
SegmentPerturb: Effective Black-Box
Hidden Voice Attack on Commercial ASR

Systems via Selective Deletion

by

Ganyu Wang

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

August 2021

© Ganyu Wang, 2021

THESIS EXAMINATION INFORMATION

Submitted by: Ganyu Wang

Master of Science in Computer Science

Thesis title: SegmentPerturb: Effective Black-Box Hidden Voice Attack on Commer-

cial ASR Systems via Selective Deletion

An oral defense of this thesis took place on July 27, 2021 in front of the following

examining committee:

Examining Committee

Chair of Examining Committee Dr. Patrick Hung
Research Supervisor Dr. Miguel Vargas Martin
Supervisory Committee Dr. Bill Kapralos
External Examiner Dr. Faisal Qureshi

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was demonstrated

by the candidate during an oral examination. A signed copy of the Certificate of

Approval is available from the School of Graduate and Postdoctoral Studies.

i

Abstract

Voice control systems continue becoming more pervasive as they are deployed in

mobile phones, smart home devices, automobiles, etc. Commonly, voice control sys-

tems have high privileges on the device, such as making a call or placing an order.

However, at the same time, they are vulnerable to voice attacks, which may lead to

serious consequences. In this thesis, SegmentPerturb was proposed to craft hidden

voice commands via inquiring the target models. The basic idea of SegmentPerturb

is that the original command audio was separated into multiple segments and a cer-

tain degree of perturbation was applied to each segment by probing the target speech

recognition system. Experiments were conducted on four popular commercial speech

recognition APIs plus one smart home device to show the practicability of Segment-

Perturb. Results suggest that SegmentPerturb can generate voice commands which

can be recognized by the machine but are hard to understand by a human.

Keywords— Automatic Speech Recognition System; Hidden Voice Command

ii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored. This is a

true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech University)

to lend this thesis to other institutions or individuals for the purpose of scholarly research. I

further authorize University of Ontario Institute of Technology (Ontario Tech University) to

reproduce this thesis by photocopying or by other means, in total or in part, at the request

of other institutions or individuals for the purpose of scholarly research. I understand that

my thesis will be made electronically available to the public.

The research work in this thesis that was performed in compliance with the regulations

of Research Ethics Board under REB 16091 certificate file number.

Ganyu Wang

iii

Statement of Contributions

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication. I have used standard referencing practices

to acknowledge ideas, research techniques, or other materials that belong to others. Fur-

thermore, I hereby certify that I am the sole source of the creative works and/or inventive

knowledge described in this thesis.

iv

Acknowledgements

We are grateful for the support from the Natural Sciences and Engineering Research Council

of Canada.

v

Contents

Thesis Examination Information i

Abstract ii

Author’s Declaration iii

Statement of Contributions iv

Acknowledgements v

Contents vi

List of Figures ix

List of Tables x

List of Abbreviations xi

List of Symbols xii

1 Introduction 1

2 Related Works 5
2.1 Technical Background: Speech Recognition 5

2.1.1 Structure of Modern ASR . 6
2.2 Attack on ASR . 14

2.2.1 Machine Learning Model Level Voice Attacks 14
2.2.2 Hardware-level Voice Attack . 16

3 Method 17
3.1 Threat Model and Assumptions . 17
3.2 Transmission Model . 18
3.3 Attack Scenario . 18
3.4 The Perturbation Framework . 20
3.5 Monotonically Increasing Perturbation Function 22
3.6 The Näıve Perturbation Algorithm . 24

vi

3.7 Segmented Perturbation Algorithm . 25

4 Experiment 29
4.1 Experiment Setup . 29
4.2 Preliminary Experiment: Over-the-line Attack using Näıve Perturbation Al-

gorithm . 30
4.3 Over-the-line Attack using SegmentPerturb 31

4.3.1 Over-the-line Attack using “SegmentPerturb - Random Delete” . . 32
4.3.2 Over-the-line Attack using “SegmentPerturb - Random Delete in

Spectrum” . 34
4.4 Over-the-air Attack using SegmentPerturb 36

4.4.1 Over-the-air Attack using “SegmentPerturb - Random Delete” . . . 36
4.4.2 Over-the-air Attack using “SegmentPerturb - Random Delete in

Spectrum” . 40
4.5 Practicability Test on Google Home . 41

4.5.1 Attack Distance . 41
4.5.2 Real Scenario Test . 42

4.6 Audio Intelligibility Study . 43

5 Discussion 46
5.1 Comparing with Previous Works . 46

5.1.1 Types of Adversarial Audio . 48
5.1.2 Computational Power Consumption 49
5.1.3 ASR Attacked . 50
5.1.4 Transferability . 50

5.2 Detail Comparison with the State-of-the-art Hidden Voice Attack 50
5.2.1 Background . 51
5.2.2 Claims from Abdullah et al. [8] . 51
5.2.3 Reproducing Abdullah et al.’s work [8] 52
5.2.4 Comparing with the Intelligibility of the Attack Audio Samples . . 56

5.3 SegmentPerturb as a Framework . 58
5.4 No Assumption on the Signal Processing Pipeline of ASR 58
5.5 Judging Whether the Voice Attacks Truly Fool the ASR 59
5.6 Defenses . 60

5.6.1 Detect Electronic Sound . 60
5.6.2 Using Other Interaction Methods to Confirm the High-Level Command 61

6 Conclusion 62
6.1 Limitations . 62

6.1.1 Limited Transferability . 62
6.1.2 Attack Performance Depends on the Abnormal Tolerance of ASR . 63
6.1.3 Model Update of ASR Nullify the Attack Audio Samples for the

Previous Version . 63
6.2 Future Work . 64
6.3 Conclusions . 64

vii

Bibliography 66
Appendices . 72

A Audio Intelligibility Test . 72

viii

List of Figures

2.1 The structure of modern ASRs. 6
2.2 The structure of the sound input device. 7
2.3 The structure of an RNN. 11
2.4 The structure of an LSTM. 12

3.1 Transmission model. 19
3.2 Depiction of the iterative perturbation framework. 21
3.3 The perturbed waveform can fall to x∗A (can be recognized by the machine

but also can be recognized by a human) or ideally fall to x∗B (can be recog-
nized by the machine and cannot be recognized by a human). 22

3.4 The schematic diagram for SegmentPerturb. 27

4.1 Perturbation rate for the over-the-line attack using näıve perturbation. . . 31
4.2 The APR for over-the-line attack using “SegmentPerturb - Random Delete”. 33
4.3 The relationship between segment length and APR for “SegmentPerturb -

Random Delete”. 33
4.4 The APR for over-the-line attack using “SegmentPerturb - Random Delete

in Spectrum”. 34
4.5 The relationship between segment length and APR for “SegmentPerturb -

Random Delete in Spectrum”. 35
4.6 The APR for over-the-air attack using SegmentPerturb. 37
4.7 The perturbation rate for every segment of the command “Turn on airplane

mode”. 38
4.8 The relationship between the physical distance and the APR. 39
4.9 A floor plan of the bedroom. Google Home was placed at positions A through

F. 43

5.1 The STFT of the audio “Turn on the light”. 56

ix

List of Tables

4.1 Over-the-air attack on Google speech recognition API, using “SegmentPer-
turb - Random Delete” . 39

4.2 Transferability test for the attack. 40
4.3 Over-the-air attack on Google speech recognition API, using “SegmentPer-

turb - Random Delete in Spectrum”. 41
4.4 Attack on Google Home. The minimum system volume for the hidden voice

command to be recognized. 42
4.5 Real scenario attack on Google Home. 3: The command can be recognized

by Google Home. 7: The command cannot be recognized by Google Home. 43
4.6 Audio Intelligibility Test. 45

5.1 Comparing with previous work. 1: Audio Type, the audio type of the adver-
sarial audio. 2: Medium: “L”, over-the-line; “A”, over-the-air. 3: # Queries:
number of queries on the ASR to generate the attack model or audio. “?”
means that the author did not provide this information. 4: Time: time
consumption for generating one adversarial audio clip. 5: # ASR Attacked:
number of ASR which is demonstrated successfully attacked. 6: ASR inter-
nal: the internal model type of the ASR. “?” means that the model type
is unknown as the attack is in a black-box setting. 7: Attack distance: the
workable over-the-air attack distance from the speaker to the microphone.
8: Transferability: the transferability of the attack. 47

5.2 The reproduction of the work from Abdullah et al. [8] 53
5.3 The maximum LTW that is below 1 ms for TDI. 54
5.4 Test on the feasibility of parameter reuse of Abdullah et al.’s [8]. 55
5.5 Audio intelligibility test for [8] . 57

x

List of Abbreviations

ASR Automatic Speech Recognition.

HMMs Hidden Markov Models.

GMMs Gaussian Mixture Models.

DNNs Deep Neural Networks.

LSTM Long-Short Term Memory.

DBLSTM Deep Bidirectional Long-Short Term Memory.

AMP Amplifier.

LPF Low-pass filter.

ADC Analog-to-Digital Converter.

FFT Fast Fourier Transform.

DFT Discrete Fourier Transform.

MFC Mel-frequency Cepstrum.

MFCCs Mel-Frequency Cepstral Coefficients.

CTC Connectionist Temporal Classification.

MIPF Monotonically Increasing Perturbation Function.

APR Average Perturbation Rate.

STFT Short-Time Fourier Transform.

xi

List of Symbols

x A waveform.

x0 The original waveform of the command.

x∗ The perturbed waveform.

fm(·) The ASR system as a function.

fh(·) The human comprehension as a function.

ym The transcription result of the command by the ASR.

yh The transcription result of the command by the human comprehension.

y∗ The transcription result of the perturbed waveform x∗. (fm(x∗)).

δ The perturbation added into the waveform x.

S(x0) The set of the correct transcription of the input waveform x0.

xii

Chapter 1

Introduction

Voice control systems are becoming increasingly popular and pervasive. For example, the

well-known Siri from Apple, Cortana from Microsoft, iFLYTEK speech input and Baidu

speech input are widely deployed in devices used in our daily lives. In 2020, the estimated

population in the US who use a voice assistant at least monthly was 128 million, representing

44.2% of internet users and 38.5% of the total population [6]. Particularly, for smart home

devices such as Amazon Alexa, Google Home, etc. voice interface is the only interactive

method for the users. Voice control is becoming one of the mainstream human-computer

interaction modalities.

Attacking a voice assistant has a high return and a low risk for attackers. First, voice

assistants always have a high priority in controlling the device, which means that compro-

mising a voice assistant will give the attackers high-level control on the victim’s devices.

It is very common that voice assistants control all of the smart electric appliances in the

facilities. Furthermore, payment can be made by a voice assistant. Setting up payment

with a voice assistant is even being advocated in the advertisement of the leading banks.

Second, most of the voice control devices solely use conversation as the interactive method,

the user cannot check what instructions the voice control devices have executed, which

provides stealthiness for the attackers. An example for the real-world application could

1

be that the attacker embeds the malicious command into the sound of a famous YouTube

video with a large number of watches. When the hosts play the video with their speakers

on, the audio can be recognized as meaningful commands by their smart home device and

there is little chance that the users are aware of this attack. Therefore, security should be

considered an important issue for the design of voice assistants.

However, the key technology of voice assistants, Automatic Speech Recognition (ASR),

is highly vulnerable to a variety of attacks. Previous works have proven that the adversary

can generate an audio sample that can be recognized as a meaningful command by the ASR,

but at the same time being very hard for humans to understand [8,13,37]. This kind of attack

is called a hidden voice attack. Another kind of voice attack is called adversarial attacks,

whereby the adversary tries to add the smallest amount of perturbation to the original

audio, but making the ASR recognize it as another command which is totally different from

the original command (adversarial attack on voice interface) [8, 14, 31, 41]. Other attacks

take advantage of the property of the hardware, using ultrasonic waves to inject inaudible

command on the ASR [40, 42]. If the adversary deliberately designs the audio input, it is

feasible for them to inject malicious commands on the voice control system.

This research studied the hidden voice attack on ASR, to help enhance the security of the

voice control system. Previous research on hidden voice attacks is not practical enough for a

real-world attack. The most stable attack on voice assistant is the hardware attack [35,42],

but those attacks normally need bulky instruments and close contact with the victim device.

It works well for attacking a specific nearby target, but it does not work well for long-range

and wide-range attacks. Apart from hardware attacks, hidden voice attacks and adversarial

attacks both use the speaker to attack the voice assistant, implying that they can be applied

to long-range attacks as long as the adversaries compromise the speakers of the victim.

However, to date, the research on voice attack is still not practical in the real world, the

attack distance is limited below two meters and only a few attacks [8,13,17,41] work for the

commercial ASRs. In this thesis, an attack called SegmentPerturb was proposed to perform

a hidden voice attack on the ASR. This attack achieves an equivalent attack performance

2

as the state-of-the-art voice attack [8, 17].

Besides, SegmentPerturb does not make any assumptions as to what feature extraction

method the ASR system uses. Nowadays, modern ASR is involved in rapid development;

some are using classical signal processing methods, while others are moving towards end-

to-end methods with the simplest feature extraction method. For example, just use the

waveform as the feature. Therefore, the spectrum analysis assumptions on the ASR may

fail in the future. SegmentPerturb does not make an assumption on the ASR and the

general idea is that the adversaries probe the ASR to selectively reduce a certain amount of

information for each segment of the audio command. Because of the high noise resistance of

the ASR and the redundancy of information in speech audio, a large amount of information

can be removed from the audio command and the command can still be recognized by the

ASR.

The contributions of our work are as follows.

• SegmentPerturb. A perturbation method to perform a hidden voice attack on any

modern ASR system via inquiring is proposed. The idea of SegmentPerturb is to

separate the audio into multiple equal-length segments and probe the ASR to distort

the unimportant segments. Comparing with the similar attacks, our attack produces

equivalent or more unintelligibility in the attack audio samples and has a longer attack

distance, using a simpler and more straightforward attack method.

• SegmentPerturb further relaxes the assumptions on the feature extraction

method of the ASR for black-box attacks. Previous works [8, 13, 37] on black-

box hidden voice attack models have some assumptions on the signal processing phase

of the ASR. But SegmentPerturb is based on the universal property which exists in

all of the ASRs and even in human comprehension, that if the audio is separated into

multiple equal-length segments, the importance of every segment is different. The

ASR may pay more attention to some segments while somewhat ignoring others. Be-

sides, given the high noise resistance of modern ASRs, a large amount of perturbation

3

can be added into almost every segment in one audio command.

• Full Study on Segmented Perturbation (SegmentPerturb). A full study was

conducted on SegmentPerturb using four of the most popular speech recognition APIs

in the market (Google speech recognition, Wit.ai speech API , IBM speech-to-text,

Azure speech services). Besides, a real scenario attack using SegmentPerturb was

demonstrated on Google Home. A real scenario of a bedroom was set up and the

Google Home was placed at different positions. The attack samples of SegmentPer-

turb can be recognized by the Google Home at most of the positions. The effectiveness

of SegmentPerturb is studied and verified. SegmentPerturb can significantly reduce

the intelligibility of the command while maintaining the intelligibility to the machine.

• Perturbation Framework. A general framework to craft hidden voice commands

by gradually reducing the human intelligibility of an audio command was formally

defined. The basic idea of the framework is to use a function that can increase the

level of perturbation to the audio while iteratively inquiring the ASR to add a certain

amount of perturbation while preserving its intelligibility by the ASR.

The rest of the thesis is organized as follows: the second chapter introduces the back-

ground for speech recognition system and related attack on speech recognition system; the

third chapter illustrates the method for performing the attack and the intuition behind it;

the fourth chapter expands on the experiment for testing the performance of the attack; the

fifth chapter presents a detailed comparison with the state-of-the-art works and discusses

the property of SegmentPerturb; the sixth chapter summarizes limitations, future work of

SegmentPerturb, and concludes the thesis.

4

Chapter 2

Related Works

2.1 Technical Background: Speech Recognition

The technical background of speech recognition is illustrated in this section. The structure

of the ASR is first introduced, followed by the details of each component in it.

Before deep neural networks were introduced into ASR, most ASRs were Hidden Markov

Models (HMMs) [19,25], and Gaussian Mixture Models (GMMs). Later, as the strong learn-

ing ability of deep learning was discovered, researchers started using Deep Neural Networks

(DNNs) to substitute some procedures in the traditional models, which is called a hybrid

method. In 2013, Graves et al. [21, 22] used Deep Bidirectional Long-Short Term Memory

(DBLSTM) to improve the accuracy in speech recognition. In 2014 their research moved

to an end-to-end speech recognition system using Long-Short Term Memory (LSTM) [20].

And recent researches mostly used the end-to-end method to improve the accuracy of speech

recognition. Zhang et al. [43] trained a very deep neural network with 15 layers to build the

end-to-end ASR system, achieving a 10.5% word error rate without using any dictionary or

language model. Chiu et al. [18] built a unidirectional LSTM encoder for stream recognition

and achieved 5.6% word error rate.

Most of the Tech giants promoted the study of speech recognition and even provided

5

commercial speech recognition services. IBM Watson Research Center proposed their con-

versational speech recognition system in [32] and they also provided the commercial speech

recognition API service [3]. Baidu Research proposed Deep Speech [23] which is an end-

to-end ASR model using three fully connected layers, one bidirectional recurrent layer, and

one standard softmax layer. They achieved a 16% error rate on the full test set. Microsoft

Research’s conversational speech recognition system had achieved human parity [38, 39],

achieving a 5.9% word error rate. Microsoft [5] and Google [1] also provided their commer-

cial speech recognition service. Most of the commercial speech recognition services used a

neural network model to achieve a low word error rate.

2.1.1 Structure of Modern ASR

The structure of the modern ASR is depicted in Fig. 2.1. This thesis only focuses on the

modern ASRs which use DNN instead of HMM. The speech recognition pipeline includes

the following phase: the sound is captured by the sound input device (hardware), then the

signal is passed to the feature extraction part (signal processing), the features are input

into the DNN model for model inference and to obtain the probability matrix for each time

frame. The probability matrix is then decoded using a decoding algorithm; some ASRs may

also apply a language model to correct the output label.

Figure 2.1: The structure of modern ASRs.

Sound Input Device The sound input device is the microphone hardware that captures

the vibrations in the air and converts them into an electronic signal. The most common

6

microphones in the market include dynamic microphone and condenser microphone. The

dynamic microphone uses a coil of wire and a magnetic to capture the vibration in the air,

the vibration is turned into electromotive force according to the Faraday law of electro-

magnetic induction. The condenser microphone uses the changing of the distance of the

diaphragm from the other plate to capture the vibration in the air. The distance of the two

plates influences the capacitor, and thus turns the vibration into an electronic signal. The

structure of the sound input device is depicted in Fig. 2.2. When the vibration in the air

is captured by the mechanical structure of the vibration, the signal is passed to an Ampli-

fier (AMP) to increase the amplitude of the signal. The sound signal is passed through a

Low-pass filter (LPF) to filter out the high-frequency noise. This signal is converted into

the digital signal using a Analog-to-Digital Converter (ADC).

Figure 2.2: The structure of the sound input device.

Feature Extraction The audio signal is first separated into short time frames, the

length of the time frame varies from 20 ms to 40 ms. Suppose each time frame has N

sample points in it, the value of the ith sample point is xi. We denote the sequence of

sample point in one time frame as {xk} := x0, x1, ..., xN−1.

The most commonly used method for feature extraction in speech recognition is Fast

Fourier Transform (FFT) and Mel-frequency Cepstrum (MFC). But with the rapid devel-

opment of deep learning, some end-to-end models for ASR make the original time frame of

the sequence as one optional output for the feature extraction phase.

a) FFT: The FFT is a way to compute the Discrete Fourier Transform (DFT) of a

7

given sequence. It transforms the representation of the time domain signal into the

frequency domain.

The DFT can be represented by Eq. 2.1. The DFT of the given sequence {xn} of one

time frame of the audio signal is {Xk} := X0, X1, ..., XN−1.

Xk =
N−1∑
n=0

xn · e−
−i2π
N

kn (2.1)

The power spectrum sequence {pk} of the signal {Xk} is shown in Eq. 2.2, which is

the square of the absolute of the DFT of the signal.

pk = |Xk|2 (2.2)

b) MFC: The MFC is better at representing human audition. This is because humans

are better at recognizing the difference in the lower frequency band and the Mel-scale

represents these characteristics better than other feature recognition methods. To get

the Mel-Frequency Cepstral Coefficients (MFCCs) of a given time frame, it takes the

following steps.

First, perform a DFT on the signal using the FFT Eq. 2.1 and 2.2 to obtain the

spectrum of the Fourier transform in the format of {pk}. Then the frequency of the

{pk} is mapped to the Mel scale using Eq. 2.3

mk = 2595 log10(1 +
fk
700

) (2.3)

Third, take the logs of the power at each of the Mel frequencies. The {Ln} to be

derived from this part can be represented by Eq. 2.4:

Lk = log10(|Xk|2) (2.4)

8

Fourth, take the discrete cosine transform of the Mel log power, regarding it as a

signal. The discrete cosine transform of the signal for the Mel log power is obtained

using Eq.2.5.

Fk =

N−1∑
n=0

Ln cos (
(2n+ 1)kπ

2N
) (2.5)

c) Simplified: with the development of deep learning, some end-to-end speech recogni-

tion systems treats simplified feature extraction as an option. The feature extraction

will only include separating the audio into small time frames. The time frames will

be used as the features to be inputted in the deep learning model.

Model Inference The features for each time frame are passed into the DNN model for

inference. The input of the model is a sequence of features for the time frames, denoted as

{xi} := x1, x2, ...xN−1. For the time frame at position i, the model will output the probabil-

ity matrix for each character P{ck|xi}, where ck ∈ {a, b, c, ...z, space, apostrophe, hyphen, blank}.

space, apostrophe and hyphen are the corresponding characters {′ ′,′′′ ,′−′}. blank is the

special character used in Connectionist Temporal Classification (CTC) to represent the null.

a) Convolutional Neural Network (CNN): CNN is a kind of deep neural network which

uses convolutional layers as components. The convolution layer learns the spatial

characteristics from the previous layers. Therefore it is commonly used in image learn-

ing. The convolution in deep learning is an operation that use a convolutional kernel

to scan through the input to get an output matrix, for each step, the corresponding

elements in the input matrix was multiplied by the kernel to get a convolution output.

Song et al. [34] and Chang et al.’s [15] work on building end-to-end ASR applied

Convolutional layers in their network. But convolutional layers do not fit the speech

recognition problem very well, because the convolutional transform of the features

does not well represent the characteristics of sound. Intuitively, there is no strong

spatial relation in the features of the sound in one time frame. Besides, CNN normally

takes fixed length and width input, but the characteristic of sound is that it has a

9

variable length. Therefore, all those works used recurrent layers at the output end of

the model following the convolutional layers.

b) Recurrent Neural Network (RNN): RNNs can deal with the problem of variable length

data that CNNs and perceptrons are not capable of. Therefore, RNNs can be applied

to learning from sequence data such as sound or video. Naturally, it is also used in

speech recognition [22,29].

An RNN takes the input with the length of L and it will generate the output of the

same length of L corresponding to the data at each position of the sequence. Consider

an RNN with the input xt and the previous state ht−1. The graph for the structure

of a normal RNN is shown in Fig. 2.3. The RNN will output the current state ht. A

common data processing of RNN can be represented by Eq. 2.6 and 2.7:

St = Wx · xt +Wh · ht−1 (2.6)

ht = tanh(St) (2.7)

In particular, an RNN can be used to deal with the context data, which means that

the data at one position in the sequence has some connection with the data at another

position of the sequence. For example, in the speech recognition inference model, if

the current position has a high probability of outputting “r” which is a consonant,

the output at the position nearby would be more likely to be a vowel. Since speech is

a kind of data that is temporally correlated, an RNN has a great advantage in solving

the speech recognition problem.

c) Long Short-Term Memory (LSTM): Practically, it is hard for an RNN to find the

connection between the data at the current position and the position which is far

away from it, which is called the long-term dependencies problem. Therefore, the

idea of LSTM was proposed to address the long-term dependencies problem [24].

The basic idea is applying a “forget gate” and an “input gate” to modify the state Ct

10

Figure 2.3: The structure of an RNN.

11

of the network, and the output ht is derived from the current state Ct, current input

xt and the previous output ht−1. The structure of the LSTM is depicted in Fig. 2.4

Figure 2.4: The structure of an LSTM.

The “forget gate” is represented in Eq. 2.8, in which Wf and bf are the network

weight and bias, σ(·) is the sigmoid function. [ht−1, xt] is the affine transformation

[ht−1, xt] = Wh · ht−1 +Wx · xt + b.

ft = σ(Wf · [ht−1, xt] + bf) (2.8)

The “input gate” decides which element in Ct−1 should be updated. It is defined by

the following formulas.

it = σ(Wi · [ht−1, xt] + bi) (2.9)

The state of the current input Ct is calculated using the tanh.

C̃t = tanh(WC · [ht−1, xt] + bC) (2.10)

12

Combining the “input gate” and the current state of input xt, this value can be used

to update the current state of the LSTM Ct.

Then, the current state Ct of the LSTM is updated by the “forget gate”, “input

gate”, and the state of the current input. The formula is shown below. The � is the

element-wise multiplication.

Ct = ft � Ct−1 + it � C̃t (2.11)

The output of the LSTM is the combination of the input state xt, ht and the current

state Ct. The input state is passed through a sigmoid network to determine which part

should be output in the current state. The current state Ct is passed through a tanh

to compress the value to the segment of (−1, 1). This procedure can be represented

in the formulas below.

ot = σ(W0 · [ht−1]) (2.12)

ht = ot � tanh(Ct) (2.13)

Since LSTMs are capable of learning long-term connections in the sequence data, they

are widely used in dealing with sequence data. And it is proven feasible and efficient

for speech recognition [18,20,22,23].

Decoder The last step of speech recognition is the decoding part. From the previous

step, the deep learning model outputs a probability matrix for the input sequence. The

first dimension of the probability matrix is corresponding to the time frame of the input

sound. The length of the probability matrix is the same as the length of the time frame

sequence. The second dimension of the probability matrix corresponds to the character in

the alphabet. The element Aik in the probability matrix is the probability of the character

ck at the time frame xi.

In speech recognition, many possible transcriptions can be applied to a probability

13

matrix. There are a lot of words in English that have the same or similar pronunciation

and each person may have an accent. To determine which characters (or words) could be

the best one in the context, a decoder was used to get the most possible characters from

the given probability matrix. The most commonly used decoding algorithm for speech

recognition is the beam search, which can determine the output sequences with a high

probability. Beam search is a heuristic searching algorithm, which can largely reduce the

searching space, and it has been proved feasible and efficient for the speech recognition task.

2.2 Attack on ASR

2.2.1 Machine Learning Model Level Voice Attacks

Hidden Voice Command. Hidden voice command is a kind of attack on ASR in

which the adversary adds the largest perturbation on the audio, which totally destroys the

intelligibility of the audio but the audio can still be recognized as a meaningful command

by the ASR system. Carlini et al. [13] analyzed the hidden voice command in white-box

and black-box settings. Under the white-box setting, they chose the CMU sphinx [27]

(traditional speech recognition model) as the target model and generated hidden voice

commands which cannot be understood by humans but can be understood by ASR. Under

a black-box setting, they can generate noise audio that can be recognized by machines but

is hard to be understood by humans. Abdullah et al. [8] designed a practical hidden voice

attack that attacked the signal processing phase of the ASR system. They added four types

of perturbation (time domain inversion, random phase generation, high-frequency addition,

time scaling) to the audio samples. Each kind of perturbation had some parameters and

they generated a set of adversarial samples with different perturbation parameters and fed

them into the ASR. They discarded the audio samples which cannot be transcribed correctly

by the ASR and choose the audio file with the best parameter. Chen et al. [16] studied how

to improve over-the-air voice attacks in a white-box setting, attacking the speech recognition

14

model Deep Speech [23] from the Baidu Research team. They found that the reason for the

difficulty of an over-the-air attack is the frequency-selectivity effect caused by the devices

and channel, and they designed their over-the-air attack which achieved a 90% success rate

over a distance of 6 m.

Adversarial Attack Against ASR. In an adversarial attack against the ASR system,

the adversary adds the least possible amount of perturbation on the audio to make the

machine recognize the audio as another transcription that is different from the original one.

The adversarial attack on neural networks is first proposed by Szegedy et al. [36] in the

computer vision domain.

Yuan et al. [41] performed the adversarial attack in a white-box setting and embedded

the malicious command into the song. The song they generated can be recognized as

malicious command by the voice control devices. They performed their attack on the

popular open-source speech recognition platform Kaldi [4,30], which is a GMM-HMM speech

recognition platform. They used gradient descent to craft the audio to approximate the

same probability matrix of the audio of a meaningful command. Schönherr et al. [33]

crafted adversarial attack samples in a white-box setting on the Kaldi platform [4] using a

generative system based on neural networks. They were more inclined to add a component

that is lower than the hearing threshold to prevent the human from perceiving the change.

Qin et al. [31] further improved Schönherr et al.’s [33] work, using a similar psychoacoustic

hiding method (applying the hearing threshold to perturbation adding) but attacked a

modern Lingvo ASR system. They also made the adversarial samples more robust, having

a better success probability for the over-the-air attack.

Kwon et al. [26] proposed a new kind of adversarial attack on ASR called selective

audio adversarial samples. The selective audio adversarial sample is misclassified as the

targeted phase by the victim ASR but is correctly classified by the protected ASR. Most of

the previous adversarial attacks were based on white-box since black-box adversarial was

difficult as the researcher cannot get the model structure and the parameter of the network.

15

Chen et al. [17] proposed their attack named Devil’s Whisper which used a known model

plus a modern ASR to approximate the target black-box ASR model, and found that the

adversarial samples for their self-built model have good transferability on the target model.

2.2.2 Hardware-level Voice Attack

There are other attacks using ultrasound to perform an inaudible voice attack, which attacks

the signal processing hardware of a voice interface. Zhang et al. [42] took advantage of the

non-linearity frequency response characteristic of the amplifier in the ASR and embedded

malicious commands in an inaudible ultrasonic wave. The audio command carried in the

ultrasound can be recovered at the amplifier of the ASR. Yan et al. [40] proposed an attack

on the devices by transmitting malicious commands in ultrasonic waves through the solid

medium. Sugawara et al. [35] proposed an attack that used a laser light to control the voice

control system, which is demonstrated successful attacking various commercial products

at up to 110 meters with the line of sight to the target device. While hardware-level

voice attacks have much better concealment than machine learning-level voice attacks, the

hardware-level attacks need specifically designed devices to perform the attack, which limits

the application scenario.

16

Chapter 3

Method

3.1 Threat Model and Assumptions

No assumption was made on the model design of the target ASR. The attack is based on

the universal characteristic which exists in all of the ASR and even human comprehension,

that the models pay more attention to some parts of the audio while somewhat ignoring

others.

The attack was designed by inquiry. The attacker must have the ability to probe the

target model as many times as they want. Each trial of attack was conducted on one

command against one specific ASR system. Through one successful attack, the attacker

generates an audio command which is recognized as the correct transcription by the ASR,

but hard to be understood by a human.

The attack can be divided into two phases. The first phase is the preparation phase in

which the attacker generates the attack audio samples by querying the target ASR system

as many times as they want. The attacker does not know the model structure and can

only use the target ASR as an oracle. The second phase is the attack phase in which the

attacker plays the attack audio through the speaker in the victim’s room. The target device

is placed in the same room as the speaker. The attack is successful if the target device

17

correctly recognizes the audio command.

3.2 Transmission Model

Two transmission models were used in this research, over-the-line (Section 4.2, 4.3) and

over-the-air (Section 4.4).

Over-the-line. The over-the-line model is shown in Fig. 3.1 a). In the over-the-line

setting, the adversarial audio is directly input to the target model as a file or stream data.

There is no distortion from transmission in the over-the-line setting. The over-the-line

attack was used in the feasibility test.

Over-the-air. The over-the-air model is shown in Fig. 3.1 b). Over-the-air is the most

common and practical setting for voice attacks. In an over-the-air setting, the attacker

plays the adversarial audio by an electronic speaker, and the target device records this

sound with an electronic speaker and input the recording to the target ASR model. The

target model could be any model capable of speech recognition, such as cloud speech-to-text

API or open-source speech-to-text model. It is also possible that the microphone and the

target ASR model are in an integral device, such as Google Home, Amazon Alexa, etc.

3.3 Attack Scenario

It is assumed that the target ASR is located in a room, and in this room, there is a speaker

that is controlled by the attacker. The attacker is capable of playing a noise-like audio

command which could be recognized as a meaningful command by the ASR, but will not

be recognized as containing meaningful words by humans in the room, even if they were

nearby.

The ASR system is regarded as a classifier fm(·), while the input of the classifier is

the waveform x of the sound signal recorded from the microphone, and the output of the

18

a) Over-the-line

b) Over-the-air

Figure 3.1: Transmission model.

19

ASR is a string of the transcribed result ym. Similarly, human comprehension can also be

regarded as a similar classifier fh(·). The output yh is the transcription of the waveform x

from humans. Formally, this is:


fm(x) = ym

fh(x) = yh

(3.1)

Define S(x0) as the set of the correct transcriptions of the original waveform x0 for all of

the target ASR. The correct transcription set of the waveform x0 was acquired by inputting

x0 to all of the target ASR fi(·) and adding all transcriptions into set S(x0). Use Q to

denote the index number list of all of the target ASR. The correct transcription set of x0 is

formally defined as:

S(x0) = {y|y = fi(x0), i ∈ Q} (3.2)

In an ordinary situation, the audio can be recognized by both humans and machines.

Formally, this is:


fm(x0) ∈ S(x0)

fh(x0) ∈ S(x0)

(3.3)

In a hidden voice attack, the attacker crafts a bogus input x∗, which can be recognized

as the correct transcription by the ASR. But a human cannot recognize the meaning of the

waveform. Formally, this can be represented as follows:


fm(x∗) ∈ S(x0)

fh(x∗) /∈ S(x0)

(3.4)

3.4 The Perturbation Framework

Basically, the attacker tries to reduce as much information as possible from the original

waveform x0 to get a perturbed waveform x∗ which can still be recognized as the correct

20

transcription by the machines (fm(x∗) ∈ S(x0)). Starting from x∗ = x0, we gradually

increase the amount of perturbation on x∗ to shift it to the classification margin fm. If

x∗ has reached the classification margin, adding the smallest perturbation on x∗ will make

the machine generate an incorrect transcription fm(x∗) /∈ S(x0). Then we will take the x∗

which is the closest to the margin and yield fm(x∗) ∈ S(x0).

A schematic diagram is shown in Fig. 3.2. A small amount of perturbation was added

into x0 repeatedly, from x∗1 to x∗2 to x∗n, until f(x∗n+1) /∈ S(x0). Then x∗n will be accepted

because f(x∗n) ∈ S(x0) and it is the perturbed waveform that contains the least amount of

information from the original waveform x0.

Figure 3.2: Depiction of the iterative perturbation framework.

This method can reduce the intelligibility of the sound signal while being recognized

as a meaningful command by machines but it cannot guarantee that the sound cannot

be understood by humans, as the human brain is capable of focusing on one of many

simultaneous auditory sources. In Fig. 3.3 the left circle is the classification margin of

an ASR system fm and the right circle is the classification margin of human intelligibility

fh. The area delimited by each circle represents the space in which fm(x) ∈ S(x0) or

fh(x) ∈ S(x0), respectively. We want to add as much perturbation on x0 as possible to get

21

a x∗ which approaches the classification margin but is still within its circle. The perturbed

waveform can fall to x∗A (can be recognized by the machine but also can be recognized by a

human) or ideally fall to x∗B (can be recognized by the machine and cannot be recognized

by a human).

Figure 3.3: The perturbed waveform can fall to x∗A (can be recognized by the machine
but also can be recognized by a human) or ideally fall to x∗B (can be recognized by
the machine and cannot be recognized by a human).

3.5 Monotonically Increasing Perturbation Func-

tion

A Monotonically Increasing Perturbation Function (MIPF) is the core function of the per-

turbation framework. This function is used to add a certain degree of perturbation on the

waveform x and output the perturbed waveform x∗. There should be one perturbation

parameter (or a list of parameters) to control the perturbation degree of the waveform, and

the relation between this parameter and the perturbation degree of the perturbed waveform

should be monotonically increasing. In other words, if this parameter is slightly increased,

the perturbation degree of the audio should slightly increase simultaneously.

The input of the perturbation function is the original waveform x and a perturbation

22

parameter p. The output of the perturbation function is the perturbed waveform x∗.

MIPF should meet the following important properties.

• If the perturbation parameter p is set to the maximum value, the waveform x∗ becomes

an empty signal containing no information from the original signal x.

• If the perturbation parameter p is set to the minimum value, the waveform x∗ should

be the same as the original waveform x.

• The relation between the perturbation parameter p and the perturbation degree of

waveform x∗ should be monotonically increasing. That is, if p was increased, the

perturbation degree of the perturbed waveform x∗ will also increase.

Technically, a very simple function called “Random Delete” (Algorithm 1) was designed

as the main MIPF for our experiment. What this function does is choosing a portion of

points in the waveform x and set them to 0. The input of the “Random Delete” is the

waveform x ∈ [0, 65535]n (n is the number of points in waveform x and each point is in

the format of “int16”) and a perturbation rate p ∈ [0, 1]. This function randomly chooses

bnpc non-repetitive points in the waveform x and set them to 0 to obtain the perturbed

waveform x∗.

Algorithm 1 MIPF: Random Delete

Input: x, p
Output: x∗

1: x∗ ← x
2: n← len(x)
3: n delete← bnpc
4: delete index← random.sample(range(0, n), n delete)

use a random sample function to get the index of the chosen points to be deleted in
x.

5: x∗[delete index]← 0
6: return x∗

This simple function (Algorithm 1) is an instance of MIPF. It meets the three important

properties mentioned above. First, if the perturbation rate p is set to 1.0 then every point

23

in the perturbed waveform x∗ is set to 0, thus no information of the original waveform x

remains in x∗. Second, if the perturbation rate p is set to 0%, then the waveform x and

the perturbed waveform x∗ are the same because no point in x is deleted. Third, with

the increase of p, more points in waveform x are deleted to get x∗, therefore lessening the

information from x in x∗.

The “random delete” in the time domain may not be the best perturbation function for

this task, but this could serve as a good baseline for evaluating the SegmentPerturb frame-

work. Thus, a second MIPF, “random delete in spectrum” (Algorithm 2), was proposed

to illustrate the practicability of SegmentPerturb as a framework. This function randomly

delete the frequency components in the spectrum of the DFT. The waveform was first trans-

formed to the frequency domain, then a proportion of the components at some frequencies

was deleted (step 4 to 7 in Algorithm 2), then it was transformed back to the time domain.

Algorithm 2 MIPF: Random Delete in Spectrum

Input: x, p
Output: x∗

1: x∗ ← x
2: x∗f ← FFT(x∗t)
3: n = blen(x∗f)/2c
4: index to delete lower part = random.sample(range(0, n), bnpc)
5: index to delete upper part = 2n× 11×n − index to delete lower part
6: x∗f [index to delete lower part]← 0
7: x∗f [index to delete upper part]← 0
8: x∗ = abs(iFFT(x∗f))
9: return x∗

3.6 The Näıve Perturbation Algorithm

The general idea of the näıve perturbation algorithm is that a small amount of perturbation

δ was added into the whole audio waveform x∗ at each loop using the MIPF. At each loop,

the perturbed waveform x∗ was transcribed to get the result y∗ = fm(x∗). If y∗ ∈ S(x0) then

this small amount of perturbation does not make the x∗ fall outside the classification margin,

24

so this perturbation was accepted. This step was executed repeatedly until y∗ /∈ S(x0). The

last δ would not be submitted to x∗ and finally the x∗ which approximated the classification

margin will be outputted.

Using this basic idea and “random delete” as the core function to remove the in-

formation from x, the näıve perturbation algorithm (Algorithm 3) was proposed. The

perturbation rate list in Algorithm 3 is a list of the possible values within the domain of

definition of p, ordered from smallest to the largest. To find the marginal perturbation

rate by traversing through the perturbation rate list from the smallest to the largest is not

efficient. Therefore, in our experiment, dichotomy was applied to efficiently get the highest

perturbation rate for one given waveform x0.

Algorithm 3 Näıve Perturbation Algorithm

Input: x, yc, f
Output: x∗

1: for p ∈ perturbation rate list do
2: x∗t ← MIPF(x, p)
3: y ← f(x∗t)
4: if y ∈ S(x) then
5: x∗ ← x∗t
6: else
7: break
8: end if
9: end for

10: return x∗

3.7 Segmented Perturbation Algorithm

To improve the perturbation degree, a segmented perturbation algorithm (SegmentPerturb)

was proposed. It is an upgraded version of the näıve perturbation algorithm. It performs

more stable than the näıve perturbation algorithm, since according to the experiment in

the next section, most commands can get a similar perturbation degree. Nonetheless, this

new algorithm uses more inquires to the model.

The rationale for SegmentPerturb is that if an audio command was separated into

25

multiple segments, it is natural that the perturbation margin differs for every segment

in the audio, so more perturbation can be applied to some segments which are not so

important from the view of the ASR system. For example, a modern ASR based on an

end-to-end deep neural network model may take each time window of the waveform as

input and output the probability for each character at every time window (and then use

other methods to get the final transcription, such as using a decoder and/or a language

model). The command “Turn on the light”, expressed in phonetic symbols is ["t3:n "6n

"th@ "lAit], where each syllable lasts for multiple time windows. A simplified output for the

neural network for each time window could look like “—ttt–uuuuuu-rr-nnnn—oo-nn-ttttt-

hh-e–llll-ii-gg–hhhhh-tttt—” (“-” is the empty label). If a large amount of perturbation was

added into the time window corresponding to the second “t”, it is very likely that the ASR

will give the same transcription. The influence on the final transcription from each time

window is not the same, therefore an attacker can take advantage of this characteristic of

modern ASRs and put different perturbation degrees on different segments in the audio.

Fig. 3.4 shows a schematic diagram for the perturbation boundary for every segment in

a waveform. The continuous line in the diagram is the theoretical perturbation boundary

which is the maximum perturbation that can be added to each segment. If the attacker

applies a perturbation rate that is higher than the red line boundary at any segment, the

ASR system will generate an undesirable transcription (f(x) /∈ S(x0)). But if the attacker

applies a perturbation rate that is slightly lower than the theoretical perturbation boundary

for every segment (the blue bar in Fig. 3.4), the highest average perturbation rate (APR)

for the waveform can be approximated.

According to this theory, SegmentPerturb (Algorithm 4) was designed to get the highest

perturbation rate for every segment. First, the audio waveform was separated into multiple

equal-length segments. Then starting from the smallest perturbation rate, this perturbation

rate was applied to one segment in x0, and then it was transcribed using the ASR. If the

ASR system outputted a correct transcription (fm(x∗) ∈ S(x0)), this small perturbation on

this segment would be accepted; otherwise, this change would not be accepted (and a flag

26

Figure 3.4: The schematic diagram for SegmentPerturb.

“meet end” would be used to mark that the perturbation rate for this segment has reached

the perturbation boundary). The same procedures were repeated on all segments. Then the

perturbation rate gradually increased until all of the segments have met the perturbation

boundary or all of the perturbation rates have been traversed.

There are many segments in the waveform x0 which contain only 0. If the perturbation

were applied at these segments, the outcome will be meaningless. Therefore, these segments

were excluded using a simple threshold, to get the segments with the voice in them. Using

a simple threshold is efficient since the original command waveform x0 contains no ambient

noise. To get a better result, the segment list has a random sequence.

27

Algorithm 4 SegmentPerturb

Input: x, yc, f
Output: x∗

1: x∗ ← x
2: perturb rate list is a list containing a sequence of ordered perturbation rates, for ex-

ample [0.1, 0.2, 0.3, ... 0.9, 1.0].
3: segment list is the segments in x which contain voice (random sequence).
4: meet end is the vector marking whether the perturbation rate of every segment has

reached the perturbation boundary. It is initialized as all False.
5: for p ∈ perturb rate list do
6: for b ∈ segment list do
7: if meet end[b] == False then
8: x∗t ← x∗

9: x∗b ← xb
Take out the segment b for perturbation.

10: x∗b ← MIPF(x∗b , p)
Only apply the MIPF on the segment b

11: replace the segment b in x∗t with the x∗b
12: y ← f(x∗t)
13: if y ∈ S(x) then
14: x∗ ← x∗t

Accept this perturbation rate and submit the change.
15: else
16: meet end[b]← True
17: end if
18: end if
19: end for
20: end for
21: return x∗

28

Chapter 4

Experiment

4.1 Experiment Setup

Hardware. The devices used in the experiment are ordinary devices that may be used

domestically. A personal laptop was used for the experiment. The microphone in the

experiment is an ARCHEER condenser microphone with a frequency response of 20 Hz to

20 kHz, a sensitivity of -34 dB ± 2 dB, and a signal to noise ratio of 78 dB. The electronic

speaker in the experiment is EDIFIER R980T, which is an ordinary speaker with a signal-

to-noise ratio of ≥ 85 dBA, distortion of ≤ 0.5%, and frequency response of 70 Hz to 20

kHz.

Target Model. The target models were four commercial speech-to-text APIs plus one

smart home device. The four commercial speech-to-text APIs were Google Speech Recogni-

tion [2], Microsoft Azure speech-to-text API [5], Wit API [7], and IBM speech services [3].

All of the speech recognition APIs mentioned above can be used through online requests.

The smart home device used in the experiment was Google Home. The experiment is

conducted on the most popular speech recognition APIs to verify the practicability of the

attack in the real world.

29

Command selection and audio acquire. A representative command set of six com-

mands are used in the experiment. The commands are “Turn on airplane mode”, “Open

the door”, “Turn on the computer”, “Turn on the light”, “Call 911”, “Turn on Wi-Fi”.

A similar command set was used in previous works [8, 13, 17] to represent a variety of the

commands on the ASR system. The voice commands were recorded in a quiet room.

Criteria for the correctness of the ASR and human transcription. For ASR,

a “correct transcription” for the perturbed audio file should be exactly the same as the

transcription of the original audio file by the same ASR. For example, if the original audio

file of “Turn on airplane mode” was input in Azure speech recognition API, the API will

return a string of “Turn on airplane mode.” (the first character is uppercase and there is a

period in the end). The transcription for an attack sound sample is regarded as correct only

if the API returns exactly the same string as the transcription of the original command.

Other strings such as “Turn on the airplane mode” (an extra “the”) are regarded as an

incorrect transcription even if it had the same meaning.

For the human transcription of the audio, the criteria were less rigorous. The “correct

transcription” for human transcription should be a verbatim match with the command

but ignore cases and punctuation. For example, for the command “Open the door”, the

participants in the audio intelligibility test may input “OPEN THE DOOR”, “open the

door” or “Open the door.” which were all regarded as correct transcriptions.

4.2 Preliminary Experiment: Over-the-line Attack

using Näıve Perturbation Algorithm

The näıve perturbation under the over-the-line setting was tested as a preliminary experi-

ment. This experiment was conducted on every command against every speech-to-text API.

The perturbation rate for every command list against all of the ASR is shown in Fig 4.1.

30

For Google Speech API, most of the commands got a relatively high perturbation rate,

apart from IBM, the perturbation rate for all other APIs got more than 0.5. “Turn on

airplane mode”, “Call 911” and “Turn on Wi-Fi” even get around 0.9 perturbation rate,

which means that even 90% of the points in waveform x are set to 0, the Google Speech API

can still recognize it as the correct transcription. The näıve perturbation could only perturb

as much as 70% and 15% on the Wit and the IBM speech recognition APIs respectively.

Figure 4.1: Perturbation rate for the over-the-line attack using näıve perturbation.

4.3 Over-the-line Attack using SegmentPerturb

SegmentPerturb framework was tested using different metrics to represent the efficiency of

the attack. Two different MIPF, “random delete” and “random delete in spectrum”, were

included in the experiment.

31

4.3.1 Over-the-line Attack using “SegmentPerturb - Ran-

dom Delete”

Heatmap The Average Perturbation Rate (APR) was calculated for every command

against each speech-to-text API (Fig. 4.2). APR is the average of the perturbation rate of

all the segments that participated in the perturbation procedure.

As shown in Fig. 4.2, all of the APRs for attacking Google, Wit and Azure are higher

than 0.8. Those audio samples are very difficult to understand even if replayed multiple

times (see Section 4.6), which indicates that this method is very successful in the over-the-

line experiment.

Compared with Fig. 4.1 for näıve perturbation, the APR in Fig. 4.2 for all of the speech

APIs showed steady improvement. Especially for the IBM speech services, in Fig. 4.1 the

perturbation rate for most of the commands on IBM is lower than 0.3, which indicates that it

is easy for humans to understand the perturbed voice command. But using SegmentPerturb,

the APR exceeds 0.5 for all of the commands, some commands even above 0.8.

Segment length - APR The relationship between segment length and APR was il-

lustrated in Fig. 4.3. The attack audio samples for every command were generated twice

against the Google speech recognition API, and use the APR to draw the boxplot figure.

The segment length was set from 10 ms to 50 ms.

The mean of APRs at a smaller time window is slightly higher than using a bigger

window, and the variance is smaller with a smaller time window. If the audio is separated

into smaller segments to perform the perturbation, more perturbation can be added to the

unimportant segments. But if the segment length was too small (less than 20 ms), too many

inquiries would be made to the target model. Therefore, 20-30 ms could be a good segment

length for SegmentPerturb.

32

Figure 4.2: The APR for over-the-line attack using “SegmentPerturb - Random
Delete”.

Figure 4.3: The relationship between segment length and APR for “SegmentPerturb
- Random Delete”.

33

4.3.2 Over-the-line Attack using “SegmentPerturb - Ran-

dom Delete in Spectrum”

Following the same SegmentPerturb framework, the “Random Delete in Spectrum” was

applied as the MIPF, to test the versatility of the SegmentPerturb framework.

Heatmap The APR for the SegmentPerturb using “Random Delete in Spectrum” as

MIPF was shown in Fig. 4.4. The audio for each command is separated into 30 ms time

windows. SegmentPerturb was applied to all commands against all ASRs. All commands

got an APR of around 0.8, which suggests that using “random delete in spectrum” can be

a more stable MIPF for SegmentPerturb’s framework.

Figure 4.4: The APR for over-the-line attack using “SegmentPerturb - Random Delete
in Spectrum”.

Segment Length - APR The relationship between the Segment Length and APR

for the over-the-line attack was studied. The segment length range from 10 ms to 50 ms.

34

“SegmentPerturb - Random Delete in Spectrum” was applied to generate the attack samples

for all of the commands twice against the Google API and the APR was recorded. The

result is shown in Fig. 4.5. The segment length and the APR have a negative correlation,

which means that if the segment is smaller, more perturbation can be added into the audio

samples. The APR between 20 and 40 ms is similar, with an average of 0.81. A theoretical

explanation for the result at 20 to 40 ms could be that the modern ASRs normally use a

time window of around 20 ms to 40 ms. If a similar time window is applied to generate the

hidden voice command, the hidden voice command can be easier recognized by the target

model. If the segment length were too small there would be too many inquiries to craft

one attack audio sample. Therefore 20 - 30 ms should be a reasonable time window for

SegmentPerturb.

Figure 4.5: The relationship between segment length and APR for “SegmentPerturb
- Random Delete in Spectrum”.

35

4.4 Over-the-air Attack using SegmentPerturb

4.4.1 Over-the-air Attack using “SegmentPerturb - Random

Delete”

Heatmap SegmentPerturb was in the over-the-air setting in this section. The parameters

were the same as in Section 4.3; a 20 ms time window was used and the perturb rate list

was [0.2, 0.4, 0.6, 0.8, 0.9, 1.0]. The distance between the speaker and the microphone is

one meter.

Fig. 4.6 shows the APR of the over-the-air attack experiment. For over-the-air attacks,

the APR ranges from 0.50 to 0.92. IBM speech API can hardly recognize any original audio

from over the air. Therefore, the perturbation rate tolerated by IBM was low. The amount

of perturbation added into the audio command was highly related to the abnormal tolerance

of the ASR. For each command, more perturbation can be added into the audio transcribed

by Google, Wit, and Azure speech-to-text API.

Perturbation rate for every segment. The perturbation rate for every segment of

the waveform was analyzed in this section. The first audio command “Turn on airplane

mode” was randomly chosen to conduct this experiment. Results are shown in Fig. 4.7.

The waveform of the command was replayed in slow motion and it was found that from

1.1s to 1.6s corresponds to “turn on”, from 1.7s to 2.0s is for “airplane”, and from 2.0s to

2.5s is for “mode”. All of the segments which are the valid parts of the waveform took part

in the perturbation procedure (from 1.1s to 2.5s). The segments whose amplitude is lower

than the threshold did not participate in the perturbation procedure; these are shown in

light yellow (the perturbation rate for these segments is 0). Some parts which should not

be activated as the valid segments were activated because of the noise in the room (from 0s

to 1s). But these segments only take a small proportion of all of the segments and will not

make a difference in APR. In Fig. 4.7 Google, Wit and Azure got high perturbation rates

36

Figure 4.6: The APR for over-the-air attack using SegmentPerturb.

throughout the signal. The figure showed that the segments which are deemed important

from the view of the machine are not the segments that are important from the view of

the human. Humans pay more attention to the stress of the word (peak of the signal), but

those parts can be added more perturbation with SegmentPerturb.

Attack distance - APR. The performance of the attack in different ranges of distances

was tested in this section. The Google speech recognition API was used in this test. The

distance from the speaker to the microphone was the variable of the experiment and the

APR for generating the audio command samples was observed. The result for the distance

and APR is illustrated in Fig. 4.8. When the distance is one meter, the mean APR is around

0.8. From 1.5 m to 2.0 m the mean APR remains above 0.7. As the distance increases to

2.5 meters, the mean APR remains at 0.6. According to the audio intelligibility in the

next section, if the APR is higher than 0.7, the probability for a human to comprehend the

meaning of the command could be very low. Therefore, two meters seems to be an effective

37

Figure 4.7: The perturbation rate for every segment of the command “Turn on air-
plane mode”.

38

distance for our attack.

Figure 4.8: The relationship between the physical distance and the APR.

Attack on Speech Recognition API The audio samples crafted from the over-

the-line were applied to attack the target model from over-the-air. The distance from the

speaker to the microphone was set from 50 cm to 200 cm. Each command was played

five times, and the ratio of trials correctly recognized by the speech recognition API was

recorded and shown in Table 4.1. The acceptance rate for the audio command samples

generated using “SegmentPerturb - Random Delete” is significantly dropped from around

35% at 50 cm to 17% at 200 cm. The audio command samples have some intelligibility

from the machine.

Distance (cm) 50 100 150 200
Accept Rate 33% 37% 17% 17%

Table 4.1: Over-the-air attack on Google speech recognition API, using “Segment-
Perturb - Random Delete”

Transferability Test The result of the transferability test is demonstrated in Table 4.2.

The attack audio samples from Section 4.4 were used to perform a replay attack over-the-air

39

against all the other target speech recognition APIs. Each adversarial sample was played

five times and the ratio of the audio samples which can be successfully recognized by the

other speech-to-text APIs was recorded and presented at the corresponding position in

Table 4.2. The row for IBM was not concerned because the APR of attacking IBM was too

low that it should be easily recognized by a human.

SegmentPerturb is originally designed to explore the vulnerability of one specific target

ASR system, so the anticipated transferability of the SegmentPertrub would not be very

strong. Besides, even if the experiment took place in a quiet room the ambient noise cannot

be removed completely. The result shows that SegmentPerturb has some transferability. If

the APR is lower for the attack on one ASR, those adversarial samples are a little clearer and

can be recognized by other ASRs which has higher abnormal tolerance. For example, the

adversarial audio on Wit has an average APR of 0.57, 87% of the attack can be transferred

from Wit to Azure. Google speech recognition API and Azure speech-to-text API both

have high abnormal tolerance, therefore 20% of the adversarial samples can be transferred

from Google to Azure, and 56% can be transferred from Azure to Google. Both Google and

Azure can recognize a very messy command which is used to attack other API.

To
Google Wit IBM Azure

From

Google 0% 0% 20%
Wit 30% 0% 87%
IBM - - -
Azure 56% 3% 0%

Table 4.2: Transferability test for the attack.

4.4.2 Over-the-air Attack using “SegmentPerturb - Random

Delete in Spectrum”

In this section, the MIPF of the SegmentPerturb framework was replaced with “Random

Delete in Spectrum”.

40

Attack on Speech Recognition API An over-the-air attack on the Google speech

recognition API was performed. Each command was played ten times over the air, and the

number of times that the audio was correctly transcribed by the speech recognition was

recorded. The number of correct transcriptions was divided by the number of trials to get

the acceptance rate of the attack. The result is shown in Table 4.3. From 50 to 100 cm

the attack has an acceptance rate of around 65%, and at a distance of around 150 to 200

cm the acceptance rate decreased to around 39%, which is still significant, considering that

this is a black-box attack.

Distance (cm) 50 100 150 200
Acceptance rate 67% 63% 33% 43%

Table 4.3: Over-the-air attack on Google speech recognition API, using “Segment-
Perturb - Random Delete in Spectrum”.

4.5 Practicability Test on Google Home

4.5.1 Attack Distance

The feasibility of the attack was tested with Google Home. Since it is not feasible to get the

transcription from the Google Home device, smart plugs with different names (“airplane

mode”, “computer”, “light”, “Wi-Fi”) was set up to test if the hidden voice command was

correctly transcribed. If the command was correctly recognized by Google Home, the smart

plugs would be switched on.

The attack samples1 obtained from attacking Google speech-to-text API over-the-air

using “Random Delete” was used in attacking the Google Home. Only the “turn on [device]”

commands were tested, because if the smart plug was turned on, it is assured that the

command is correctly executed by Google Home. For other commands, Google Home will

1The samples can be found in this website https://walterjohnson0.github.io/AudioClips.

html, we recommend the reader to try out our hidden voice command using Google’s smart home
device plus smart plugs.

41

https://walterjohnson0.github.io/AudioClips.html
https://walterjohnson0.github.io/AudioClips.html

reply “Sorry, I cannot understand” for “Open the door”. Besides, we do not want to make

accidental calls to the 911 emergency services for testing the “Call 911”. Therefore, “Open

the door” and “Call 911” were excluded from the command set.

The first experiment was on the attack distance and the volume of the speaker. The

attack audio sample can be recognized by Google Home from a variety of distances. But,

naturally, if Google Home is placed far away from the device, the volume should be increased.

Therefore, the minimum system volume for Google Home to recognize the command was

recorded. The result is shown in Table 4.4. The attack audio samples can be recognized by

Google Home from up to 2 meters, but the volume of the speaker should be loud enough.

Command (APR)
Minimum System Volume

50 cm 100 cm 150 cm 200 cm
Turn on airplane mode (0.78) 20 40 50 50
Turn on the computer (0.56) 20 30 40 40
Turn on the light (0.86) 30 50 50 50
Turn on Wi-Fi (0.85) 20 20 40 40

Table 4.4: Attack on Google Home. The minimum system volume for the hidden
voice command to be recognized.

4.5.2 Real Scenario Test

To test the feasibility, a real scenario attack was performed in an actual bedroom. The

bedroom’s floor plan is depicted in Fig. 4.9. Google Home was placed at positions A to F.

The speaker was placed at position S. The distance from the speaker S to each position was

S-A (50 cm), S-B (220 cm), S-C (150 cm), S-D (270 cm), S-E (270 cm), and S-F (370 cm).

All positions were at the same horizontal plane which is 75 cm above the ground, common

height for an office desk. The system volume was set at 60. The result regarding whether

the attack audio was recognized by Google Home is shown in Table 4.5. Most commands

can be recognized by Google Home at each position. At position A, the command was too

loud that one of the commands was not recognized by Google Home. To our surprise, at

position F, the farthest position, all commands were correctly recognized by Google Home.

42

Therefore, a real-world attack using SegmentPerturb could be feasible.

Figure 4.9: A floor plan of the bedroom. Google Home was placed at positions A
through F.

Command (APR)
Position

A B C D E F
Turn on airplane mode (0.78) 7 3 3 7 3 3

Turn on the computer (0.56) 3 3 3 3 3 3

Turn on the light (0.86) 3 3 3 3 7 3

Turn on Wi-Fi (0.85) 3 7 3 7 3 3

Table 4.5: Real scenario attack on Google Home. 3: The command can be recognized
by Google Home. 7: The command cannot be recognized by Google Home.

4.6 Audio Intelligibility Study

The intelligibility experiment2 was conducted in the form of a questionnaire in Amazon Me-

chanical Turk to evaluate the intelligibility of the audio commands we designed. The goal

2The experiment was approved by the Research Ethics Board of our institution.

43

of the experiment is to test the intelligibility of the normal audio clips and the Segment-

Perturb audio clips. The audio intelligibility test uses the attack audio samples3 obtained

from attacking Google speech-to-text API over-the-air in Section 4.4.

250 participants were recruited to participate in the intelligibility study. The partici-

pants are assigned three groups (pool A, pool B, and pool C), 100 participants for pool A

and B, and 50 participants for pool C. Participants from pool A received the following com-

mand sequence: [Turn on airplane mode (obfuscated), Open the door (normal), Turn on the

computer (“Random Delete”), Turn on the light (normal), Call 911 (“Random Delete”),

Turn on wireless hotspot (normal), How are you (validation), Turn on Wi-Fi (“Random

Delete”)]. Participants from pool B received another command sequence: [Turn on air-

plane mode (normal), Open the door (“Random Delete”), Turn on the computer (normal),

How are you (validation), Turn on the light (“Random Delete”), Call 911 (normal), Turn on

wireless hotspot (“Random Delete”), Turn on Wi-Fi (normal)]. The participants from pool

C received the following command sequence: [Turn on airplane mode (“Random Delete in

Spectrum”), Call 911 (“Random Delete in Spectrum”), Good morning (validation), Turn

on the light (“Random Delete in Spectrum”), Open the door (“Random Delete in Spec-

trum”), Turn on Wi-Fi (“Random Delete in Spectrum”), How are you (“validation”), Turn

on the computer (“Random Delete in Spectrum”)]. The validation “how are you” command

is a normal audio clip used to verify that the participant had put the proper attention in

participating in the study. In general, the participants received either the normal or the ob-

fuscated version of one command. Besides, the participants were kept engaged because they

alternately got normal or obfuscated commands in the questionnaire. The questionnaire for

this experiment is in the Appendix.

Participants were asked to play each command twice and input what they were able

to understand each time. The whole survey lasted for about four minutes. Participants

3All of the audio clips for this experiment are available in https://walterjohnson0.github.

io/AudioClips.html. Please be aware that it may be easier for readers to comprehend the meaning
of the audio clips because they have already read about the list of commands. But the participants
in this study were not given the list of commands in advance.

44

https://walterjohnson0.github.io/AudioClips.html
https://walterjohnson0.github.io/AudioClips.html

Command (APR)
Normal Random Delete Perturb in Spectrum

1 st 2 nd 1 st 2 nd 1 st 2 nd

Turn on airplane mode (0.78) 63% 76% 1% 2% 0% 5%
Open the door (0.73) 96% 100% 27% 38% 75% 88%
Turn on the computer (0.56) 92% 96% 42% 57% 41% 54%
Turn on the light (0.86) 93% 96% 20% 32% 60% 75%
Call 911 (0.92) 93% 93% 15% 22% 68% 73%
Turn on Wi-Fi (0.85) 96% 100% 45% 65% 39% 59%

Table 4.6: Audio Intelligibility Test.

were compensated with CA$0.92 according to the minimum wage in Ontario. The result

eliminated the data from those participants who did not obtain a correct answer for the vali-

dation audio or report a technical issue (there was a question at the end of the questionnaire

to determine whether the participant encountered technical issues).

The number of participants who inputted the correct transcription was recorded and

it was divided by the number of validated data in that pool to get the percentage of the

participants who recognized the command. These percentages represent the intelligibility

of the command. Results are shown in Table 4.6. All of the normal commands obtained a

high value in intelligibility, which indicates that those commands are clear, while obfuscated

commands got much less in intelligibility. SegmentPerturb using random delete reduced

around 64% the participants’ intelligibility of the obfuscated audio.

45

Chapter 5

Discussion

5.1 Comparing with Previous Works

Following the comparison table from Abdullah et al. [9], a comparison with other black-

box voice attacks [8, 11, 13, 17, 35, 37, 42] was conducted in the following dimensions: the

audio type of the adversarial audio, the transmission medium of the adversarial audio, the

number of queries, the time needed to craft each adversarial command, the number of ASR

successfully attacked, the model type (interval) of the ASR, the attack distance, and the

transferability of the adversarial command. Table 5.1 summarizes how SegmentPerturb

compares against other attacks found in the literature. In general, the number of queries of

SegmentPerturb is acceptable and it achieves a further attack distance than the previous

attacks, however the limit for this attack is the transferability.

46

A
tt

ac
k

M
et

h
o
d

A
u
d
io

T
y
p

e
M

ed
iu

m
#

Q
u
er

ie
s

T
im

e
#

A
S
R

A
tt

ac
ke

d
A

S
R

in
te

rn
al

s
A

tt
ac

k
d

is
ta

n
ce

T
ra

n
sf

er
ab

il
it

y
D

ev
il

’s
W

h
is

p
er

[1
7]

C
le

an
L

/A
15

00
4.

6h
3

?
0.

05
-2

m
Y

es
A

lz
an

to
t

et
al

.
[1

1]
C

le
an

L
?

37
s

1
C

N
N

N
/A

N
o

D
ol

p
h
in

at
ta

ck
[4

2]
In

au
d
ia

b
le

A
0

0
9

R
N

N
,

?
1.

5
m

Y
es

L
ig

h
t

co
m

m
an

d
[3

5]
In

au
d
ia

b
le

A
0

0
4

?
11

0
m

Y
es

A
b

d
u
ll

ah
[8

]
N

oi
sy

L
/A

10
S
ec

on
d
s

12
R

N
N

,H
M

M
,?

0.
3

m
Y

es
C

o
ca

in
N

o
o
d
le

s
[3

7]
N

oi
sy

L
/A

?
?

1
?

0.
3

m
N

o
H

id
d
en

vo
ic

e
co

m
m

an
d

[1
3]

N
oi

sy
L

/A
?

32
h

1
R

N
N

0.
5

m
N

o
S
eg

m
en

tP
er

tu
rb

N
oi

sy
L

/A
A

ro
u
n
d

30
0

30
m

in
4

?
0.

5-
2

m
N

o

T
ab

le
5.

1:
C

om
p
ar

in
g

w
it

h
p
re

v
io

u
s

w
or

k
.

1:
A

u
d
io

T
y
p

e,
th

e
au

d
io

ty
p

e
of

th
e

ad
ve

rs
ar

ia
l

au
d
io

.
2:

M
ed

iu
m

:
“L

”,
ov

er
-t

h
e-

li
n
e;

“A
”,

ov
er

-t
h
e-

ai
r.

3:
#

Q
u
er

ie
s:

n
u
m

b
er

of
q
u
er

ie
s

on
th

e
A

S
R

to
ge

n
er

at
e

th
e

at
ta

ck
m

o
d
el

or
au

d
io

.
“?

”
m

ea
n
s

th
at

th
e

au
th

or
d
id

n
ot

p
ro

v
id

e
th

is
in

fo
rm

at
io

n
.

4:
T

im
e:

ti
m

e
co

n
su

m
p
ti

on
fo

r
ge

n
er

at
in

g
on

e
ad

ve
rs

ar
ia

l
au

d
io

cl
ip

.
5:

#
A

S
R

A
tt

ac
ke

d
:

n
u
m

b
er

of
A

S
R

w
h
ic

h
is

d
em

on
st

ra
te

d
su

cc
es

sf
u
ll
y

at
ta

ck
ed

.
6:

A
S
R

in
te

rn
al

:
th

e
in

te
rn

al
m

o
d
el

ty
p

e
of

th
e

A
S
R

.
“?

”
m

ea
n
s

th
at

th
e

m
o
d
el

ty
p

e
is

u
n
k
n
ow

n
as

th
e

at
ta

ck
is

in
a

b
la

ck
-b

ox
se

tt
in

g.
7:

A
tt

ac
k

d
is

ta
n
ce

:
th

e
w

or
ka

b
le

ov
er

-t
h
e-

ai
r

at
ta

ck
d
is

ta
n
ce

fr
om

th
e

sp
ea

ke
r

to
th

e
m

ic
ro

p
h
on

e.
8:

T
ra

n
sf

er
ab

il
it

y
:

th
e

tr
an

sf
er

ab
il
it

y
of

th
e

at
ta

ck
.

47

5.1.1 Types of Adversarial Audio

Different attack methods use different types of audio. The types of the audio type of

adversarial audio can be categorized as inaudible, noisy, clean.

• Inaudible: The inaudible type means that the attack cannot be heard by the human,

but it can be recognized by the ASR. The attack is not necessarily in the form of

audio. All of the voice attacks using inaudible methods are hardware-level voice

attacks, software level attack only generate the audio which is audible. The Dolphin

attack [42] took advantage of the non-linearity of the amplitude of the ASR, and

generate ultrasound as the adversarial audio which is beyond the frequency range

that humans can perceive (20 Hz to 20 kHz). The light command [35] is not in

the form of sound. Instead, it used the characteristic of the microphone that it may

incidentally respond to the light signal and used laser light to activate the ASR, which

is not in the form of sound.

• Noisy: The noisy type implies that the adversarial audio sounds like noise to a

human, but the audio is carefully designed and can be recognized by the ASR. The

category of the attack which generates this kind of audio is the “hidden voice attack”.

Our attack is in this category. The general approach for a hidden voice attack is that

the adversary first acquires the normal command, performs some transformation to

this command which interferes with human intelligibility, but maintains ASR intelli-

gibility [8, 13, 37]. Otherwise, the adversary may start from the machine output, try

to reverse the input of the machine, normally this input cannot be recognized by a

human.

• Clean: The clean type of audio is clean to humans, such as music or dialogue, but it

would be recognized as a malicious command by the ASR. The command recognized

by the ASR is different from the meaning of the audio to a human. The clean audio is

generated by the adversarial attack. The general approach for this attack is starting

48

with a normal audio (the clean audio to be heard) adding the smallest modification

which can be perceived by the ASR but hard to be perceived by humans [33]. Most

of these types of attacks are using a white-box model on the ASR. But a recent study

by Chen et al. [17] manage to use a shadow model to approximate the target model

and therefore it is workable in a black-box setting.

5.1.2 Computational Power Consumption

Number of Queries

For the black-box attack, the adversary may need the ability to queries the ASR to gain

the needed information to generate the adversarial audio. Chen et al. [17] used a white-

box model as a local model and query the target ASR 1500 times to complement the local

model. The hardware attack (Dolphin attack [42], Light command [35]) are attacking the

signal processing stage of the ASR, the attack medium (ultrasound, laser light) contains

the full information of the original command but the medium itself cannot be perceived by

a human. A hardware attack does not involve gaining information from the ASR, therefore

the number of queries is zero. For a hidden voice attack in the black-box setting, the

adversary has to query the ASR as the feedback for crafting successful adversarial samples,

therefore Vaidya et al. [37], Abdullah [8] and our approach require the ability to query the

ASR.

Time to Generate Adversarial Samples

To generate one adversarial sample, the adversary may need to build a shadow model

or repeatedly query the target ASR. The time for generating one adversarial sample is

reflecting the efficiency of the attack. Devil’s Whisper [17] requires approximately 4.6 hours

for tuning the model and generating an attack audio sample. The hardware does not require

extra time to generate the audio. SegmentPerturb needs around half an hour to generate

adversarial audio, which is better than [17] and [13].

49

5.1.3 ASR Attacked

To prove the feasibility of the attack, the efficiency of SegmentPerturb is demonstrated

with four modern commercial ASRs. The papers which also demonstrate their attack with

modern ASRs are Devil’s Whisper [17], Dolphin attack [42], Abdullah et al. [8]. The internal

of the ASR includes CNN, RNN, HMM, and unknown (“?” in Table 5.1; it is used to mark

the attack in the black-box setting). Carlini et al.’s [13] demonstrated their work with a

white-box ASR (the internal is RNN), and then generalized it to the black-box model. Other

works, Devil’s Whisper [17], light command [35], Abdullah et al.’s [8] and SegmentPerturb

are designed for attacking the ASR in a black-box setting, which could make the attack

more practical in the real world.

5.1.4 Transferability

Transferability is the ability that an adversarial sample designed for one ASR can be used

to attack other ASR. SegmentPerturb is specifically designed for the attacked ASR there-

fore the transferability of the attack is weak. Other machine learning level attack has been

demonstrated some transferability, but the transferability of the attack on the neural net-

work of the ASR is elusive because the update of the commercial ASR could make the

successful Adversarial sample of the previous version fail. The hardware attack is transfer-

able because it does not rely on deceiving the neural network model of the ASR.

5.2 Detail Comparison with the State-of-the-art

Hidden Voice Attack

The attack from Abdullah et al.’s [8] is reproduced in this section according to the code

provided by the authors1.

1The link provided in [8] is https://github.com/hamzayacoob/VPSesAttacks

50

https://github.com/hamzayacoob/VPSesAttacks

5.2.1 Background

The authors provided the code of their four attacks, which are time domain inversion (TDI),

random phase generation (RPG), high frequency addition (HFA), and time scalling (TS).

However, they did not provide the code of their so-called “perturbation engine” they refer

to in [8], which is meant to combine the four attack methods to generate the “best attack

sample” or the “best parameter set” for their attack. In lieu of the perturbation engine,

the evaluation was done on each attack method they proposed, which in itself represented

the actual attack efficiency an attacker would experience in crafting this attack.

Before reproducing these four attacks, it was important to clarify the parameters of

each of them. The first attack method they proposed is TDI. TDI is a transform in the

time domain where the audio is first separated into multiple equal-length time windows,

and the signal of each time window is reversed. The length of the time window (LTW)

will be the only parameter for TDI. The second attack method is RPG which operates

on the frequency domain. The signal is separated into equal-length time windows and

then transformed to the frequency domain using FFT. Then, all frequency components are

randomly rotated while preserving the original magnitude. The only parameter of the RPG

is also the length of the time window (LTW). The third attack method is HFA, which adds

high-frequency sine waves to the audio signal. There are two parameters that control the

sine wave to be added into the audio, frequency (FREQ) and intensity (INT). The fourth

attack is TS, which changes the tempo of the audio; the authors tried to speed up the audio

while preserving its intelligibility to the ASR. The parameter that controls the speed of the

audio is thus “tempo” (TEMPO).

5.2.2 Claims from Abdullah et al. [8]

Some conclusions of the parameters are pointed out by Abdullah et al. [8] in their paper:

“The experimental results show that perturbation parameters, specifically window size (used

for TDI and RPG), display three important properties. First, the smaller the window

51

size, the greater the audible distortion. Second, if an attack audio sample is successfully

transcribed at a certain window size, then all attack audio samples that were generated

with greater window sizes are also successfully transcribed. Third, no attack audio samples

generated with window sizes of below 1.00 ms are correctly transcribed. ” Besides, they also

pointed out the possible parameter for their attack method “In our preliminary experiments

we observed the TS factor of 150%, RPG or TDI window size of near 1.00 ms, and HFA of

sine waves of frequency above 8000 Hz produced the ideal attack audio.”

5.2.3 Reproducing Abdullah et al.’s work [8]

Using the conclusion provided by them, their four attack methods on 6 audio commands

was evaluated separately. The results2 of the reproduction test are presented in Table 5.2.

For each attack method, the best perturbation parameter was applied, at the condition that

the attack audio sample can be recognized by the Google speech recognition over-the-line.

For TDI, the minimum LTW which is over 1 ms was applied. For RPG the minimum

LTW which is above 1ms was applied. The RPG attack does not work for the command

“open the door” no matter how the time window was increased; therefore it is marked as

“7”. For HFA, the addition sine wave with the largest intensity at 11000 Hz was applied

(randomly selected frequency which is above 8000 Hz, referring to the conclusion provided

by the author “frequency above 8000 Hz”). The intensity parameter was set to 20000. The

audio samples become annoying to human hearing but the ASR (refer to the audio clips

in the corresponding table in our website) can still recognize them. I invite the reader to

play the audio clip to verify that the audio is still intelligible despite how annoying the

high-frequency pitch may be. For TS, the parameter provided by [8] (150%) was used and

whether the command could be recognized by the ASR was tested. By testing each attack

method of their work, some insight of their attack was provided.

I want to point out some of the flaws in the method proposed by Abdullah et al. [8].

2The audio samples for Table 5.2 are available to listen in this website
(https://walterjohnson0.github.io/Compare Practical.html).

52

https://walterjohnson0.github.io/Compare_Practical.html
https://walterjohnson0.github.io/Compare_Practical.html

Command
TDI RPG HFA TS

min LTW(ms) min LTW(ms) FREQ(Hz) INT TEMPO
Turn on airplane mode 3.00 20.83 11000 20000 1.5
Open the door 7.08 7 11000 20000 1.5
Turn on the computer 2.08 6.25 11000 20000 1.5
Turn on the light 3.75 18.75 11000 20000 1.5
Call 911 3.91 10.41 11000 20000 1.5
Turn on Wi-Fi 3.00 10.41 11000 20000 1.5

Table 5.2: The reproduction of the work from Abdullah et al. [8]

The first flaw is that they did not specify the procedure or provide the code for the “pertur-

bation engine” (PE). The way to search for the best parameter of the combination of TDI,

RPG, HFA, TS was not clearly explained, which has a considerable impact when trying to

reproduce their attacks. If the adversary is searching for all of the parameter in one shot

they must generate 24×n(LTWTDI)×n(LTWRPG)×n(FREQ)×n(INT)×n(TEMPO)

samples and pass all those samples into the ASR, in which n(·) is the number of the optional

values for that parameter. This PE scheme will cause more than 200,000 queries on the

ASR instead of 10 queries which were stated in Abdullah et al.’s [9] work.

One possible solution for the adversary to reduce the number of queries is searching

for the best parameter on each attack method one by one instead of searching for all

parameters altogether. If the adversary used this strategy, the number of queries could

be reduced to n(LTWTDI) + n(LTWRPG) + n(FREQ) + n(INT) + n(TEMPO) times.

But the condition for this strategy is that there is no mutual interference on their four

attack methods. This condition cannot be satisfied because adding/combining a second

attack method will certainly reduce the intelligibility from the ASR or interfere with the

parameter of other attack methods. One apparent mutual interference is between TDI,

RPG, and TS. TDI and RPG use LTW as the parameter; If the adversary wants to overlay

a TS on TDI or RPG, the time window for TDI or RPG will be modified because of time

scalling. Another mutual inference is between HFA and TS; if the adversary does HFA first,

and then do a TS, the frequency of the sine wave of HFA will be augmented. Therefore,

53

because of the mutual interference between their attack methods, the adversary cannot

search for the best attack parameter one by one.

The second flaw is about the conclusion regarding TDI. The conclusion of “the smaller

the window size the greater the distortion” was incorrect for the TDI. When searching for

the best parameter for TDI, it did not show such features. Consider two extreme points.

First, if the time window is super large, LTW equals the length of the whole audio signal,

the audio will be totally reversed, which cannot be recognized by most ordinary people nor

by the ASR. Second, if the time window is super small, the length becomes 1, the inversion

of the time window of 1 does not modify any point of the signal, at this point there is no

distortion on the audio. Therefore, for TDI, the conclusion should be on the opposite side,

the smaller the window size, the less the distortion. This phenomenon is also demonstrated

in our experiment; the smaller the window size, the perturbed audio sounds more like the

original audio with high-frequency noise and easier being recognized by the ASR. To prove

this, an additional experiment was performed searching for the maximum LTW that is lower

than 1 ms for TDI. The result3 is shown in Table 5.3 The attack audio samples with an

LTW below those values can be recognized by the ASR.

Command
TDI

max LTW(ms)
Turn on airplane mode 0.63
Open the door 0.63
Turn on the computer 0.52
Turn on the light 0.52
Call 911 0.41
Turn on WIFI 0.63

Table 5.3: The maximum LTW that is below 1 ms for TDI.

Parameter reusable test: One major difference between our work and Abdullah et

al.’s [8] is the reuse of the parameter for one successful attack. In Abdullah’s attack, they got

3The audio samples for Table 5.3 are available to listen in this website
(https://walterjohnson0.github.io/TDI LTW Practical.html).

54

https://walterjohnson0.github.io/TDI_LTW_Practical.html
https://walterjohnson0.github.io/TDI_LTW_Practical.html

one parameter for one ASR system; for example, the time window length. Theoretically, in

one successful attack, if they found out what is the time window length for one ASR system,

they can apply the same parameter on the perturbation procedure for other commands.

The feasibility of the parameter reuse of one attack was tested. Theoretically, the pa-

rameter for their attack can be reusable, which can largely reduce the work when generating

another command when attacking an ASR.

The command “call 911” was randomly picked. The parameter for attacking “call 911”

was tried on other command attacking the same ASR. The result4 is shown in Table 5.4. TDI

and RPG are the methods that perform best, amongst the four, in reducing the intelligibility

of the command. Therefore, the transferability of TDI and RPG can be considered as the

key factor to judge transferability. The LTW of TDI is 3.91 ms for “call 911”. We tested

the same LTW-TDI for other commands and found that three of the two commands were

correctly transcribed. The LTW of RPG is 10.41 ms for “call 911”. Using the same

parameter for the attack, two out of 5 commands were correctly transcribed. For HFA and

TS, the perturbation parameter is more transferable only because the parameter is the same

for all of the attacks.

Command
Attack Method
TDI RPG HFA TS

Turn on airplane mode 3 7 3 3

Open the door 7 7 3 3

Turn on the computer 3 3 3 3

Turn on the light 3 7 3 3

Turn on Wi-Fi 7 3 3 3

Table 5.4: Test on the feasibility of parameter reuse of Abdullah et al.’s [8].

Practically, the attack has some transferability for TDI and RPG but is not stable. The

attack on some commands cannot be transformed because they have different minimum

LTW for TDI and RPG. And the best attack audio is not necessarily very unintelligible to

humans.

4The audio samples for Table 5.4 are available to listen in this website
(https://walterjohnson0.github.io/Reuse Practical.html)

55

https://walterjohnson0.github.io/Reuse_Practical.html
https://walterjohnson0.github.io/Reuse_Practical.html

5.2.4 Comparing with the Intelligibility of the Attack Audio

Samples

Short-time Fourier transform Abdullah et al. [8] proposed their hidden voice attack,

attacking the signal processing stage of the ASR. Our attack makes more queries to craft

one adversarial sample for the attack, but our attack can make the adversarial audio more

unintelligible. Short-Time Fourier Transform (STFT) was used to compare our attack with

the previous work from Abdullah et al.’s [8]. This comparison was conducted using the

same audio command “Turn on the light” under an over-the-line attack. The targeted ASR

model is Google speech recognition API [2]. Fig. 5.1 shows the power spectrum of the

STFT for audio samples of the original command (Fig. 5.1, left), Abdullah et al.’s attack

[8] (Fig. 5.1, middle) and our attack (Fig. 5.1, right). Random Phase Generation (RPG)

was used to represent Abdullah et al.’s work [8] because, in our reproduction of their work,

RPG gets the best disturbance on the audio among the four attack methods they proposed

(at the condition that ASR recognizes the adversarial command). The sound starts from

1s and ends at around 2s. Abdullah’s attack added perturbation in the power spectrum

from 0Hz to 12kHz. Our attack added perturbation on all of the frequencies of the audio,

covering up all the components from the original waveform. In the over-the-line attack,

SegmentPerturb performs much better in reducing intelligibility using such a simple idea.

Figure 5.1: The STFT of the audio “Turn on the light”.

56

Intelligibility test A similar intelligibility test was conducted on the audio sample from

reproducing Abdullah et al.’s work [8]. Following the same procedure in Section 4.6, 100

HITs5 were published in the Amazon Mechanical Turk, in which 50 HITs were testing TDI

(pool D) and the other 50 HITs were testing RPG (pool E). The audio samples sequence for

pool D is [Turn on airplane mode (TDI), Call 911 (TDI), Good morning (validation), Turn

on the light (TDI), Open the door (TDI), Turn on Wi-Fi (TDI), How are you (“validation”),

Turn on the computer (TDI)]. The audio samples sequence from pool E is [Turn on airplane

mode (RPG), Call 911 (RPG), Good morning (validation), Turn on the light (RPG), Open

the door (RPG), Turn on Wi-Fi (RPG), How are you (“validation”), Turn on the computer

(RPG)]. The ratio of the participants who recognized the commands is shown in Table 5.5

Command
Abdullah et al.’s [8] SegmentPerturb
TDI RPG Random Delete

1 st 2 nd 1 st 2 nd 1 st 2 nd

Turn on airplane mode 7% 16% 40% 47% 1% 2%
Open the door 93% 95% 91% 98% 27% 38%
Turn on the computer 80% 91% 86% 91% 42% 57%
Turn on the light 70% 82% 81% 91% 20% 32%
Call 911 100% 98% 91% 91% 15% 22%
Turn on Wi-Fi 91% 91% 83% 93% 45% 65%

Table 5.5: Audio intelligibility test for [8]

The table shows that both RPG and TDI do not totally destroy the intelligibility of

the command. Most of the commands got as high as 90% of the participants’ correct

recognition, which suggests that the command is not very obfuscated. Compared with their

perturbation method, SegmentPerturb did better in reducing the intelligibility of the voice

command since the average of the first time comprehension is 25% for SegmentPerturb.

5The questionnaire is in Appendix A

57

5.3 SegmentPerturb as a Framework

SegmentPerturb is a framework for generating hidden voice commands by inquiring the

ASR. The framework is starting from the ordinary voice command, separating the audio

into equal-length time windows, and repeatedly applying perturbation on each segment

while probing the ASR.

In this framework, the variable part is the MIPF. Other researchers can use different

functions to substitute this part as long as the function satisfies the three characteristics

of the MIPF. In this research, the baseline MIPF, “Random Delete”, was proposed. This

is the simplest MIPF yet works effectively in the over-the-line setting and performs well

in over-the-air setting. However, it may not work consistently in the practical real-work

attack in an over-the-air setting. Some potential reason for “Random Delete” to fail could

be that the distortion of the sound transmission over-the-air is significant and the signal of

the “Random Delete” cannot be physically reproduced by the vibration of the coil. The

feasibility of using other MIPF in SegmentPertrub was demonstrated by testing on the

“Random Delete in Spectrum”. Therefore, other MIPFs can be designed to perform hidden

voice attacks using the SegmentPerturb framework.

5.4 No Assumption on the Signal Processing Pipeline

of ASR

Our attack does not involve assumptions on the signal processing stage. Previous works were

mostly based on the assumption that speech recognition systems used some signal processing

methods for feature extraction, especially MFCC or other spectrum-based methods as most

of the ASR did use those signal processing methods. However with the rapid advances in

the speech recognition models, there is a trend in modern ASR to avoid using those signal

processing methods for feature extraction [23,43]. The assumption behind previous research

on hidden voice attacks may not hold for emerging end-to-end models.

58

In the black-box attack experiment, previous works did make assumptions on the feature

extraction of the speech recognition systems. Carlini et al.’s [13] research on the black-box

attack was based on the assumption that the speech recognition system uses MFCC as the

feature extraction method. In their black-box attack experiment, the audio mangler can

generate an audio file that obtains similar MFCC features in the targeted ASR. Abdullah

et al.’s [8] research claimed that they were performing their attack on a black box. However

they also had one implicit assumption that the target ASR uses the time-frequency domain

transform as a component for the feature extraction; otherwise, the theoretical support

for their perturbation using RPG (Random Phase Generation) and TDI (Time Domain

Inverse) is rather weak. Because the idea behind their work is that using their perturbation

method on the waveform, the targeted ASR will get similar features after a time-frequency

domain transform. Thus, the signal processing phase of the ASR in Abdullah et al.’s [8]

work should include a time-frequency domain transform; otherwise, the adversarial audio

will not generate a similar feature as the original audio.

Our hidden voice attack is based on a less restrictive assumption than previous works.

No assumption was made on the signal processing or the time window separation. Therefore

SegmentPerturb can be effective for all of the new emerging speech recognition systems. In

SegmentPerturb, one MIPF and a way to inquire the ASR model can make an acceptable

hidden voice attack.

5.5 Judging Whether the Voice Attacks Truly Fool

the ASR

SegmentPerturb has good potential for judging the abnormal tolerance of ASR and whether

voice attacks truly fool an ASR. ASRs are well-designed for recognizing vague speech. As

such, the speech audio signal has overly redundant information in it. The ASR may use

some non-critical features for recognition. Therefore, a well-designed voice attack may just

59

fall within the abnormal tolerance of the ASR instead of truly fooling the ASR.

Besides, typically, the abnormal tolerance for different commands is imbalanced. For

example, Google speech recognition is more tolerant to the commands which the users use

ordinarily and it would be easier to perform a voice attack on those commands. A similar

phenomenon is also shown in other voice attack research. The voice attack research can get

a better result on “Turn on the light”, “Call 911” and “Play music”. Because such stan-

dard commands are more tolerant to noise and therefore vulnerable to voice attacks. Using

SegmentPerturb to probe those commands could be an effective way to show their difficulty

to perform voice attacks; the APR can be used as the index of the difficulty. Besides,

the tolerance for each segment in one audio command can also be revealed using Segment-

Perturb. Therefore, SegmentPerturb could potentially become a comparison baseline for

voice attacks. Other researchers may find out whether their voice attack samples truly fool

the ASR or their perturbation audio samples were just within the abnormal tolerance by

comparing to our work.

5.6 Defenses

5.6.1 Detect Electronic Sound

All of the over-the-air voice attacks on ASR have to use electronic speakers, therefore

distinguishing the source of the voice as either from an electronic speaker or a human could

be an effective way to defend against hidden voice attacks.

To prevent voice attacks, the “ASVspoof Challenge” began in 2015. In ASVspoof

Lavrentyeva et al. [28] used Deep Neural Network to distinguish the replay spoof attack

and they achieved an equal error rate (EER) of 6.73% which had a 72% relative improve-

ment over the baseline system from ASVspoof 2017. Blue et al. [12] studied the difference

between electronic and human voice. They studied the frequency domain characteristics at

the sub-bass (20-80Hz) region and used this characteristic to distinguish electronic speakers

60

and the human voice. Their classification result gets a high true positive rate while keeping

the false positive rate at a minimum. Ahmed et al. [10] further improve the method of

detecting electronic sound; they proposed a fast and light electronic sound detection model,

which only takes in 97 features.

But the defense method of detecting electronic sound may fail if the adversary carefully

designs the adversarial audio or uses a high-quality audio device.

5.6.2 Using Other Interaction Methods to Confirm the High-

Level Command

Some high-level commands are possible to be activated by one single sentence, which pro-

vides convenience for the adversaries. For example, one sentence commands like “Turn

on airplane mode”, “Call 911”, “Order [item]” can activate certain behavior easily on the

devices.

Therefore, using other interaction methods to confirm a high-level command is a good

way for preventing easy activation of the high-level commands. For example, using a button

to confirm the validity of the high-level command in the voice application in a mobile phone.

If using a button is not possible for some devices, using other biometrics for authentication

can also prevent the hidden voice attack.

61

Chapter 6

Conclusion

6.1 Limitations

6.1.1 Limited Transferability

SegmentPerturb is designed for attacking the specific target device, and the adversary can

only perform this attack on the ASR models which they can query. For example, if the

adversary wants to perform a hidden voice attack on Google Home, the adversary can per-

form the perturbation algorithm on a separate Google Home to obtain the perturbed audio

file and then replay it to the target device. Alternatively, they could run the perturbation

algorithm on the Google speech recognition API and then replay it over the air.

If the adversary cannot access the same ASR model, there is no theoretical support for

this perturbation algorithm to succeed. Besides, there is no theoretical support for using

the perturbed command for one ASR model to attack another model. The limitation in

transferability restricts the application of this attack.

62

6.1.2 Attack Performance Depends on the Abnormal Toler-

ance of ASR

The success rate of our attack is highly related to the abnormal tolerance of the ASR model.

If the model is more noise-tolerant, more segments in the waveform can be perturbed

to a higher degree. In Fig. 4.1 and Fig. 4.2, Google and Azure are more noise-tolerant

as they can recognize a meaningful command from strongly perturbed audio. For IBM

speech recognition, even a small perturbation rate on the audio will make it generate the

wrong output. The noise-resistant property of the ASR needs to be carefully designed for

preventing this kind of attack. If the ASR system is more robust, it would be easier for the

adversary to perform a hidden voice attack with a more unintelligible voice command.

6.1.3 Model Update of ASR Nullify the Attack Audio Sam-

ples for the Previous Version

This is a universal problem for all adversarial attacks on the ASR model. The commercial

ASR are all experience a frequent update for improving the security or transcription accu-

racy. The attack on the ASR model is carefully searching for the perturbation on the audio

which changed the output of the audio to a target malicious output. Commonly, those

changes are delicate and only works for the specific model with the specific network param-

eter. These delicate perturbations in the attack sample can hardly adapt to the model with

a tiny update in the network weight. This drawback also occurs in our attack, if the ASR

has an update in the model, our attack audio sample may not necessarily workable for the

next version of the ASR. Therefore, if the attackers want to attack the next version of ASR,

they may need to craft a new version of the attack sample.

63

6.2 Future Work

The practicability of our attack was limited by the fact that voice assistants are comprehen-

sive systems that receive commands and execute them instead of returning a transcription.

Therefore, the ability of the adversaries to probe the ASR of the voice assistant was lim-

ited. Attacking a black-box voice assistant through the speaker is still a challenging task.

In other words, it is hard to attack a voice control system for which the adversaries cannot

probe the transcription. Therefore, future work could use zero-shot learning for attacking

systems which the adversaries cannot inquire. And specific to the attack on ASR, transfer

learning or model augmentation may also be a good research direction.

Another key problem for the practicability of the voice attack is how to overcome the

audio distortion caused by the surroundings. Most of the state-of-the-art research on voice

attacks was limited to the attack distance of two meters because of the distortion of the

sound by the surroundings. To address the distortion from different surroundings may be

a good direction to improve the attack distance.

Apart from the distortion of the surroundings, the difference of the speakers may also

cause failure for the attack audio samples. However, most of the voice attack research only

tests on a few different speakers but does not dig deep into how to address the problem of

different speakers, as there are a large number of different speakers in the market. Therefore,

how to address the problem of different speakers used by the users could also be a research

direction to improve the robustness of the voice attack.

6.3 Conclusions

This thesis proposed a novel attack method for the black-box hidden voice attack on the

modern ASR system. The goal of the attack is to generate noise-like attack audio samples

that can be recognized by the ASR but cannot be recognized by the human. SegmentPerturb

is tested using four commercial ASRs plus one mainstream smart home device.

64

In over-the-line attacks, SegmentPerturb can generate audio commands which can be

recognized by commercial ASRs but cannot be recognized by a human. The result has shown

that a smaller segment length would result in a more stable and effective attack. According

to our observation, 20-30 ms would be a good segment length for SegmentPerturb. In

over-the-air attacks, a series of practical experiments regarding SegmentPerturb were done.

A visualization of the perturbation rate for every segment of the audio command was

presented, showing that the segments which are deemed important from the view of the

ASRs are not necessarily important from the view of the human. In a real scenario attack,

the Google Home was placed at six representative positions in the bedroom, and most of

the commands can be recognized at each position. The audio intelligibility test showed

that only around 25% of participants can recognize the command when they first hear it.

Therefore, the attack audio samples have some practicability and stealthiness in the real

world.

Comparing with state-of-the-art hidden voice attacks, though SegmentPerturb requires

more computational power, it gained more unintelligibility in the audio attack sample and

had a longer attack distance. Besides, SegmentPerturb made no assumptions on the infor-

mation of the target ASR.

SegmentPerturb provides a new way for hidden voice attacks. It exploits the vulnerabil-

ity of the modern ASRs, that the ASR was so robust against the noise that even a noise-like

audio sample crafted by selective deletion can still be recognized. This research implies that

commercial ASR systems are vulnerable to voice attacks. Given the fact that the ASRs are

widely deployed in most smart devices, little attention was paid to their vulnerability. This

attack would not be successful if a minimum defense mechanism was applied, for example,

detecting electronic sound, as pointed out in the discussion section. This finding may alert

the designer of the modern commercial ASR and improve its security consequently. Seg-

mentPerturb also raises doubts on the previous research of hidden voice attacks: did the

previous research on hidden voice attacks truly fool ASR or the attack audio samples were

just within the noise tolerance of the ASRs?

65

Bibliography

[1] Google cloud speech-to-text. https://cloud.google.com/speech-to-text. Ac-

cessed: 2020-06-07.

[2] Google speech recognition in pypi SpeechRecognition. https://pypi.org/project/

SpeechRecognition/. Accessed: 2020-06-07.

[3] IBM speech-to-text. https://www.ibm.com/watson. Accessed: 2020-06-07.

[4] Kaldi platform. https://kaldi-asr.org/. Accessed: 2020-06-07.

[5] Microsoft Azure speech services. https://azure.microsoft.com/en-us/services/

cognitive-services/speech-services/. Accessed: 2020-06-07.

[6] Voice assistant and smart speaker users 2020. https://www.emarketer.com/content/

voice-assistant-and-smart-speaker-users-2020. Accessed: 2021-05-05.

[7] Wit.ai speech API. https://wit.ai/. Accessed: 2020-06-07.

[8] Abdullah, H., Garcia, W., Peeters, C., Traynor, P., Butler, K. R. B., and

Wilson, J. Practical hidden voice attacks against speech and speaker recognition

systems. In 26th Annual Network and Distributed System Security Symposium, NDSS

2019, San Diego, California, USA, February 24-27, 2019 (2019), The Internet Society.

[9] Abdullah, H., Warren, K., Bindschaedler, V., Papernot, N., and Traynor,

P. Sok: The faults in our asrs: An overview of attacks against automatic speech

recognition and speaker identification systems. arXiv e-prints (2020), arXiv–2007.

66

https://cloud.google.com/speech-to-text
https://pypi.org/project/SpeechRecognition/
https://pypi.org/project/SpeechRecognition/
https://www.ibm.com/watson
https://kaldi-asr.org/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
https://www.emarketer.com/content/voice-assistant-and-smart-speaker-users-2020
https://www.emarketer.com/content/voice-assistant-and-smart-speaker-users-2020
https://wit.ai/

[10] Ahmed, M. E., Kwak, I.-Y., Huh, J. H., Kim, I., Oh, T., and Kim, H. Void: A

fast and light voice liveness detection system. In 29th {USENIX} Security Symposium

({USENIX} Security 20) (2020), pp. 2685–2702.

[11] Alzantot, M., Balaji, B., and Srivastava, M. Did you hear that? adversar-

ial examples against automatic speech recognition. arXiv preprint arXiv:1801.00554

(2018).

[12] Blue, L., Vargas, L., and Traynor, P. Hello, is it me you’re looking for?: Dif-

ferentiating between human and electronic speakers for voice interface security. In

Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mo-

bile Networks (2018), ACM, pp. 123–133.

[13] Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C.,

Wagner, D. A., and Zhou, W. Hidden voice commands. In 25th USENIX Secu-

rity Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016 (2016),

T. Holz and S. Savage, Eds., USENIX Association, pp. 513–530.

[14] Carlini, N., and Wagner, D. Audio adversarial examples: Targeted attacks on

speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW) (2018), IEEE,

pp. 1–7.

[15] Chang, S.-Y., and Morgan, N. Robust cnn-based speech recognition with gabor

filter kernels. In Fifteenth annual conference of the international speech communication

association (2014).

[16] Chen, T., Shangguan, L., Li, Z., and Jamieson, K. Metamorph: Injecting

inaudible commands into over-the-air voice controlled systems. In 27th Annual Network

and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA,

February 23-26, 2020 (2020), The Internet Society.

67

[17] Chen, Y., Yuan, X., Zhang, J., Zhao, Y., Zhang, S., Chen, K., and Wang, X.

Devil’s whisper: A general approach for physical adversarial attacks against commercial

black-box speech recognition devices. In 29th USENIX Security Symposium (USENIX

Security 20) (2020).

[18] Chiu, C.-C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen,

Z., Kannan, A., Weiss, R. J., Rao, K., Gonina, E., et al. State-of-the-art speech

recognition with sequence-to-sequence models. In 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (2018), IEEE, pp. 4774–4778.

[19] Eddy, S. R. Hidden Markov models. Current opinion in structural biology 6, 3 (1996),

361–365.

[20] Graves, A., and Jaitly, N. Towards end-to-end speech recognition with recurrent

neural networks. In International Conference on Machine Learning (2014), pp. 1764–

1772.

[21] Graves, A., Jaitly, N., and Mohamed, A.-r. Hybrid speech recognition with

deep bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition

and Understanding (2013), IEEE, pp. 273–278.

[22] Graves, A., Mohamed, A.-R., and Hinton, G. Speech recognition with deep

recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing (2013), IEEE, pp. 6645–6649.

[23] Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E.,

Prenger, R., Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. Deep

speech: Scaling up end-to-end speech recognition. CoRR abs/1412.5567 (2014).

[24] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computa-

tion 9, 8 (1997), 1735–1780.

68

[25] Juang, B. H., and Rabiner, L. R. Hidden Markov models for speech recognition.

Technometrics 33, 3 (1991), 251–272.

[26] Kwon, H., Kim, Y., Yoon, H., and Choi, D. Selective audio adversarial example

in evasion attack on speech recognition system. IEEE Transactions on Information

Forensics and Security 15 (2020), 526–538.

[27] Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., War-

muth, M., and Wolf, P. The CMU sphinx-4 speech recognition system. In IEEE

Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong

(2003), vol. 1, pp. 2–5.

[28] Lavrentyeva, G., Novoselov, S., Malykh, E., Kozlov, A., Kudashev, O.,

and Shchemelinin, V. Audio replay attack detection with deep learning frameworks.

In Interspeech (2017), pp. 82–86.

[29] Miao, Y., Gowayyed, M., and Metze, F. EESEN: End-to-end speech recognition

using deep RNN models and WFST-based decoding. In 2015 IEEE Workshop on

Automatic Speech Recognition and Understanding (ASRU) (2015), IEEE, pp. 167–174.

[30] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel,

N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., et al. The Kaldi

speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition

and Understanding (2011), no. CONF, IEEE Signal Processing Society.

[31] Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., and Raffel, C. Imper-

ceptible, robust, and targeted adversarial examples for automatic speech recognition.

In Proceedings of the 36th International Conference on Machine Learning (Long Beach,

California, USA, 09–15 Jun 2019), K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97

of Proceedings of Machine Learning Research, PMLR, pp. 5231–5240.

69

[32] Saon, G., Kuo, H. J., Rennie, S. J., and Picheny, M. The IBM 2015 English

conversational telephone speech recognition system. In INTERSPEECH 2015, 16th

Annual Conference of the International Speech Communication Association, Dresden,

Germany, September 6-10, 2015 (2015), ISCA, pp. 3140–3144.

[33] Schönherr, L., Kohls, K., Zeiler, S., Holz, T., and Kolossa, D. Adversarial

attacks against automatic speech recognition systems via psychoacoustic hiding. In

26th Annual Network and Distributed System Security Symposium, NDSS 2019, San

Diego, California, USA, February 24-27, 2019 (2019), The Internet Society.

[34] Song, W., and Cai, J. End-to-end deep neural network for automatic speech recog-

nition. Standford CS224D Reports (2015).

[35] Sugawara, T., Cyr, B., Rampazzi, S., Genkin, D., and Fu, K. Light commands:

laser-based audio injection attacks on voice-controllable systems. In 29th USENIX

Security Symposium USENIX Security 20) (2020), pp. 2631–2648.

[36] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfel-

low, I. J., and Fergus, R. Intriguing properties of neural networks. In 2nd Interna-

tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April

14-16, 2014, Conference Track Proceedings (2014), Y. Bengio and Y. LeCun, Eds.

[37] Vaidya, T., Zhang, Y., Sherr, M., and Shields, C. Cocaine noodles: exploiting

the gap between human and machine speech recognition. In 9th USENIX Workshop

on Offensive Technologies (WOOT 15) (2015).

[38] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu,

D., and Zweig, G. Achieving human parity in conversational speech recognition.

IEEE/ACM Transactions on Audio, Speech, and Language Processing PP (10 2016).

[39] Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., and Stolcke, A.

The microsoft 2017 conversational speech recognition system. In 2018 IEEE Interna-

70

tional Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018), IEEE,

pp. 5934–5938.

[40] Yan, Q., Liu, K., Zhou, Q., Guo, H., and Zhang, N. Surfingattack: Interactive

hidden attack on voice assistants using ultrasonic guided waves. In 27th Annual Net-

work and Distributed System Security Symposium, NDSS 2020, San Diego, California,

USA, February 23-26, 2020 (2020), The Internet Society.

[41] Yuan, X., Chen, Y., Zhao, Y., Long, Y., Liu, X., Chen, K., Zhang, S., Huang,

H., Wang, X., and Gunter, C. A. Commandersong: A systematic approach for

practical adversarial voice recognition. In 27th USENIX Security Symposium, USENIX

Security 2018, Baltimore, MD, USA, August 15-17, 2018 (2018), W. Enck and A. P.

Felt, Eds., USENIX Association, pp. 49–64.

[42] Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., and Xu, W. Dolphinattack:

Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (2017), pp. 103–117.

[43] Zhang, Y., Chan, W., and Jaitly, N. Very deep convolutional networks for end-to-

end speech recognition. In 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) (2017), IEEE, pp. 4845–4849.

71

Appendix

A Audio Intelligibility Test

Instructions This experiment tests the intelligibility of up to 10 audio clips with noise.

You will need to play each audio clip twice.

You should be aware that the audio clips are designed to be recognized by machines

(e.g., voice control smart home devices) but not being recognized by humans. We do not

include a “wake word” in the audio so that your smart home device will not be activated.

To prevent accidental activation, please turn off all voice control devices nearby (within 2

meters).

Please click the Play button to listen to the audio clips and write down any words you

can hear or understand in the first blank line. Then listen to the audio again, and write

down what you can hear in the second blank line. Do not change the answer in the first

line after you have played the audio for a second time.

For example, if the audio says “good morning everyone”, but the first time you play it

you only recognize “good”, just input “good” in the first line. When you play the audio for

the second time, if you recognize the whole phrase ”good morning everyone”, you can input

”good morning everyone” in the second line. If you cannot recognize any word, please enter

“N/A”.

Repeat the same procedure for all audio clips.

Before starting the experiment, please play this audio file to make sure the volume on

your computer is sufficiently loud. Once you adjust your audio please leave it like that for

the whole experiment to make sure all audio clips are played at the same volume. [Volume

test audio]

Input format: Please type in only lower cases with no punctuation. For example, if you

hear ”Good morning everyone”, please input ”good morning everyone”.

Audio Experiment:

72

[Audio Link 1]:

[Input Box 1] [Input Box 2]

[Audio Link 2]:

[Input Box 1] [Input Box 2]

[Audio Link 3]:

[Input Box 1] [Input Box 2]

[Audio Link 4]:

[Input Box 1] [Input Box 2]

[Audio Link 5]:

[Input Box 1] [Input Box 2]

[Audio Link 6]:

[Input Box 1] [Input Box 2]

[Audio Link 7]:

[Input Box 1] [Input Box 2]

[Audio Link 8]:

[Input Box 1] [Input Box 2]

[Exit Question] If you cannot play the audio with the media player, please report the issue

here.

[Input Box]

[Submit Button]

73

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Related Works
	Technical Background: Speech Recognition
	Structure of Modern ASR

	Attack on ASR
	Machine Learning Model Level Voice Attacks
	Hardware-level Voice Attack

	Method
	Threat Model and Assumptions
	Transmission Model
	Attack Scenario
	The Perturbation Framework
	Monotonically Increasing Perturbation Function
	The Naïve Perturbation Algorithm
	Segmented Perturbation Algorithm

	Experiment
	Experiment Setup
	Preliminary Experiment: Over-the-line Attack using Naïve Perturbation Algorithm
	Over-the-line Attack using SegmentPerturb
	Over-the-line Attack using ``SegmentPerturb - Random Delete''
	Over-the-line Attack using ``SegmentPerturb - Random Delete in Spectrum''

	Over-the-air Attack using SegmentPerturb
	Over-the-air Attack using ``SegmentPerturb - Random Delete''
	Over-the-air Attack using ``SegmentPerturb - Random Delete in Spectrum''

	Practicability Test on Google Home
	Attack Distance
	Real Scenario Test

	Audio Intelligibility Study

	Discussion
	Comparing with Previous Works
	Types of Adversarial Audio
	Computational Power Consumption
	ASR Attacked
	Transferability

	Detail Comparison with the State-of-the-art Hidden Voice Attack
	Background
	Claims from Abdullah et al. abdullah2019practical
	Reproducing Abdullah et al.'s workabdullah2019practical
	Comparing with the Intelligibility of the Attack Audio Samples

	SegmentPerturb as a Framework
	No Assumption on the Signal Processing Pipeline of ASR
	Judging Whether the Voice Attacks Truly Fool the ASR
	Defenses
	Detect Electronic Sound
	Using Other Interaction Methods to Confirm the High-Level Command

	Conclusion
	Limitations
	Limited Transferability
	Attack Performance Depends on the Abnormal Tolerance of ASR
	Model Update of ASR Nullify the Attack Audio Samples for the Previous Version

	Future Work
	Conclusions

	Bibliography
	Appendices
	Audio Intelligibility Test

