
Data Privacy in Multi-Cloud: An Enhanced Data
Fragmentation Framework

Randolph Loh
Cyber Security Strategic Technology Centre

Singapore Technologies Engineering Ltd
Singapore

0000-0001-8132-4266

Vrizlynn L. L. Thing
Cyber Security Strategic Technology Centre

Singapore Technologies Engineering Ltd
Singapore

0000-0003-4424-8596

Abstract—Data splitting preserves privacy by partitioning data
into various fragments to be stored remotely and shared. It
supports most data operations because data can be stored in
clear as opposed to methods that rely on cryptography. However,
majority of existing data splitting techniques do not consider
data already in the multi-cloud. This leads to unnecessary
use of resources to re-split data into fragments. This work
proposes a data splitting framework that leverages on existing
data in the multi-cloud. It improves data splitting mechanisms
by reducing the number of splitting operations and resulting
fragments. Therefore, decreasing the number of storage locations
a data owner manages. Broadcasts queries locate third-party
data fragments to avoid costly operations when splitting data.
This work examines considerations for the use of third-party
fragments and application to existing data splitting techniques.
The proposed framework was also applied to an existing data
splitting mechanism to complement its capabilities.

Index Terms—Data Storage, Multi-Cloud, Privacy Preserva-
tion, Data Splitting, Third-Party

I. INTRODUCTION

Data privacy is a concern when storing data in the Cloud
as it potentially gives external entities access to the data.
Extensive research on protecting the privacy of outsourced
data resulted in a plethora of data protection technologies
seeking to safely outsource sensitive data to the Cloud [7].
The multi-cloud is associated with public cloud solutions as
a heterogeneous collection of multiple CSPs with multi-tier
applications that migrated from private systems attract several
user archetypes, while the private cloud restricts its services
to a selective class of users [8, 10, 12, 15]. In terms of data
storage, users can securely outsource data of different levels
of sensitivity leveraging these architectures. For example, non-
sensitive data can be stored in the public cloud and sensitive
data in private clouds through the hybrid cloud infrastructure.
The distributed and unconnected nature of the multi-cloud
prevents collusion between CSPs in a way that undermines
the privacy of the data owner [7]. However, there are still
concerns on security and privacy [2].

Data splitting segments data into fragments in a way that
allows it to be stored at various locations such that less
sensitive fragments may be outsourced for storage in the multi-
cloud. This allows data owners to partially share their data with

other entities. As opposed to cryptographic techniques where
data is stored encrypted [7], less sensitive fragments can be
stored in clear to support various operations. However, many
data splitting techniques do not consider to use of pre-existing
data in the multi-cloud, and consequently, waste resources
repeatedly splitting data that are readily available.

a) Contributions: This work introduces a simple yet non-
trivial query step in the data splitting process. The main
contributions of this work are summarised as follows:
• This work proposes a data splitting framework that lever-

ages data that exist in the Cloud to improve the data
splitting mechanisms. The framework tries to reduce the
number of operations required to fragment data and is
thus more efficient. The resulting data fragments out-
sourced for storage are also reduced, thereby reducing
the number of CSPs a user has to manage.

• The proposed framework exploits existing data in the
Cloud to increase reliability and availability. Checks are
performed during retrieval where missing or corrupted
fragments can be rebuilt referencing third-party sources.

• An analysis on the considerations and application of the
proposed framework on existing data splitting techniques.
The framework was also applied to the semantic data
splitting mechanism described in [18].
b) Paper Organisation: This paper is organised as fol-

lows. Data splitting is described in Section II. Section III
introduces the proposed framework and considerations when
applying to existing data splitting techniques. Section IV
details the proposed framework complementing the work of
[18] before concluding in Section V.

II. DATA SPLITTING

Data splitting protects data whilst observing given privacy
requirements [21]. Data is split at the attribute, byte, or
semantic-level [7]. Data splitting should constitute a lossless
process such that the original data can be reconstructed from
its data fragments after being distributed and stored across the
multi-cloud. Less sensitive data fragments can be stored in
clear thus preserving some utility and therefore suitable for
sharing. Storing data fragments at different locations makes
it difficult for potential attackers for it will be necessary to
target multiple, if not all, relevant CSPs to retrieve the original

ar
X

iv
:2

21
1.

11
57

7v
1

 [
cs

.C
R

]
 1

8
N

ov
 2

02
2

https://orcid.org/0000-0001-8132-4266
https://orcid.org/0000-0001-8132-4266
https://orcid.org/0000-0003-4424-8596
https://orcid.org/0000-0003-4424-8596

data and extract useful information [6]. Individual fragments
neither allow re-identification nor leak sensitive information
as information inference is prevented [7].

A. System architecture

Data splitting is namely performed between three entities:
the data owner; a trusted proxy; and the CSP(s) [7]. Their
interactions are depicted in Figure 1 and described as follows.
Data splitting and outsourcing:

1) The data owner sends the data and its privacy require-
ments to the trusted proxy.

2) The trusted proxy receives the data and privacy require-
ments from the data owner. It splits the data according
to the privacy requirements.

3) The trusted proxy stores sensitive data fragments in
a local database while outsourcing less sensitive data
fragments to be stored and shared in the multi-cloud.

4) The trusted proxy records the locations for each data
fragment and stores it as metadata which is used to
retrieve and reconstruct the data to its original form.

Data retrieval:
1) The data owner sends a query to the trusted proxy.
2) The trusted proxy retrieves the storage information from

its database to craft queries accordingly.
3) The trusted proxy sends partial queries to their CSPs.
4) CSPs responds to the trusted proxy with partial results.
5) The trusted proxy reconstructs the data from its partial

results and returns it to the data owner.

Figure 1. Data outsourcing (left) and retrieval (right) through data splitting.

B. Related work

A distributed architecture using two untrusted servers was
presented in [1]. Data partitioned across independent databases
ensure that contents in any one database do not violate privacy.
The databases are assumed to not communicate with each
other. Data confidentiality is achieved by vertically partition-
ing data. Queries are also transformed before they are sent.
However, the authors of [4, 5] suggested the use of encryption
to overcome the assumption where databases do not commu-
nicate to further improve privacy guarantees. Fragmentation
was minimised because queries over fragmented and encrypted

attributes are generally inefficient. The authors of [9] proposed
a scheme that encrypts data before distributing to different
cloud storage facilities applying two algorithms that leveraged
logical operations to manipulate data bits. The scheme was
extended in [11] where a parallelisable algorithm decides if
a data packet requires more security from internal or external
threats. In another work, users determine the number of data
fragments before a file is split using a random pattern frag-
mentation algorithm and distributed to NoSQL databases [20].
A faster alternative to cryptographic approaches but carries
some processing overheads. Also, secret sharing schemes and
hashing algorithms can be used to allow multiple authorised
entities to access the distributed data [14].

C. Motivation

Data splitting when used with other privacy-preserving tech-
niques provides stronger security guarantees but also degrades
data utility and often requires added resources. This work
attempts to avoid costly operations to increase the efficiency
of data splitting mechanisms. Most proposed methods only
considered outsourcing data to the multi-cloud for storage
or sharing. To the best of the authors’ knowledge, none
have explored in detail the use of existing or published data
in the Cloud when fragmenting data. In the event where
two data objects are fragmented in a way both result in
equal data fragments, either data object can use the other’s
fragment to reconstruct itself. Owing to this, data owners may
adopt readily available third-party data fragments instead of
generating their own, reducing the need to process and store
their own data fragments in the multi-cloud.

Figure 2. Proposed general data splitting and storage to the multi-cloud.

III. DATA SPLITTING LEVERAGING ON EXISTING DATA

Many works try to preserve privacy and utility when out-
sourcing data but none have been identified to take advantage
of data that is readily available in the Cloud. This work argues
that the data owner does not need to process and store data that
already exist in the Cloud. It assumes that fragmenting various
data objects will result in data fragments that are similar, if not
the same, under similar data splitting policies or requirements.
The proposed framework searched for these data fragments in
the multi-cloud. Such data fragments hold significance because

they can be used to reconstruct multiple distinct sets of data
and should therefore be managed appropriately. This work
considers data splitting within the context of the multi-cloud.

A. System architecture

Figure 2 depicts the proposed framework involving three
entities: the data owner; a trusted proxy; and the CSP(s). Here,
the proxy broadcasts queries during the splitting process. The
retrieval process is unchanged.
Data splitting and outsourcing (proposed framework):

1) The data owner sends the data and its privacy require-
ments to the trusted proxy.

2) The trusted proxy receives the data and privacy require-
ments from the data owner. It broadcasts queries to
the CSPs for similar data fragments. It then splits the
remaining data according to the privacy requirements.

3) The trusted proxy stores sensitive data fragments in
a local database while outsourcing less sensitive data
fragments to be stored and shared in the multi-cloud.

4) The trusted proxy records the locations for each data
fragment and stores it as metadata which is used to
retrieve and reconstruct the data to its original form.

B. Cloud deployment models, security models, and queries

The proposed framework is applicable to all types of Cloud
deployment. Risks are subject to varying security models, level
of sensitivity of data to be stored, and queries to CSPs.

The Public Cloud assumes CSPs are semi-honest or honest-
but-curious. Where information may be extracted from queries
and mapped to their corresponding data fragments or original
data. Queries must leak as little information as possible
and to use secure means communication. Private Clouds are
restricted to authorised users and are assumed to be trusted.
Although localised queries are assumed to be secure, sending
queries to remote instances retain similar concerns as queries
in the public cloud. Hybrid Clouds incorporate characteristics
of public and private clouds. CSPs are assumed to be semi-
honest or honest-but-curious for higher levels of security. Data
fragments may have varying sensitivity where sensitive data
fragments can be stored at locations that provide more security
guarantees (i.e. private cloud). CSPs are assumed to less likely
collude due to the segregation of the public and private cloud.
Therefore queries can be separated accordingly, which only
partially leak information. This is a stronger security guarantee
compared to the public cloud.

C. Primary and secondary CSPs

Data owners can provide a list of n CSPs (list CSP)
during the data splitting process, the primary (list CSP [0])
and secondary CSPs (list CSP [1] to list CSP [n− 1]). The
Primary CSP (PCSP) is the primary location where a given
data fragment will be stored. The data owner has full control
over data fragments stored here. It is assumed to be the most
reliable and is the first location that is searched when queried.
Secondary CSPs (SCSPs) are used as alternative sources of
data belonging to a mix of third-party entities. Data at these

locations are assumed to be freely shared. This provides
availability through redundancy. The trusted proxy broadcasts
queries for each data fragment f in the set F where each CSP
will respond with the location of similar data fragments if it
is found or None otherwise. Essentially creating a list of n
locations (sLoc). The trusted proxy stores the data fragment
at the PCSP if it responded None. A |F| ∗ n list of storage
locations (loc list) is updated accordingly. The loc list is
stored on the proxy locally and is used when retrieving data.

Algorithm 1 Data outsourcing broadcast query
Input:

F . a set of data fragments
list CSP . a list of n specified CSPs

Output:
loc list . a |F| ∗ n list of storage locations

1: for each f in F do
. broadcast to all specified CSPs querying for a similar data fragment; CSP

returns the location if it exists, None if it does not
2: sLoc← broadcastQuery(f, list CSP)

. check if the primary CSP returns negative; if so, store the data fragment at the
primary CSP

3: if not(sLoc[0]) then
4: sLoc[0]← storeFrag(f, list CSP [0])
5: end if

. add to the storage information list
6: add(sLoc, loc list)
7: end for
8: return loc list

D. Data fragment management
Multiple data objects potentially employ the same data

fragment and third-parties data fragments may be outside one’s
control. Data consistency is an important factor in ensuring
that updates and deletions are properly reflected across the
multi-cloud [13]. Dynamic systems are necessary to upkeep
countless data fragments in a distributed environment [16].
For simplicity, SCSPs are assumed to be third-parties.

1) Update data fragments: The proposed framework sim-
plifies updating data fragments as only CSPs directly con-
trolled by the data owner are affected, more specifically
the data fragment that needs to be revised. There are two
approaches to update data fragments. Approach 1 tries to
replace the old data fragment with a new data fragment.
However, old fragments may be purposed by multiple data
objects. Directly replacement causes conflicts for other data
objects and faults in data retrieval. Data fragments should
only be directly replaced if no other data object is affected.
Approach 2 straightforwardly selects a new PCSP to store the
new data fragment and records its location. Fragments should
still adhere to their privacy requirements in both approaches.
Finally, the trusted proxy should also update SCSPs storage
information.

2) Delete data fragments: Data fragments are deleted from
its PCSP even though it will create conflicts for other data
objects that utilise the data fragment and PCSP.

3) Conflicts in data fragments: Conflicts arise when a
PCSP no longer contains the appropriate data fragment pre-
viously stored during the outsourcing process. This may be
validated via the response of the PCSP, if the returned data
fragment is consistent with SCSPs or not None.

4) Resolving conflicts: The trusted proxy can query SCSPs
for their respective data fragments and rebuild the appropriate
data fragment when conflicts occur. Rebuilt data fragments
should not be stored with the old PCSP but a new PCSP
because the old PCSP may have been purposed by other data
objects, thus avoiding future conflicts.

Algorithm 2 Data retrieval and reconstruction
Input:

loc list . a |F| ∗ n list of storage locations
pri CSPnew . a new primary CSP (optional)

Output:
org data . the reconstructed original data

. for each data fragment’s storage information loc info in loc list
1: for each loc infof in loc list do

. broadcast to all CSPs to return the data fragment; CSPs returns the data
fragment if it exists, None if it does not

2: data fragf ← broadcastQuery(loc infof)
. check the response of the primary CSP; reconstruct the data fragment if the

check fails
3: if not(checkFrag(data fragf [0]) then

. reconstruct the data fragment while referencing secondary CSPs
4: fragf ← reconstFrag(data fragf)

. store the reconstructed data fragment at the new primary CSP and update
the storage information

5: loc infof [0]← storeFrag(fragf , pri CSPnew)
6: end if
7: end for

. reconstruct the original data
8: org data← reconstData(data frag)
9: return org data

E. Application on existing methods
A preliminary analysis of the applicability of the proposed

framework on various data splitting techniques was conducted.
The analysis looked at the adopted security model, measures
for privacy, data splitting mechanism, data fragmentation ap-
proach, and the use of encryption. It was determined that
data splitting methods that introduced randomisation into
the data fragmentation process will find difficulties due to
the resulting uniqueness of data fragments. Also, it may be
possible to recreate similar encrypted data fragments using
the same encryption parameters but this is not encouraged.
Finally, methods that preserve higher levels of usability in data
fragments support key operations of the proposed framework.

IV. SEMANTIC DATA SPLITTING LEVERAGING ON
EXISTING DATA

The proposed framework was applied to a data splitting
mechanism [18]. Textual data is split to be outsourced in clear
while supporting various operations. This allowed the pro-
posed framework to present itself distinctly when it searches
for data fragments in the multi-cloud.

The data splitting mechanism is aware of contextual infor-
mation within the data while evaluating semantics against pri-
vacy requirements provided by a data owner during fragmenta-
tion and achieves a priori privacy guarantees by exploiting the
C-sanitisation privacy model [17, 19]. Data fragments are
constructed by dividing and sorting terms that were determined
to risk disclosing identifiable information before distributing
across the multi-cloud. It can be applied to individual instances
of unstructured data objects (i.e. single documents) unlike
privacy models which require a collection of data sets.

A. Semantic data splitting with the proposed framework

The proposed framework addresses issues identified in [18]
on two fronts. First, the number of performed operations is
greatly reduced. Terms that were already found stored do
not undergo costly operations needed to allocate terms to a
suitable data fragment. Their storage information is simply
recorded. The second observes a decrease in the number
of data fragments. Thereby reducing the number of storage
locations required. The lesser the number of term allocations,
the lesser the number of resulting data fragments. Generated
data fragments should still comply with privacy requirements.

The proposed framework assumes the same architecture
and security model as [18]. However, the trusted proxy will
broadcast search queries to CSPs and record the storage
locations for queries that received positive responses or None
otherwise. Terms whose queries returned positive are referred
to as third-party data fragments. Third-party fragments do
not need to be stored nor allocated to a locally created data
fragment. Leftover identifying terms are stored locally while
leftover quasi-identifying terms are split into data fragments
before being distributed respectively. Storage information will
be used when querying or restoring data.

B. Implementation, evaluation, and analysis

Experiments were conducted on a virtual Ubuntu 18.04
instance. Articles were sourced from Wikipedia, as in [18],
and segmented into paragraphs that are approximately 1KB
in size for evaluation. Terms were extracted with Rapid
Automatic Keyword Extraction (RAKE) and common terms
were used to form a database. Web-based information theoretic
assessments were performed with the Bing search engine while
queries were keyword word searches on the local database.
The local database substitutes querying CSPs to contain the
experiment such that the relationship between the number of
data fragments to the cost of its construction is clearly defined.

Table I
SOLUTION COMPARISON FRAGMENT GENERATION

Solution Privacy
model Strategy frag id qid et

Time
(min)

[18] (HIV,virus)-
sanitisation

Unordered 26 4 43 - 21
Ordered 26 5 43 - 19

Proposed
framework

(HIV,virus)-
sanitisation

Unordered 20 2 28 18 11
Ordered 20 2 27 17 10

1) Evaluation metrics and observations: The metrics in
[18] were adjusted to evaluate and feature quantitative mea-
surements for comparison. They are described as follows:
• frag: Average number of data fragments produced. De-

termines the number of cloud storage locations required.
• id: Average number of identifiers discovered.
• qid: Average number of quasi-identifiers discovered to

construct the data fragments. A smaller number of quasi-
identifiers results in lesser data fragments produced.

• et: Average number of terms found in the local database.
• Time (min): Average time required to split data.

Similar splitting strategies were enlisted where terms and
data fragments were either arranged and evaluated according to
the level of information it discloses in increasing or decreasing
order (ordered) or not (unordered).

Table I presents the averaged number of extracted terms and
data fragments produced. The proposed framework observed
lower counts of identifiers, quasi-identifiers, and data frag-
ments. Directly affecting the number of operations performed
during the data splitting process. The probability of positive
responses to queries increased as the local database already
contained terms that were associated with the instantiation
of the privacy model. The increased number of terms found
in the local database implies a decrease in the number of
operations performed to generate data fragments, thus lesser
time is required to split data. Web-based information theoretic
assessments may have influenced the data splitting process [3].

2) Third-party data fragments and queries: Risks from
sourcing data from the multi-cloud are reduced. Information
inferred from third-party data fragments cannot be associated
with the data owner because they belong to third-party entities.
Hence, these data fragments neither need to conform to privacy
requirements of the data owner nor are subject to the costly
data splitting process. Additionally, the proxy may split queries
in a way that only partially leaks information to prevent CPSs
from inferring information. Sub-queries can be sent to CSPs
observing their level of sensitivity. Where sub-queries with
higher levels of privacy or sensitivity are sent to CSPs with
higher levels of privilege or trust as in [6]. Data owners may
employ techniques such as secret searches to further protect
their queries. The authors are aware that data owners also have
the ability to infer information from the responses of the CSPs,
however, this is outside the scope of this work. This work also
discounts the ability to map data fragments to data objects not
of their own as it violates privacy.

V. CONCLUSION

The proposed data splitting framework leverages existing
data in the multi-cloud to improve data splitting mechanisms.
It introduces a simple yet non-trivial query step to the data
splitting process. Various factors were considered for the use of
third-party data fragments, including concerns on the privacy
of queries and management of shared data fragments. The
application of the proposed framework was also evaluated and
was found suitable for most data splitting mechanisms. Fur-
thermore, extensive analysis of one such application shows that
the proposed framework provided enhancements. Although, it
assumes the availability of similar, if not the same, third-party
data fragments while addressing the reliability and availability
of data fragments stored in the Cloud. The authors would like
to explore dynamically managing third-party data fragments
and protecting split data queries sent to the Cloud in the future.

REFERENCES

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu, “Two can keep a
secret: A distributed architecture for secure database services,” CIDR
2005, 2005.

[2] J.-M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono, and N. Mar-
nau, “Security and privacy-enhancing multicloud architectures,” IEEE
Transactions on Dependable and Secure Computing, vol. 10, no. 4,
pp. 212–224, 2013.

[3] A. van den Bosch, T. Bogers, and M. de Kunder, “Estimating search
engine index size variability: A 9-year longitudinal study,” in Sciento-
metrics, 2016.

[4] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Fragmentation and encryption to enforce privacy in
data storage,” in ESORICS, 2007.

[5] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Combining fragmentation and encryption to protect
privacy in data storage,” ACM Trans. Inf. Syst. Secur., vol. 13, 22:1–
22:33, 2010.

[6] H. Dev, T. Sen, M. Basak, and M. E. Ali, “An approach to protect
the privacy of cloud data from data mining based attacks,” in 2012 SC
Companion: High Performance Computing, Networking Storage and
Analysis, IEEE, 2012, pp. 1106–1115.

[7] J. Domingo-Ferrer, O. Farras, J. Ribes-González, and D. Sánchez,
“Privacy-preserving cloud computing on sensitive data: A survey
of methods, products and challenges,” Computer Communications,
vol. 140, pp. 38–60, 2019.

[8] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in 2013 IEEE Sixth International Conference on
cloud computing, IEEE, 2013, pp. 887–894.

[9] K. Gai, M. Qiu, and H. Zhao, “Security-aware efficient mass distributed
storage approach for cloud systems in big data,” in 2016 IEEE 2nd
International Conference on Big Data Security on Cloud (BigDataSe-
curity), IEEE International Conference on High Performance and
Smart Computing (HPSC), and IEEE International Conference on
Intelligent Data and Security (IDS), IEEE, 2016, pp. 140–145.

[10] P. Jamshidi, C. Pahl, S. Chinenyeze, and X. Liu, “Cloud migration
patterns: A multi-cloud service architecture perspective,” in Service-
Oriented Computing-ICSOC 2014 Workshops, Springer, 2015, pp. 6–
19.

[11] Y. Li, K. Gai, L. Qiu, M. Qiu, and H. Zhao, “Intelligent cryptography
approach for secure distributed big data storage in cloud computing,”
Information Sciences, vol. 387, pp. 103–115, 2017.

[12] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,
NIST Cloud Computing Reference Architecture: Recommendations of
the National Institute of Standards and Technology (Special Publica-
tion 500-292). North Charleston, SC, USA: CreateSpace Independent
Publishing Platform, 2012, ISBN: 1478168021.

[13] N. Mhaisen and Q. M. Malluhi, “Data consistency in multi-cloud
storage systems with passive servers and non-communicating clients,”
IEEE Access, vol. 8, pp. 164 977–164 986, 2020.

[14] Z. Al-Odat, E. Al-Qtiemat, and S. Khan, “A big data storage scheme
based on distributed storage locations and multiple authorizations,”
in 2019 IEEE 5th Intl Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), IEEE, 2019, pp. 13–18.

[15] D. Petcu, “Multi-cloud: Expectations and current approaches,” in
Proceedings of the 2013 international workshop on Multi-cloud ap-
plications and federated clouds, 2013, pp. 1–6.

[16] A. E. A. Raouf, N. L. Badr, and M. F. Tolba, “Distributed database sys-
tem (dss) design over a cloud environment,” in Multimedia Forensics
and security, Springer, 2017, pp. 97–116.

[17] D. Sánchez and M. Batet, “C-sanitized: A privacy model for document
redaction and sanitization,” Journal of the Association for Information
Science and Technology, vol. 67, no. 1, pp. 148–163, 2016.

[18] D. Sánchez and M. Batet, “Privacy-preserving data outsourcing in
the cloud via semantic data splitting,” Computer Communications,
vol. 110, pp. 187–201, 2017.

[19] D. Sánchez and M. Batet, “Toward sensitive document release with
privacy guarantees,” Engineering Applications of Artificial Intelligence,
vol. 59, pp. 23–34, 2017.

[20] N. L. Santos, B. Ghita, and G. L. Masala, “Enhancing data security
in cloud using random pattern fragmentation and a distributed nosql
database,” in 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), IEEE, 2019, pp. 3735–3740.

[21] J.-J. Yang, J.-Q. Li, and Y. Niu, “A hybrid solution for privacy
preserving medical data sharing in the cloud environment,” Future
Generation computer systems, vol. 43, pp. 74–86, 2015.

	I Introduction
	II Data splitting
	II-A System architecture
	II-B Related work
	II-C Motivation

	III Data splitting leveraging on existing data
	III-A System architecture
	III-B Cloud deployment models, security models, and queries
	III-C Primary and secondary CSPs
	III-D Data fragment management
	III-D1 Update data fragments
	III-D2 Delete data fragments
	III-D3 Conflicts in data fragments
	III-D4 Resolving conflicts

	III-E Application on existing methods

	IV Semantic data splitting leveraging on existing data
	IV-A Semantic data splitting with the proposed framework
	IV-B Implementation, evaluation, and analysis
	IV-B1 Evaluation metrics and observations
	IV-B2 Third-party data fragments and queries

	V Conclusion

