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Abstract—Malwares are the key means leveraged by threat
actors in the cyber space for their attacks. There is a large array
of commercial solutions in the market and significant scientific
research to tackle the challenge of the detection and defense
against malwares. At the same time, attackers also advance their
capabilities in creating polymorphic and metamorphic malwares
to make it increasingly challenging for existing solutions. To
tackle this issue, we propose a methodology to perform malware
detection and family attribution. The proposed methodology
first performs the extraction of opcodes from malwares in
each family and constructs their respective opcode graphs. We
explore the use of clustering algorithms on the opcode graphs
to detect clusters of malwares within the same malware family.
Such clusters can be seen as belonging to different sub-family
groups. Opcode graph signatures are built from each detected
cluster. Hence, for each malware family, a group of signatures is
generated to represent the family. These signatures are used to
classify an unknown sample as benign or belonging to one the
malware families. We evaluate our methodology by performing
experiments on a dataset consisting of both benign files and
malware samples belonging to a number of different malware
families and comparing the results to existing approach.

Index Terms—malware detection and attribution; malware
family; clustering; opcode graph

I. INTRODUCTION

Malware is often used as a means to gain an initial com-
promise of victim hosts commonly through activities such
as social engineering and phishing schemes. Once targets
are infected, a variety of malicious activities are furthered
performed by the malwares. These activities include lateral
movement to infect more targets in the same network, ex-
filtration or destruction of valuable data and the disruption
of critical systems. The detection of malwares is therefore a
must for protecting critical systems and hence is a widely
researched topic. There is a large variety of research works and
methodologies on the detection of malwares which have been
introduced by various surveys [24], [L6], [21], [39]. However,
it has become increasingly challenging for these methods to
have ideal detection performances due to the rapidly evolving
malwares and growing pool of different malware families
[L1]. In the SonicWall’s 2021 Cyber Threat Report [[12], their
solutions found a total of 589,313 new malware variants in
2020. Overall, 74% more never-before-seen malware variants
were identified in 2020 than in 2019.
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Malware authors apply various types of techniques on the
creation of malware variants in order to evade detection from
the variety of defense mechanisms. Such obfuscation tech-
niques include encryption, polymorphism and metamorphism
which have been introduced in research works such as in [40]].
In particular, metamorphism provides the capability to alter
the internal structure of each malware, whilst being able to
maintain the same functional outputs [28], [35], [15]. Thus it
is possible to produce an infinite pool of malwares within the
same family. These malwares achieve the same purpose but
are not identical. Common signature-based solutions therefore
become ineffective as each of these malwares have different
signatures. This also makes it challenging for other types of
methods such as dynamic and behaviour analysis to effectively
detect these continuously morphing malwares that have evasive
mechanisms during runtime.

Static analysis, which involves analyzing the file properties
and structure, may also be relied upon to detect obfuscated
malware. In this paper, our proposed methodology focuses on
the analysis of one such static property, which is opcodes. Op-
codes are machine instruction codes that define the operations
that needs to be performed when the file is executed. Hence,
it is a representation of a file’s structure and operations and is
useful for malware detection.

In this work, we extract opcodes from malware samples,
build opcode graphs using bigrams and perform graph simi-
larity comparison for malware classification and family attri-
bution. However differing from the above previous works and
graph-based methods in particular, we integrate the use of clus-
tering algorithms on the graphs belonging to samples within
the same families. The purpose of this idea is to first detect
potential clusters of sub-family samples as a preliminary step,
as malwares belonging to the same family may be generated
from different versions of the family codebase. Hence there
may be some considerable differences in the structure of the
malwares generated by different code versions within the same
family. It is then meaningful to detect these different groups to
be able to boost detection accuracy. Opcode bigrams belonging
to clustered samples are used to build a single opcode graph
which represents its signature. Each malware family is thus
represented by a set of opcode graph signatures, with each
signature belonging to a different sub-family or version. For



an incoming unknown sample, its opgraph is extracted and
compared against each signature to find the closest matching
family for classification.

In summary, these are the contributions of our paper:

1) An opcode-based approach for malware detection and
attribution is proposed. The method builds opcode graph
signatures for each malware family, which can be used
for similarity comparison against samples and classify
them to one of the malware families.

2) Clustering algorithms are explored to perform the de-
tection of clusters on samples belonging to the same
malware family. The existence of different clusters of
samples that have considerable difference in character-
istics and therefore potentially belong to separate sub-
families is demonstrated as a result.

3) The proposed methodology is evaluated on a dataset
comprising of 2300 malware samples belonging to six
different malware families and 580 benign file samples.
Both binary classification experiments for general mal-
ware detection and multi-class classification experiments
for family attribution are performed.

In the following section, we discuss the related works. In
Section we present our methodology in detail and describe
its various steps. Experiments and performance evaluation of
the proposed method are presented in section Finally, fu-
ture improvements and conclusions are discussed in section [V]

II. RELATED WORKS

Vast research has been carried out in the areas of malware
analysis due to the rampant growth of the issue and the critical
need for defense mechanisms against malwares. Many re-
search surveys have been published to provide the community
with a comprehensive breakdown of features and techniques
explored. [37], [39] are some recent surveys. Malware analysis
can be broadly categorised into two categories, static analysis
and dynamic analysis. In static analysis, extraction of features
based on the content of the files without executing them is
performed. Such features include file strings, byte sequences,
opcodes, static API calls and control flow graphs. There are
also features unique to different types of applications such as
android. In [41], n-gram analysis techniques were applied on
XML and DEX files found within the application’s Android
Package Kit (APK). On the other hand, dynamic analysis
involve observing the behavior of malwares during execution
in a simulated environment. This approach allows more in-
formation related to the malwares’ interactions, such as its
dynamic API calls, network activity, access and modifications
to the file systems and registries to be collected.

In this paper we focus on the static analysis feature of
opcodes for malware family attribution and detection of meta-
morphic malware. Santos et al. [33] represented each malware
sample as a vector containing the frequencies of fixed length
opcode sequences. Similarity comparison is performed against
variants belonging to a set of different malware families and
attribute the sample to the closest family. Rad and Masrom
[14] extracted opcode frequencies as histograms and applies

histogram dissimilarity metrics to detect similarities to meta-
morphic families and hence classify them. Toderici and Stamp
[36] proposed to combine chi-squared statistical test with
HMM method. Each program is represented by a spectrum
of opcode frequencies and chi-squared test is performed to
determine whether it matches the expected spectrum of fre-
quencies from a malware family. This method is effective
at metamorphic virus detection but performs poorly when
techniques such as copying benign codes into malware are
used. Shangmugam et al. [34] applied the use of a simple sub-
stitution cipher technique as a measure of similarity between
the opcode distribution matrix of each metamorphic family
to that of an unknown sample. Fazlali et al. [20] extracted
an opcode feature set such as normalized frequency count
of opcodes and appearance of high frequency opcodes. The
feature set is used to train models of six different decision
tree based machine learning algorithms such as Random forest
to classify samples into metamorphic families or as benign.
Sahay and Sharma [32] investigated and found that malwares
generated from the same metamorphic virus kit are similar in
size. Thus they applied K-Means clustering on their size values
to detect clusters of metamorphic malwares from a dataset.
Opcode frequency based features are then extracted from each
cluster and used to train common classifiers for detection.
Okane et al. [29] explored the use of runtime opcodes during
the execution of the program for obfuscated malware such
as encrypted malware. Support vector machine (SVM) was
applied on density histogram of runtime opcodes as features.

Recently, works have applied deep learning on opcode-
based features. Darem et al. [[17] uses the popular method of
converting features into images. Opcode n-gram features were
converted into malware binary code and finally into gray-scale
images before feeding into a Convolutional Neural Network
(CNN) model. Their final model is an ensemble of CNN
and XGBoost, combining both deep learning and traditional
machine learning. [27] is another image based deep learning
work that combines opcode features from both ASM and Bytes
file of the malwares.

Graph-based techniques have also been applied on opcodes
for malware analysis. Many of such works extract weighted di-
rected graph of opcode digrams for each malware sample. One
aspect of such works involve the use of sub-graph matching
techniques. Khalilian et al. [26] constructs the opcode graph
of samples and applies graph mining techniques to detect
frequently occurring subgraphs across samples of the same
malware family. These subgraphs represent micro-signatures
of each family and are used as features to train classifiers
for detection. [18] is a closely similar work but uses control
flow graphs (CFG) instead of opcodes for frequent sub-graph
mining. Gulmez et al. [22] performs further engineering of the
sub-graphs of opcodes into histograms containing the degree
of each graph node to produce final features as input to
the machine learning models. Alam et al. [13] proposes two
different techniques, with one using CFG and the other using
opcodes. One key novelty of their work involves representing
both CFG and opcodes as higher level patterns. This CFG is



termed as Annotated CFG (ACFG) and they apply sub-graph
isomorphism technique for malware pattern matching. Their
second technique performs analysis of pattern distributions
by applying sliding windows on the higher level opcode
representations.

The other aspect of graph-based works consist of graph
similarity analysis approaches which are closely related to our
proposed methodology. Runwal et al. [31] first extracts the
opcode graph of each malware sample. In order to determine
the similarity between two graphs extracted from different
samples, they proposed a formula to compute a score value
from the graph matrices. They determined a threshold for the
score value by performing a comparison of all samples in each
metamorphic family and benign files. To classify new samples,
comparison is performed on the opcode graph of the sample
and any sample belonging to each metamorphic family or
benign files and the sample is assigned to the class in which the
score falls below the threshold. Kakisim et al. [25] proposes
two graph similarity based techniques. Their first technique,
coined as Co-opcode Graph Similarity based Metamorphic
Malware Identification method (CGS-MMI), involves building
a single opcode graph to represent each metamorphic family. A
similarity comparison of opcode graphs of an unknown sample
and that of each metamorphic family is done to determine
the family with highest similarity for classification. Their
similarity score is computed using a 2-D correlation coefficient
formula which uses the mean of the weights of edges in
the graphs. Their second proposed technique, Higher-Level
Engine Signatures based Metamorphic Malware Identification
method (HLES-MMI), aims to extract a higher level signature
from the representative opcode graph of each metamorphic
family. The idea is to only retain nodes and edges with the
largest weights in each graph which indicates a specific pattern
signature for each family. A metric is then used to determine
the similarity among signatures for classification.

As our work also involves the use of clustering algorithms,
following is a discussion on some clustering works. Zhang
et al. [42] uses both static and dynamic features and ap-
plies clustering algorithms such as K-means and Hierarchical
clustering. An ensemble method to combine both algorithms
and improve robustness of results is proposed. Pitolli et al.
[30] also use hybrid features but apply BIRCH clustering.
Clustering is performed on the input dataset to group samples
for the purpose of identifying the set of families that exist and
attribute the samples to those families.

Hu et al. [23] propose a clustering-based work using
opcode n-grams. Feature vectors containing occurrences of
each opcode n-gram are used as input to calculate the Eu-
clidean distance and hence determine program similarities.
The authors argue that classic algorithms such as K-means
and hierarchical clustering do not scale and propose the use
of a prototype-based clustering method to cluster samples in
their dataset of 20 malware families. Wang et al. [38] extracts
opcode bigrams and uses information entropy on the bigram
probabilities to select a smaller set of important bigrams as
features. They propose a Fast Density-based Clustering which

is an improvement over the standard density-based algorithm.

Differing from the above clustering works, our proposed
methodology does not apply clustering on a dataset as a
whole to identify the malware families or use clustering as
the main means to classify new samples to their families.
Instead we apply clustering separately on samples belonging to
each malware family using a labelled dataset of samples with
family categorisation. The purpose of this to attain a more
fine-grained attribution capability by detecting potential sub-
family groups that may have considerable differences even
if they belong to the same family. In [23], it was reported
that previous clustering approaches resulted in families being
separated into several sub-family clusters, more specifically the
detection of 50 clusters from a dataset of 20 families, due to
highly diverse samples. This is an indication that our approach
would be a meaningful research direction.

Our clustering approach is integrated to the graph similarity
analysis techniques in [31], [25]. We follow these methods
of similarity comparison as they have been shown to be
effective in the detection of malware samples belonging to
different metamorphic families. However, instead of applying
the similarity comparison directly on samples, our approach
applies such techniques as a means for similarity and distance
calculations for input to the clustering algorithm to detect sub-
family clusters within the same family.

III. METHODOLOGY

Our proposed methodology can be organised as a three-stage
process consisting of the following:

1) Creation of family distance matrix via similarity com-
parison of opcode graphs

2) Detection of sub-family groups via application of clus-
tering algorithm

3) Building of opcode graph signatures from clusters for
detection and family attribution

An illustration of the above process is shown in Fig. [I}

A. Stage 1: Creation of family distance matrix

In order to perform clustering on samples belonging to each
malware family and detect sub-family clusters, the first step
is to create the feature inputs. Our inputs to the clustering
phase are a set of N x N matrices, where N represents the
total number of samples belonging to each malware family in
the dataset. Each matrix contains the distance values of each
sample in the family to all the other samples within the same
family.

1) Opcode graph construction: In order to perform the
similarity comparison to create the distance matrices, we
leverage on opcode graph similarity comparison techniques.
Specifically for opcode graph construction, we choose to use
the weighted directed graphs in [31], [26].

All file samples in our dataset are disassembled to obtain
their opcode sequences. From the set of opcode sequences,
two key information are extracted. First is the list of all unique
opcodes found. The other is the set of opcode bigrams which
are pairs of opcodes in which one in the pair follows the other
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Fig. 1. Three-stage process of methodology

subsequently in the sequence. Using the above information, a
weighted directed graph of opcodes is constructed for each
sample in the dataset. Each node in the graph represents a
unique opcode in the dataset. The edge from one node to
another represents an opcode bigram (i, j), where j occurs
subsequently after i in the opcode sequence of the sample. To
compute an edge weight for (i, j), we first total the number of
occurrences for (i, j) in the sample. This value is then divided
by the total number of opcode bigrams where i belongs to
the first member in the pair. The result is an edge weight
representing the probability that j occurs after i, whenever i
appears in the sample’s opcode sequence.
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Fig. 2. Constructed opgraph graphs for sequences in Table

Table ] and Fig. [2] provide an example illustration of
the opcode graph construction from opcode sequences. We
consider a simple example scenario where the input contains
only two file samples. Table || shows the opcode sequences of
each sample. We may then refer to Fig. [2]to observe the opcode
graphs that are constructed from each of the sequences, noting
that the edges in the graphs contain the probability value of
one specific opcode appearing after another specific opcode
based on the direction of the edge. For example, in Fig.

Sequence 1 ~ Sequence 2
PUSH MOV
POP CALL
MOV IMP
POP MOV
RET PUSH
MOV PUSH
CALL POP
PUSH CALL
PUSH IMP
CALL PUSH
POP MOV
MOV IMP
TABLE 1

EXAMPLE ILLUSTRATION OF TWO OPCODE SEQUENCES

we can observe that after a PUSH instruction, either a POP,
CALL or another PUSH appears subsequently each with an
equal probability.

2) Opcode filtering: During the opcode sequence and
opcode bigram extraction process, we had also performed
filtering of opcodes to remove some from consideration in
the opcode graph construction. As previously defined, the
number of nodes in the opcode graph is the number of unique
opcodes found in the samples of the entire dataset. Thus
depending on how many unique opcodes there are, the size of
the opcode graph may become very large. We filter and remove
rarely occurring opcodes which lead to the graphs becoming
unnecessarily large while not providing significant information
or negatively impacting the similarity comparisons. More
specifically, the process involves sorting the opcode bigrams
according to their number of occurrences and we calculate the
total number of bigrams. A simple threshold percentage is then
set and applied on this total value. If the threshold value is
90%, the top occurring opcode bigrams that contribute to 90%
of the total number of bigrams is retained while the remaining
ones are filtered off. From the pool of filtered bigrams, unique
opcodes that no longer exist in any of the retained bigrams are
removed from consideration thereby reducing the size of the
opcode graphs.



3) Similarity comparison of opcode graphs: After the
opcode graph construction for the samples, we proceed to
perform similarity comparison of all samples within the same
malware family in the dataset. The measure of similarity
between samples, i.e. distance matrix, is a possible feature
input to clustering algorithms for them to able to group
our samples within the same family into different sub-family
clusters.

To compute a similarity score between any two samples
using their opcode graphs, we refer to the computation formula
proposed in [31]]. The scoring function is simple and efficient
and is able to sufficiently reflect the similarity in the structure
of the opcode graphs. Recall that each opcode graph is an
N x N weighted directed graph. Hence the more similar one
sample is to another sample, their edge weights should be
closer in value in general. The scoring approach takes the
above into consideration. It computes the difference in values
of the corresponding edge weights in the two samples. Then
the final score is computed using a formula which includes the
summation of this difference in values between all the edge
weights. Hence, the lower the score value, the more similar any
two samples are to one another. A minimum score value of 0
then indicates that the two graphs are identical. In strict terms,
this is in fact a measure of distance as opposed to similarity.

For each malware family, we proceed to perform the above
computation to calculate the score between each sample and
all the other samples in the family. Thus, the final output is an
N x N distance matrix for each malware family. Each matrix
will be separately used as a feature input for clustering in the
next stage.

B. Stage 2: Detection of sub-family groups via application of
clustering algorithms

To perform the clustering in this stage, we need to first select
a clustering algorithm capable of meeting the requirements for
our problem. An important criteria for the algorithm is to be
able to make a decision by itself on the number of clusters
there are. Our input dataset is labelled with specific number
of families. However our aim is to perform clustering within
each family to detect the potential sub-family groups which is
unknown and meant to be discovered through this process.
Hence clustering algorithms such as the K-means are not
suitable as they require the number of clusters to be defined. A
likely candidate for this problem is the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
[19] which is able to automatically discover the number of
clusters. Density-based clustering methods like DBSCAN do
not group every point in the input into a cluster. Instead, only
points that are very tightly packed are clustered and any points
that are far from clusters and do not have their own close
neighbours are considered as noise. This is applicable for the
input scenario, where not all samples may belong to a group
of samples generated by the same sub-family version. There
may be lone samples generated by new versions which are not
yet commonly found, and such samples could be detected as
noise in the DBSCAN clustering process.

1) Investigation of DBSCAN parameter: The DBSCAN
algorithm automatically discovers the number of clusters based
on a very important input parameter, eps. This parameter
indicates the maximum distance between two samples for them
to be considered in the same neighborhood for clustering.
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Fig. 3. DBSCAN clustering results on Qakbot malware samples

As the selection of this parameter is critical, we performed
an investigation on how it may affect the outcome of clustering
for the different malware families in our dataset with relation
to the distance function used and distance matrices produced
in Section . Fig [ shows clustering results for Qakbot
malware samples. In particular Fig [3(a)] shows the overall
clustering when we used an eps value of 0.01. Clusters
are indicated by the different shape patterns in the graph.
Points that have the “x” pattern are noise points that do
not belong to any clusters. Based on the graphical view, our
observation is that the clustering results were promising. To
better demonstrate, Fig [3(b)] shows a subplot of [3(a)] and the
clusters being marked out in the graph contain a considerable
number of samples with very high similarity.

Fig @] shows the clustering results on the Formbook malware
samples using two different eps values. We can observe in
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Fig. 4. DBSCAN clustering results on Formbook malware samples

Fig [A(a)] when the eps value is 0.01, the same as that in the
Qakbot investigation, DBSCAN fails to cluster most of the
samples which are all detected as noise. When a larger eps
value of 0.1 is used as shown in Fig we can observe
that most samples are clustered. This provides a conclusion
that as each malware family has its own unique properties,
clustering cannot be applied exactly the same way for all of
them. There may be a need to apply different eps values for
different circumstances.

2) Clustering process: Based on the above conclusion, in
order to obtain optimal clustering results for different malware
family, we came up with a clustering process that involves
multiple rounds of DBSCAN clustering on a set of eps
values. We first manually define the eps values and sort them
according to increasing order. DBSCAN clustering is then
applied on the input samples using the smallest eps value. All
points detected as noise are then retained and sent for another
round of clustering using the following eps value.

The above clustering process is illustrated in Algorithm
The set of eps values with increasing order allows DBSCAN

eps Setting Family No. Samples | No. Clusters | No. Unclustered
Qakbot 320 11 9
0.01 AgentTesla 400 13 363
Formbook 320 13 252
Qakbot 320 7 2
0.1 AgentTesla 400 22 98
Formbook 320 27 127
Qakbot 320 13
Proposed | AgentTesla 400 37
Formbook 320 40
TABLE II

EVALUATION OF CLUSTERS DETECTED OVER DIFFERENT eps SETTINGS

to cater to the distribution of distance values for different
malware families. By starting with a low eps value, there
is good clustering performance for malware families such
as Qakbot that contain distinct sub-family groups with high
sample similarity as shown in Fig 3] When the same value is
applied for other families such as Formbook, most samples are
detected as noise in Fig[(a)| In such cases, when the algorithm
progresses to the next eps which has a higher value, we will
obtain better clustering results.

Once the clustering process is complete, we would obtain
groups of clustered samples for each malware family. Each
group contains samples that may potentially have been gener-
ated from a different version of the malware code. However at
the end of this process, there may still be remaining samples
that have been labelled as noise even after all rounds of
clustering. We consider such lone samples as their own groups
containing only a single member.

We provide an evaluation of our proposed clustering scheme
by looking at the concrete number of clusters detected and
unclustered samples belonging to three malware families in
our dataset on different eps settings. We can observe in Table [[T]
that for an eps value setting of 0.01, the number of unclustered
samples for Qakbot is very low. This coincides with our
earlier explanation with reference to Fig [3] that such a setting
was effective for this particular malware family. On the other
hand, the number of unclustered samples for AgentTesla and
Formbook form the majority. This situation is improved for
both families when the setting of 0.1 is used as more samples
are able to be clustered. For Qakbot, observe that the number
of clusters detected in this setting is 7 which is lesser than
the previous of 11. This indicates that more distinct sub-
family clusters could have been detected which the algorithm
was unable to do so in the current setting. Finally, for our
proposed process of applying increasing eps value settings
in an iterative fashion, the clustering results obtained is the
best with low number of unclustered samples. This is an
evidence of the benefits of the proposed scheme as compared
to directly applying the DBSCAN algorithm on a specific eps
value setting.



Algorithm 1 Malware sub-family clustering process

1: procedure PERFORMCLUSTERING

2 M« {M', .. MM}

3: S« {S51,...,8N}

4: C «+ {}

5: eps + {epst,....epsP}

6: for n < 1to N do

7: m < M™

8: s <+ S"

9: for d < 1to D do

10: labels < DBSCANCLUSTERING (eps?, m)
11: clusters,noise «<— PROCESSLABELS(s, labels)
12:

13: C «+ C + clusters

14: end for

15: end for

16: return C

17: end procedure

> Set of distance matrices for N families

> Corresponding samples for each distance matrix
> Variable to store final result of detected clusters
> Define set of eps values

> Perform DBSCAN clustering with selected eps
> Extract clustered/noise samples from DBSCAN labels

m < RECOMPUTEDISTANCEMATRIX(m, noise) > Compute new matrix using noise samples for next round

> Add detected clusters to final result

> Final result containing all detected clusters

C. Stage 3: Opcode Graph Signature Building

After the clustering stage, we proceed to the final stage of
building opcode graph signatures which are used for similarity
comparison to detect and classify new samples.

As opposed to building an opgraph graph for each individual
malware sample as in Section [[II-A1] a single opcode graph
is built for each group of clustered samples formed in the
previous stage. This is done by consolidating the opcode
bigrams extracted from every member in the cluster as if they
belonged to a single sample and using them to build a single
opcode graph. This graph is a representation of all members
belonging to the cluster as a whole and is thus a signature for
the cluster.

Once all signatures have been built, each malware family
has a set of opcode graph signatures. Each signature represents
a sub-family group within the malware family. In order to
detect a new sample as malicious and classify it to one of the
malware families, the same similarity comparison approach in
Section is used. The incoming sample is disassembled
to obtain its opcode sequence and used to construct its opcode
graph. The scoring function is used to compute the similarity
score between the sample’s opcode graph and all opcode
graph signatures. The sample is thus classified to the malware
family that contains the signature with highest similarity to
the sample.

IV. PERFORMANCE EVALUATIONS
A. Dataset

To evaluate the proposed methodology, we curated a dataset
consisting of 2300 malware samples belonging to six different
malware families and 580 benign file samples. Although the
dataset is imbalanced, our methodology does not involve
directly applying a machine learning technique for learning
and prediction. Thus issues related to imbalanced data in the
above approach does not exist in our methodology.

1) Malware: Table shows a breakdown of the mal-
ware families and their corresponding sample count in our
dataset. These malwares are collected from the MalwareBazaar
project [9], a public malware database with samples con-
tributed by the community. Specifically, our malwares are
collected from a portion of MalwareBazaar’s daily lists of
malware uploads from the period of November 2020 to May
2021. In order to use these samples in our experiments, there
are two types of verifications that needed to be performed on
the samples.

Firstly, we need to verify the validity that the collected
samples were indeed malwares. To do so, we leveraged on
VirusTotal’s [10] online file submission API service to perform
analysis on the samples. The analysis results contain verdicts
from a list of malware detection engines. To ensure validity,
we choose to only use samples that have been flagged by at
least a number of their detection engines (10% of the engines)
in our dataset.

The second action performed was to obtain the malware
family information of the collected samples. As our work’s
focus is on malware family attribution, the family information
needs to be accurate. While MalwareBazaar provides its own
signature information containing malware family labels, there
is a need for further verification. MalwareBazaar results con-
tain information from other sources such as Hatching Triage
malware analysis sandbox [7l]. We also leverage on other
sandbox services such as Joe Sandbox [8]] to obtain analysis
data. Thus, we only used the malware samples that have the
same family information from multiple of these sources.

The malware families in our curated dataset are all sig-
nificant threats and have seen continued activity in recent
years. Agent Tesla is a remote access trojan (RAT) malware
to steal credentials and user information and has been active
for more than seven years [1l]. New variants are continuously
appearing within the growing number of attacks. Lokibot,
another information-stealing malware, has been observed by



Malware Family | Count
AgentTesla 500
Loki 411
Formbook 400
Qakbot 400
Emotet 300
AveMaria 290
TABLE III

MALWARE FAMILIES AND CORRESPONDING SAMPLE COUNT IN DATASET

the Cybersecurity and Infrastructure Security Agency (CISA)
to have a considerable increase in popularity since July
2020 [5)]. In 2021, Formbook malware has been distributed
via COVID-19 themed campaigns and has made it to the top
of Check Point Research’s Global Threat Index [3]]. Emotet,
which is a sophisticated Trojan that commonly acts as a
downloader for other malwares, has also appeared at the top
of Check Point Research’s index even after its global impact
had been reduced due to an international police operation [4].
Lastly, the AveMaria RAT was observed to be distributed in
a malicious email campaign and disguised as Microsoft Word
documents in the period of December 2020 [2]. Hence there
is no coincidence that these continuously active malwares
were collected from MalwareBazaar’s daily uploads during
the aforementioned period. Samples of these malware families
made up the most significant proportion of the daily malwares
indicating highest rates of exposure and activity.

2) Benign: Our benign file samples are collected from two
sources. One set of files is collected from online repositories
such as EXE Files [[6]. The other set consists of standard files
collected from Windows system directories.

B. Experimental Process

In our experiments, we applied the 5-fold cross validation
technique to obtain separate samples for signature building
and evaluation. Note that this is not applied to the dataset as a
whole, but instead needs to be performed separately for each
malware family. The samples within each family is randomly
shuffled and split into five equal non-overlapping portions. One
portion is used for testing. The remaining samples are sent
for clustering as in Section [III-B] and signature building as
in Section [[II-C] to obtain the sub-family signatures for each
malware family. The testing samples for all families are then
combined into an aggregated testing set. Similarity comparison
is performed on each testing sample against the built signatures
to obtain its classification result. The same approach is also
applied to the benign samples which is treated as a single
“family” with a set of detection signatures built.

Our experimental evaluation consists of two approaches:

1) Binary classification approach

2) Multi-class classification approach

In binary classification approach, we focus on the proposed
methodology’s ability to only detect a sample as either a
malware or a benign file. For this, as long as a malware sample
is matched to a signature belonging to any of the malware
families in our dataset, it is considered a correct classification
as it has been detected as malware regardless of the family.
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Fig. 5. Aggregated confusion matrix for binary classification
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Fig. 6. Aggregated confusion matrix for multi-class classification

In multi-class classification approach, the focus is on family
attribution. Each test malware sample must match to a sub-
family signature belonging to the same malware family as its
true label, to constitute a true positive.

C. Experimental Results

Our experimental results are presented in Fig. [5] and Fig. [6]
which are the aggregated confusion matrices of the 5-fold
cross validation for the binary classification and multi-class
classification approaches respectively.

For binary classification, we focus on two important per-
formance metrics. The first metric is True Positive Rate
(TPR), which is the ratio of malware samples that can be
correctly detected as malware. Following is the False Positive
Rate (FPR) which is the measure of benign samples being
incorrectly classified as malwares. In Fig. 5] we can observe



that the TPR is 98% while the FPR is at 6%. With a high TPR
of 98%, the experiments indicate that the methodology has a
high confidence in being able to detect malware samples while
only mistakingly classifying benign samples as malwares at a
low rate.

For multi-class classification, we also focus on the TPR of
each malware family and look at the rate of misclassification
to each of other families to assess accurate malware family
attribution. From Fig. [6| we can observe high TPR of 100%,
98% and 90% for the Emotet, Qakbot and AveMaria malware
families respectively. The performance for these families may
be attributed to the fact that they contain distinct sub-family
clusters with a very high rate of similarity amongst samples
within each cluster. Again, this can be observed in Fig. [3| where
little to no scattering of points are observed for the marked
clusters for the Qakbot malware family when eps value of
0.01 is used as input to the DBSCAN algorithm. The ability
to cluster with lower eps values indicates that points within
clusters are very close to one another. Samples in the test
set for these families are thus more easily matched to its
family signatures instead of being misclassified to the others
leading to high TPR. This is an indication that there are very
distinct and strong opcode sequence patterns for the sub-family
clusters in the above families.

The TPR rates for the other three families AgentTesla,
Loki and Formbook are 71%, 49% and 59% respectively and
are not as high, especially when compared to the previous
families. This is an indication that the sub-family clusters
created and hence the signatures extracted for these families
do not match the test samples closely enough. Instead a
higher similarity score was obtained for the signatures of other
malware families. However, a key observation can be made
from the results in Fig.[6] A majority of the misclassifications
for AgentTesla, Loki and Formbook actually occur amongst
themselves. Out of AgentTesla’s misclassification rate of 29%,
a total of 22% misclassification was attributed to Loki and
Formbook. 34% of Loki’s test samples were misclassified as
Formbook and 11% was misclassfied as AgentTesla while only
6% was misclassified as benign and other families. Similarly
for Formbook, 18% and 19% test samples were misclassified
as AgentTesla and Loki respectively, out of 41% total misclas-
sification rate. In order to explain the above observation, we
performed further investigations to understand the root cause
of these misclassifications.

D. Investigations

Two forms of investigations were performed. The first is an
experimental investigation to get an indication of the level of
similarity each malware family as a whole has to one another.
To do so, we treated the samples within each family as a
whole and created an opcode graph signature to represent
each family. This is similar to how signatures were built for
the clusters in Section Similarity comparison was then
performed between the signature representing each family to
that of all the other families.

Table [[V| presents the investigation results. The table shows
the score values between each family and all other families
in the dataset. In order for the results to be intuitive, we
converted the scores to truely reflect similarity. This means
that the higher the value, the higher level of similarity. This
is the opposite to the measure of distance used earlier in our
methodology introduction. To analyse the results, it would be
important to gain a contextual view of the values in the table.
We can observe that the lowest score value in the table is
0.782, which is between Emotet and Formbook. This tells that
there should be considerable differences between Emotet and
Formbook in terms of opcode sequence patterns when compar-
ing between malware families. The score between Emotet and
the rest of the families are relatively close in value, indicating
that Emotet is indeed very different to the rest. The highest
scores in the table belong to those in between AgentTesla, Loki
and Formbook with values above 0.98. Specifically, Loki and
Formbook are the most similar families producing the highest
score value of 0.995. The above helps to explain the multi-
class classification results presented in Fig [6] As AgentTesla,
Loki and Formbook have very similar opcode characteristics
to one another, it was natural that their samples would easily
become recognized as belonging to any one of their families.
This lead to the high misclassification rate that was contained
within these three families.

The other investigation performed was research-based to
learn about the key functionalities of each malware family and
their similarities. Through our study, all the malware families
are forms of information stealers. However, a common prop-
erty of AgentTesla, Loki and Formbook malwares is that their
main functions are to steal information and credentials from
browsers, mail clients and FTP clients as well as keylogging.
While the other malware families also steal data, they contain
a variety of other functions. For example, Emotet is used as
downloader for other malwares. Qakbot is a banking trojan
and is able to drop additional payload such as ransomware.
Hence it is possible that the similar streamlined capabilities of
AgentTesla, Loki and Formbook lead to them having similar
static features.

E. Comparison with Existing Approach

In this section, we provide an experimental comparison of
our methodology against the existing approach in [31]. The
major difference in our methodology is the clustering process
described in By performing experiments without the
inclusion of the clustering process, we can evaluate its impact
on the performance and compare with the existing approach.

It is important to point out that we are unable to fully
replicate the experimental procedure of the work in [31].
Firstly, the work uses only a representative sample from each
metamorphic family for comparisons to classify a new file.
This was possible because based on their investigations on the
samples in their data, there was a clear separation of similarity
score values amongst samples in the same metamorphic family
and that between the samples and benign files. In other words,
a boundary threshold value of the score could be set such that



Families Emotet | Qakbot | AveMaria | AgentTesla | Loki Formbook
Emotet - 0.795 0.801 0.784 0.786 0.782
Qakbot 0.795 - 0.840 0.941 0.927 0.931

AveMaria 0.801 0.840 - 0.886 0.917 0.901

AgentTesla | 0.784 0.941 0.886 - 0.985 0.987
Loki 0.786 0.927 0.917 0.985 - 0.995
Formbook 0.782 0.931 0.901 0.987 0.995 -
TABLE IV

EXPERIMENTAL INVESTIGATION RESULTS OF MALWARE FAMILY SIMILARITIES
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Fig. 7. Aggregated confusion matrix for multi-class classification using

existing methodology without clustering

a score below the threshold would indicate that a new sample
is classified to the family, and a higher score means that the
sample does not belong to the family. However such a pattern
does not exist in our dataset. Our investigations indicate that
samples within the same malware family do have considerable
opcode structural differences such that the scores would vary
and a valid threshold is not possible. For each malware family
in the dataset, we thus combine the opcodes of all its samples
to build a single opcode graph signature which is the approach
in [25] and also applied in our work.

We provide the multi-class classification results in Fig.
A significant drop in performance can be observed when the
clustering process is absent. The first observation that can
be made is close to total loss of ability to correctly classify
benign files. This was an expected observation as benign files
should not bear much similarities with one another unless they
are related to the same application. Hence creating a single
signature out of benign files would not be meaningful as the
signature would not be similar to any individual benign file.
[31] uses only CYGWIN utilies as their benign files which
would explain the ability to obtain a similar match.

The top performing malware families in our methodology
had a reduction in TPR except for the Emotet malware family.
AgentTesla and Loki hit a 0% TPR. Only Formbook had

an improvement to its TPR. An interesting observation is
that most of the misclassifications for all classes went to
the Emotet malware family. However, such a phenomenom
was not observed in the previous experimental results. This
indicates that without the clustering process, generalisation
of the characteristics of each malware family into a single
signature is not effective. As each test sample does not bear
significant resemblance to its own family signature, it happens
that the score is closest to Emotet for most cases. Thus,
the above experimental result highlights the importance of
sub-family detection and signature creation in our proposed
methodology.

F. Time Performance

Our experiments were carried out on a machine with a pro-
cessor model of Intel(R) Core(TM) i7-9700K CPU 3.60GHz
with eight cores available. In order to perform the classification
on an unknown sample, the first step is to perform file disas-
sembly to obtain opcodes and construct the opcode graphs. On
average, this step takes approximately 0.5 seconds. For opcode
graph comparisons, a single comparison takes approximately
0.07 seconds. Hence the total time for comparison depends
on the number of signatures that is required for comparisons
against. In our experiments, classification of each test sample
would take approximately 17 seconds with the utilisation
of only one core of the processor. With the implementation
of multiprocessing, this can be significantly sped up if all
available cores are utilised.

V. CONCLUSIONS

In this paper, we presented an opcode-based methodology
involving graph similarity comparison for malware detection
and malware family attribution. We integrated a clustering
algorithm into our approach to detect sub-family groups of
malwares that potentially represent different versions of the
malware family. Opcode graph signatures are extracted from
each cluster which are used for similarity comparison to detect
and attribute incoming samples. Experiments were performed
on a dataset containing different malware families to evaluate
the proposed methodology. The method achieved high recall
and low false positives for binary classification. For multi-
class classification, high attribution performance was obtained
for some malware families. For certain families with relatively
lower performance, investigations were performed to provide
insights on the result.

There are several future work and enhancements that can
be explored for the work. Further improvements or new



methodologies can be proposed for the opcode graph based
similarity comparison techniques that are used. Input param-
eters for the clustering algorithm resemble thresholds and
are currently manually determined. It may be beneficial to
look into how to better set these parameters, possibly through
an automated approach. Another area is on scalability. The
nature of signature comparison approaches is that the more
signatures there are, the processing time required increases
linearly. More signatures will be created from the addition
of new malware samples and families and more comparisons
have to performed. Hence we should also look into efficiency
improvements.
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