreq,samlresp : message
21

22 intruder_knowledge={u,sp,ksp,ki,inv(ki),idp,kidp,resource}
23 composition
24 session(u,idp,i,ku,ki,kidp,samlkidp,samlksp,resource,

profile,samlassrtn,authnreq,samlresp)↪→
25 /\ session(u,idp,sp,ku,ksp,kidp,samlkidp,samlksp,resource,

profile,samlassrtn,authnreq,samlresp)↪→
26 /\ session(i,idp,sp,ki,ksp,kidp,samlkidp,samlksp,resource,

profile,samlassrtn,authnreq,samlresp)↪→
27 end role
28

29 goal
30 secrecy_of u_sp_resource secrecy_of sp_idp_samlresponse

secrecy_of u_idp_uname secrecy_of u_idp_pass
secrecy_of u_idp_n secrecy_of sp_idp_n1

↪→
↪→

31

32 authentication_on u_idp_n authentication_on sp_idp_n1
authentication_on u_idp_uname authentication_on
u_idp_pass authentication_on sp_idp_samlresponse

↪→
↪→

33 end goal
34

35 enviroment()

Listing 6: Modelling a session and security goals for SAML

Next, a top level role called environment is declared which
defines three concurrent sessions. In the first and the third
sessions, an intruder is assumed to impersonate an SP and
a user respectively. Finally, several secrecy and authentication
security goals are specified. The meaning of each security goal
is elaborated in Table II and Table III.

By compiling all roles of SAML into a single HLPSL file
and executing the AVISPA tool with the file and the ofmc
backend will indicate that the modelled protocol is secure,
indicating that the security goals are satisfied.

The OpenID and OAuth protocols are illustrated in Alice-
Bob notation in Listing 7 and Listing 8 respectively. The cor-



TABLE II
SECRECY GOALS FOR SAML

secrecy_of Meaning
c_sp_resource provision of resource should be a secret

between U and SP
sp_idp_samlresponse AuthnResponse should be a secret between

SP and IDP
c_idp_{uname,pass} UName and Pass are secret between U and

IDP
{c_idp_n,sp_idp_n1} secret nonces between entities

TABLE III
AUTHENTICATION GOALS FOR SAML

authentication_on Meaning
sp_idp_samlresponse agreement on AuthnResponse between SP

and IDP
c_idp_{uname,pass} agreement on UName and Pass between U

and IDP
{c_idp_n,sp_idp_n1} agreement of nonces between entities

responding HLPSL files have been included in the appendix.
Each specified role of each protocol essentially captures the
interactions presented in the respective A-B notation. The se-
curity goals are similar to what presented for SAML. Copying
the contents of each the modelled protocols in an HLPSL file
and executing the AVISPA tool with the file and the ofmc
backend will show that the modelled protocols are secure
against the specified security goals. One interesting aspect to
be noted for OAuth is the presence of A in the A-B notation
(Listing 8) and the HLPSL in the appendix. Here, A represents
a set of attributes (resources in OAuth terminology) that the
RP would require to provide the requested service.

VI. Discussions
The security goals of secrecy of a certain value (or message)

between two entities is satisfied only if that value/message
is never exposed in plain text to other entities. Generally,
such a value/message is generated by one entity and is then
consumed by another entity. To ensure the secrecy of such a
value/message, the generator must encrypt the value/message
with the public key of the consumer. This will ensure that
only the consumer having the corresponding private key can
decrypt the value/message. We highlight two examples from
the HLPSL representation of SAML, OpenID and OAuth. The
SP encrypts the SAMLResp message with the public key of
the IdP (SAMLKIDP) retrieved from the exchange metadata.
This ensures that the SAMLResp can only be decrypted by the
corresponding IdP. Similarly, in OAuth, the AS (Authorisation
Server) encrypts AccessToken message with the public key
of the RS (Resource Server). This ensures that only the RS
can decrypt this message. Hence, even though, the encrypted
message is received by the APP (application) as part of the
flow, it can never decrypt the message.

On the other hand, the security goals of authenticity would
require two entities must agree on a certain message/value.
In the HLPSL representation of SAML, OpenID and OAuth,
examples of such values or messages are username, password,

SAMLResp, AuthzGrant and AccessToken.
Integrity of a certain value/message is modelled by signing

it digitally with the private key of the generator which is
then validated by the consumer using the public key of the
generator. In HLPSL, such a digital signature is modelled
using {value/message}_inv(key) where inv(key) represents the
private key of the corresponding entity.

To deter any reply attacks, each important message needs
to be accompanied with fresh nonces and the secrecy and
authenticity of such nonces must be satisfied. In our HLPSL
representations, nonces (e.g. N1,N2,etc.) have been presented
using natural numbers and their security has been satisfied
with their respective security goals in each modelling.

VII. Conclusion
In this paper we present the formalisation of three well-

known Identity Management protocols - SAML, OpenID and
OAuth - using the AVISPA tool. At first, the flow of each
of the protocol has been presented using A-B notation. Then,
each protocol has been modelled using HLPSL. Finally, the
HLPSL modelling of each protocol has been verified using
the AVISPA tool and the security goals of each protocol have
been satisfied, indicating the modelling of the protocols to be
secure.

Our representations are the first ones to include the formal-
isation of username and password in the protocol. In addition,
this is the first formalisation using AVISPA that is based
on a model of digital identity. The inclusion of PROFILE
introduces a powerful abstraction into the formalisation as it
hides away the details of the attribute values which are passed
during the protocol flow. Furthermore, none of the existing
formalisations of SAML and OpenID considered the need for
the extensive set of values/messages to be secret and to be
authentic like ours.

In essence, these formalisations can act as the blue-prints
which can be utilised to extend the formalisation of other
advanced Identity Management scenarios such as Attribute
Aggregation. An attribute aggregation mechanism allows a
user to aggregate attributes from multiple providers in a
single service session [17, 18]. There are different models of
attribute aggregation, all of which are based on SAML. The
SAML HLPSL formalisation presented here can be the basis
for formalising these existing attribute aggregation models.
Furthermore, the HLPSL representation can be leveraged to
formalise different implementations of SAML, OpenID and
OAuth to determine which implementations are secure.
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Appendix

OpenID HLPSL

1 role user (U, IDP, RP : agent, KU, KRP, KIDP : public_key, SRP, RRP, SIDP, RIDP : channel(dy), Resource, PROFILE : hash_func,
2 OpenIDReq, OpenIDResp: message)
3 played_by U def=
4 local
5 State,N,N1 : nat, ID,URI,UName,Pass,LogInURI : text const u_idp_n,u_idp_name,u_idp_passass : protocol_id
6 init
7 State := 0
8 transition
9 1. State=0 /\ RRP(start) =|> State’:=2 /\ URI’:=new() /\ SRP({KU.U.RP.URI’}_KRP)

10 2. State=2 /\ RRP({{U.IDP.OpenIDReq(ID’.IDP.RP.URI)}_inv(KRP)}_KU) =|> State’:=4 /\ SIDP({U.IDP.OpenIDReq(ID’.IDP.RP.URI)}_KIDP)
11 3. State=4 /\ RIDP({IDP.U.Resource(LogInURI).N’}_KU) =|> State’:=6 /\ SIDP({U.IDP.UName.Pass.N’}_KIDP) /\ request(U,IDP,u_idp_n,N’) /\ witness(U,IDP,u_idp_uname,U)

/\ witness(U,IDP,u_idp_passass,Pass)↪→
12 4. State=6 /\ RIDP({IDP.{U.RP.{OpenIDResp(ID’.IDP.RP.PROFILE(UName’).N1’)}_inv(KIDP)}_inv(KIDP)}_KU) =|> State’:=8 /\ SRP({{U.RP.{OpenIDResp(ID’.IDP.RP. PROFILE(

UName’).N1’)}_inv(KIDP)}_inv(KU)}_KRP)↪→
13 5. State=8 /\ RRP({{Resource(URI)}_inv(KRP)}_KU) =|> State’:=10
14 end role
15
16 role relyingParty (U,IDP,RP : agent, KRP,KIDP : public_key, SU,RU,SIDP,RIDP : channel(dy), Resource, PROFILE : hash_func,
17 OpenIDReq, OpenIDResp: message)
18 played_by RP def=
19 local
20 State, N1, N2 : nat, ID,UName,URI : text, KU : public_key, CheckAuthnResponse : bool
21 const rp_idp_openidresponse,rp_idp_n1,rp_idp_n2,u_rp_resource,rp_idp_checkAuthnResponse : protocol_id
22 init
23 State:=1
24 transition
25 1. State=1 /\ RU({KU’.U.RP.URI’}_KRP) =|> State’:=3 /\ ID’:=new() /\ SU({{U.IDP.OpenIDReq(ID’.IDP.RP.URI)}_inv(KRP)}_KU’)
26 2. State=3 /\ RU({{U.RP.{OpenIDResp(ID.RP.PROFILE(UName’)).N1’}_inv(KIDP)}_inv(KRP)}_KU) =|> State’:=5 /\ SIDP({{OpenIDResp(ID.RP.PROFILE(UName’).N1’)}_inv(KIDP)}

_KIDP) /\ request(RP,IDP,rp_idp_n1,N1’) /\ request(RP,IDP,rp_idp_openidresponse,OpenIDResp) /\ secret(OpenIDResp,rp_idp_openidresponse,{RP,IDP})↪→
27 3. State=5 /\ RIDP({{RP.IDP.CheckAuthnResponse’.N2’}_inv(KIDP)}_KRP) =|> State’:=7 /\ SU({{Resource(URI)}_inv(KRP)}_KU) /\ secret(Resource(URI),u_rp_resource,{U,RP

})/\ request(RP,IDP,rp_idp_n2,N2’) /\ request(RP,IDP,rp_idp_checkAuthnResponse,CheckAuthnResponse) /\ secret(CheckAuthnResponse,rp_idp_checkAuthnResponse,{
RP,IDP})

↪→
↪→

28 end role
29
30 role openIDProvider (U,IDP,RP : agent, KU,KIDP,KRP : public_key, SU,RU,SRP,RRP : channel(dy), Resource,PROFILE : hash_func,
31 OpenIDReq, OpenIDResp: message)
32 played_by IDP def=
33 local
34 ID,UName,Pass,URI,LogInURI : text, CheckAuthnResponse :bool, State,N,N1,N2 : nat
35 const u_idp_n,rp_idp_n1,rp_idp_n2,u_idp_uname,u_idp_pass,rp_idp_authnresponse,rp_idp_checkauthnresponse : protocol_id
36 init
37 State:=9
38 transition
39 1. State=9 /\ RU({U.IDP.OpenIDReq(ID’.RP).URI’}_KIDP) =|> State’:=11 /\ N’ := new() /\ SU({IDP.U.Resource(LogInURI).N’}_KU) /\ witness(IDP,U,u_idp_n,N’)
40 2. State=11 /\ RU({U.IDP.UName’.Pass’.N’}_KIDP) =|> State’:=13 /\ N1’:=new() /\ SU({{U.RP.{OpenIDResp(ID.RP.PROFILE(UName’)).N1’}_inv(KIDP)}_inv(KRP)}_KU) /\

secret(N,u_idp_n,{U,IDP}) /\ secret(N,u_idp_n,{U,IDP}) /\ secret(U,u_idp_uname,{U,IDP}) /\ secret(Pass,u_idp_pass,{U,IDP}) /\ secret(N1,rp_idp_n1,{RP,IDP})
/\ secret(OpenIDResp,rp_idp_authnresponse,{RP,IDP}) /\ witness(IDP,RP,rp_idp_n1,N1’) /\ witness(IDP,RP,rp_idp_authnresponse,OpenIDResp) /\ witness(IDP,U,
u_idp_uname,U) /\ witness(IDP,U,u_idp_uname,U)

↪→
↪→
↪→

41 3. State=13 /\ RRP({{OpenIDResp(ID.RP.PROFILE(UName’).N1’)}_inv(KIDP)}_KIDP) =|> State’:=15 /\ N2’:=new() /\ CheckAuthnResponse’:=new() /\ SRP({{RP.IDP.
CheckAuthnResponse’.N2’}_inv(KIDP)}_KRP) /\ witness(IDP,RP,rp_idp_checkauthnresponse,CheckAuthnResponse) /\ witness(IDP,RP,rp_idp_n2,N2’) /\ secret(N2,
rp_idp_n2,{RP,IDP}) /\ secret(CheckAuthnResponse,rp_idp_checkauthnresponse,{RP,IDP})

↪→
↪→

42 end role
43
44 role session (U,IDP,RP : agent, KU,KRP,KIDP : public_key, Resource,PROFILE: hash_func, OpenIDReq, OpenIDResp: message)
45 def=
46 local SURP,RURP,SUIDP,RUIDP,SRPIDP,RRPIDP,SIDPRP,RIDPRP: channel(dy)
47 composition
48 user(U,IDP,RP,KU,KRP,KIDP,SURP,RURP,SUIDP,RUIDP,Resource,PROFILE,OpenIDReq,OpenIDResp)
49 /\ relyingParty(U,IDP,RP,KRP,KIDP,SURP,RURP,SRPIDP,RRPIDP,Resource,PROFILE,OpenIDReq,OpenIDResp)
50 /\ openIDProvider(U,IDP,RP,KU,KIDP,KRP,SUIDP,RUIDP,SIDPRP,RIDPRP,Resource,PROFILE,OpenIDReq,OpenIDResp)
51 end role
52
53 role enviroment()
54 def=
55 const u_rp_resource,rp_idp_authnresponse,rp_idp_checkauthnresponse,u_idp_uname,u_idp_pass,u_idp_n,rp_idp_n1,rp_idp_n2 : protocol_id,
56 u,idp,rp : agent, ku,krp,kidp,ki : public_key, resource,profile : hash_func, openidreq,openidresp : message
57 intruder_knowledge={u,rp,krp,ki,inv(ki),idp,kidp,resource}
58 composition
59 session(u,idp,i,ku,ki,kidp,resource,profile,openidreq,openidresp)
60 /\ session(u,idp,rp,ku,krp,kidp,resource,profile,openidreq,openidresp)
61 /\ session(i,idp,rp,ki,krp,kidp,resource,profile,openidreq,openidresp)
62 end role
63
64 goal
65 secrecy_of u_rp_resource secrecy_of rp_idp_authnresponse secrecy_of rp_idp_checkauthnresponse secrecy_of u_idp_uname secrecy_of u_idp_pass secrecy_of u_idp_n

secrecy_of rp_idp_n1 secrecy_of rp_idp_n2↪→
66
67 authentication_on u_idp_n authentication_on rp_idp_n1 authentication_on rp_idp_n2 authentication_on u_idp_uname authentication_on u_idp_pass authentication_on

rp_idp_authnresponse authentication_on rp_idp_checkauthnresponse↪→
68 end goal
69
70 enviroment()

OAuth HLPSL

1 role user (
2 U,RP,AS,APP,RS : agent, KU,KRP,KAS,KAPP : public_key, SRP,RRP,SAS,RAS,SAPP,RAPP : channel(dy), Resource,PROFILE,AuthZGrant : hash_func,
3 AuthZReq : message)
4 played_by U def=
5 local
6 State,N1,N2,N3 : nat, ID,URI,UName,Pass,LogInURI : text, A : text set
7 const u_as_n1,u_as_n3,u_as_uname,u_as_pass,u_as_authzgrant : protocol_id
8 init
9 State := 0

10 transition
11 1. State=0 /\ RRP(start) =|> State’:=2 /\ URI’:=new() /\ SRP({KU.U.RP.URI’}_KRP)



12 2. State=2 /\ RAS({AS.U.Resource(LogInURI).N1’.ID’.A’}_KU) =|> State’:=4 /\ SAS({U.AS.{UName.Pass}_inv(KU).N1’.ID’}_KAS) /\ request(U,AS,u_as_n1,N1’) /\ witness(U,
AS,u_as_uname,UName) /\ witness(U,AS,u_as_pass,Pass) /\ secret(UName,u_as_uname,{U,AS}) /\ secret(Pass,u_as_pass,{U,AS})↪→

13 3. State=4 /\ RAS({AS.U.APP.{AuthZReq(ID.RP.AS.RS.A’)}_inv(KAS).ID’.N2’}_KU) =|> State’:=6 /\ N3’:=new() /\ SAPP({U.APP.AS.{{AuthZGrant(RP.AS.UName.A’.N2’.N3’)}
_inv(KU)}_KAS.ID’}_KAPP) /\ witness(U,AS,u_as_authzgrant,AuthZGrant) /\ witness(U,AS,u_as_n3,N3’)↪→

14 4. State=6 /\ RRP({{Resource(URI)}_inv(KRP)}_KU) =|> State’:=8
15 end role
16
17 role relyingParty (U,RP,AS,APP,RS : agent, KRP,KAS,KAPP,KRS : public_key, SU,RU,SAPP,RAPP : channel(dy), Resource,PROFILE : hash_func,
18 AuthZReq,AuthZResp : message)
19 played_by RP def=
20 local
21 State,N5 : nat, ID,UName,URI : text, KU : public_key, A : text set
22 const rs_rp_profile,rp_rs_n5,u_rp_resource,app_rp_authzresp : protocol_id
23 init
24 State:=1
25 transition
26 1. State=1 /\ RU({KU’.U.RP.URI’}_KRP) =|> State’:=3 /\ ID’:=new() /\ A’:=new() /\ SAPP({RP.APP.AS.RS.{AuthZReq(ID.RP.AS.RS.A’)}_inv(KRP)}_KAPP)
27 2. State=3 /\ RAPP({APP.RP.{AuthZResp({RP.{PROFILE(A’).N5’}_inv(RS).ID}_KRP)}_inv(KAPP)}_KRP) =|> State’:=5 /\ SU({{Resource(URI)}_inv(RP)}_KU) /\ request(RP,RS,

rp_rs_n5,N5’) /\ request(RP,RS,rs_rp_profile,PROFILE) /\ secret(PROFILE,rs_rp_profile,{RP,RS}) /\ secret(Resource(URI),u_rp_resource,{U,RP}) /\ secret(
AuthZResp,app_rp_authzresp,{APP,RP}) /\ request(APP,RP,app_rp_authzresp,AuthZResp)

↪→
↪→

28 end role
29
30 role authZServer (U,RP,AS,APP,RS : agent, KU,KRP,KAS,KAPP,KRS : public_key, SU,RU,SAPP,RAPP : channel(dy), Resource,AuthZGrant,AccessToken : hash_func,
31 AuthZReq : message)
32 played_by AS def=
33 local
34 ID,UName,Pass,LogInURI : text, State,N1,N2,N3,N4 : nat, A : text set
35 const u_as_n1,u_as_uname,u_as_pass,u_as_authzgrant,u_as_n3,as_rs_accesstoken,as_rs_n4 : protocol_id
36 init
37 State:=7
38 transition
39 1. State=7 /\ RAPP({APP.AS.RS.{AuthZReq(ID’.RP.AS.RS.A’)}_inv(KAPP)}_KAS) =|> State’:=9 /\ N1’ := new() /\ SU({AS.U.Resource(LogInURI).N1’.ID’.A’}_KU) /\ witness(

AS,U,u_as_n1,N1’)↪→
40 2. State=9 /\ RU({U.AS.{UName’.Pass’}_inv(KU).N1’.ID’.A’}_KAS) =|> State’:=11 /\ N2’:=new() /\ SU({AS.U.APP.{AuthZReq(ID’.RP.AS.RS.A’)}_inv(KAS).ID.N2’}_KU) /\

secret(N1’,u_as_n1,{U,AS}) /\ request(AS,U,u_as_uname,UName’) /\ request(AS,U,u_as_pass,Pass’)↪→
41 3. State=11 /\ RAPP({APP.AS.{{AuthZGrant(RP.AS.UName’.A’.N2’.N3’)}_inv(KU)}_KAS.ID’}_KAS) =|> State’:=13 /\ N4’:=new() /\ SAPP({AS.APP.RS.{{AccessToken(AS.RP.RS.

UName’.A’.N4’)}_inv(KAS).ID’}_KRS}_KAPP) /\ request(AS,U,u_as_authzgrant,AuthZGrant) /\ request(AS,U,u_as_n3,N3’) /\ witness(AS,RS,as_rs_accesstoken,
AccessToken) /\ witness(AS,RS,as_rs_n4,N4’) /\ secret(AuthZGrant,u_as_authzgrant,{U,AS})

↪→
↪→

42 end role
43
44 role resourceServer (U,RP,AS,APP,RS : agent, KU,KRP,KAS,KAPP,KRS : public_key, SAPP,RAPP : channel(dy), AccessToken,PROFILE : hash_func)
45 played_by RP def=
46 local
47 State,N4,N5 : nat, ID,UName : text, A : text set const as_rs_accesstoken,rs_rp_profile,as_rs_n4,rp_rs_n5 : protocol_id
48 init
49 State:=15
50 transition
51 1. State=15 /\ RAPP({APP.RS.{{AccessToken(AS.RP.RS.UName’.A’.N4’)}_inv(KAS).ID’}_KRS}_KRS) =|> State’:=17 /\ N5’:=new() /\ SAPP({RS.APP.RP.{RP.{PROFILE(A’).

N5’}_inv(KRS).ID’}_KRP}_KAPP) /\ request(AS,RS,as_rs_accesstoken,AccessToken) /\ secret(AccessToken,as_rs_accesstoken,{AS,RS}) /\ witness(RS,RP,
rs_rp_profile,PROFILE) /\ request(RS,AS,as_rs_n4,N4’) /\ witness(RS,RP,rp_rs_n5,N5’)

↪→
↪→

52 end role
53
54 role application (U,RP,AS,APP,RS : agent, KU,KRP,KAS,KAPP,KRS : public_key, SU,RU,SRP,RRP,SAS,RAS,SRS,RRS : channel(dy), AccessToken,AuthZGrant,PROFILE :

hash_func,↪→
55 AuthZReq,AuthZResp : message)
56 played_by APP def=
57 local
58 State,N2,N3,N4,N5 : nat, ID,UName : text, A : text set const app_rp_authzresp : protocol_id
59 init
60 State:=10
61 transition
62 1. State=10 /\ RRP({RP.APP.AS.RS.{AuthZReq(ID.RP.AS.RS.A’)}_inv(KRP)}_KAPP) =|> State’:=12 /\ SAS({APP.AS.RS.{AuthZReq(ID.RP.AS.RS.A’)}_inv(KAPP)}_KAS)
63 2. State=12 /\ RU({U.APP.AS.{{AuthZGrant(RP.AS.UName’.A’.N2’.N3’)}_inv(KU)}_KAS.ID’}_KAPP) =|> State’:=14 /\ SAS({APP.AS.{{AuthZGrant(RP.AS.UName’.A’.N2’.N3

’)}_inv(KU)}_KAS.ID}_KAS)↪→
64 3. State=14 /\ RAS({AS.APP.RS.{{AccessToken(AS.RP.RS.UName’.A’.N4’)}_inv(KAS).ID’}_KRS}_KAPP) =|> State’:=16 /\ SRS({APP.RS.{{AccessToken(AS.RP.RS.UName’.A’

.N4’)}_inv(KAS).ID}_KRS}_KRS)↪→
65 4. State=16 /\ RRS({RS.APP.RP.{RP.{PROFILE(A’).N5’}_inv(RS).ID’}_KRP}_KAPP) =|> State’:=18 /\ SRP({APP.RP.{AuthZResp({RP.{PROFILE(A’).N5’}_inv(KRS).ID’}_KRP

)}_inv(KAPP)}_KRP) /\ witness(APP,RP,app_rp_authzresp,AuthZResp)↪→
66 end role
67
68 role session (U,AS,RP,APP,RS : agent, KU,KAS,KRP,KAPP,KRS : public_key, Resource,AuthZGrant,PROFILE,AccessToken : hash_func,
69 AuthZReq,AuthZResp : message)
70 def=
71 local SURP,RURP,SUAS,RUAS,SUAPP,RUAPP,SRPU,RRPU,SRPAPP,RRPAPP,SASU,RASU,SASAPP,RASAPP,SRSAPP,RRSAPP,SAPPU,RAPPU,SAPPRP,RAPPRP,SAPPAS,RAPPAS,SAPPRS,RAPPRS: channel(

dy)↪→
72 composition
73 user(U,RP,AS,APP,RS,KU,KRP,KAS,KAPP,SURP,RURP,SUAS,RUAS,SUAPP,RUAPP,Resource,PROFILE,AuthZGrant,AuthZReq)
74 /\ relyingParty(U,RP,AS,APP,RS,KRP,KAS,KAPP,KRS,SRPU,RRPU,SRPAPP,RRPAPP,Resource,PROFILE,AuthZReq,AuthZResp)
75 /\ authZServer(U,RP,AS,APP,RS,KU,KRP,KAS,KAPP,KRS,SASU,RASU,SASAPP,RRSAPP,Resource,AuthZGrant,AccessToken,AuthZReq)
76 /\ resourceServer(U,RP,AS,APP,RS,KU,KRP,KAS,KAPP,KRS,SRSAPP,RRSAPP,AccessToken,PROFILE)
77 /\ application(U,RP,AS,APP,RS,KU,KRP,KAS,KAPP,KRS,SAPPU,RAPPU,SAPPRP,RAPPRP,SAPPAS,RAPPAS,SAPPRS,RAPPRS,AccessToken,AuthZGrant,PROFILE,AuthZReq,AuthZResp)
78 end role
79
80 role enviroment()
81 def=
82 const u_as_n1,u_as_n3,u_as_uname,u_as_pass,u_as_authzgrant,rs_rp_profile,rp_rs_n4,u_rp_resource, as_rs_accesstoken,as_rs_n4,rp_rs_n5,app_rp_authzresp: protocol_id,
83 u,as,rp,rs,app: agent, ku,kas,krp,krs,kapp,ki: public_key, resource,authzgrant,profile,accesstoken : hash_func,
84 authzreq,authzresp : message
85 intruder_knowledge={u,rp,krp,ki,inv(ki),as,kas,rs,krs,resource}
86 composition
87 session(u,as,i,app,rs,ku,kas,ki,kapp,krs,resource,authzgrant,profile,accesstoken,authzreq,authzresp)
88 /\ session(u,as,rp,app,rs,ku,kas,krp,kapp,krs,resource,authzgrant,profile,accesstoken,authzreq,authzresp)
89 end role
90
91 goal
92 secrecy_of rs_rp_profile secrecy_of u_rp_resource secrecy_of u_as_uname secrecy_of u_as_pass secrecy_of u_as_authzgrant secrecy_of as_rs_accesstoken secrecy_of

app_rp_authzresp↪→
93
94 authentication_on u_as_n1 authentication_on as_rs_n4 authentication_on rp_rs_n5 authentication_on rs_rp_profile authentication_on u_as_uname authentication_on

u_as_pass authentication_on as_rs_accesstoken authentication_on u_as_authzgrant authentication_on u_as_n3 authentication_on app_rp_authzresp↪→
95 end goal
96
97 enviroment()


