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Montreal, Canada

gabriela.nicolescu@polymtl.ca

Felipe Gohring de Magalhães
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Abstract—Recent attacks on Machine Learning (ML) models
such as evasion attacks with adversarial examples and models
stealing through extraction attacks pose several security and
privacy threats. Prior work proposes to use adversarial training
to secure models from adversarial examples that can evade
the classification of a model and deteriorate its performance.
However, this protection technique affects the model’s decision
boundary and its prediction probabilities, hence it might raise
model privacy risks. In fact, a malicious user using only a query
access to the prediction output of a model can extract it and
obtain a high-accuracy and high-fidelity surrogate model. To
have a greater extraction, these attacks leverage the prediction
probabilities of the victim model. Indeed, all previous work on
extraction attacks do not take into consideration the changes
in the training process for security purposes. In this paper, we
propose a framework to assess extraction attacks on adversarially
trained models with vision datasets. To the best of our knowledge,
our work is the first to perform such evaluation. Through an
extensive empirical study, we demonstrate that adversarially
trained models are more vulnerable to extraction attacks than
models obtained under natural training circumstances. They
can achieve up to ×1.2 higher accuracy and agreement with
a fraction lower than ×0.75 of the queries. We additionally find
that the adversarial robustness capability is transferable through
extraction attacks, i.e., extracted Deep Neural Networks (DNNs)
from robust models show an enhanced accuracy to adversarial
examples compared to extracted DNNs from naturally trained
(i.e. standard) models.

Index Terms—Deep Learning, Model Extraction, Adversarial
Training, Privacy, Security

I. INTRODUCTION

Given the success of Deep Learning (DL) in achieving the
state-of-the-art and sometimes human-competitve performance
in several computer vision tasks [1]–[3], DL became the core
of several critical applications such as autonomous vehicles
and robotics. Machine Learning (ML) providers offer their
fine-tuned models to users as a service (Machine Learning as
a Service (MLaaS)) so they can benefit from its outstanding
performance in a specific prediction task. The architecture of
the models is usually not revealed, instead, users are only
provided with an Application Programming Interface (API)
to query them [4].

This research was funded by Synopsys Inc. and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Models are often proprietary and are a business advantage
to their owner as they are expensive to obtain [5]. In fact,
when a model owner shares an internal knowledge about a
model such as the architecture or weights, a malicious user
can infer sensitive information in the training data which raises
privacy concerns in certain cases [6]. Additionally, revealing
the trained models poses security concerns, since an adversary
can craft adversarial examples evading the classification by a
white-box victim model easily [7].

Prior work shows that an adversary with a query access
to a model is able to extract it and construct a very similar
model to the victim’s functionality [4], [8]–[19]. These attacks
help an adversary gain more knowledge about the victim
model and therefore raise different concerns; for example,
using an extraction attack, an adversary can craft adversarial
examples evading the extracted model that are transferable
for the evasion of the original one [4]. In contrast, recent
work shows attempts to defend against these extraction attacks
and mitigate their risk [20]–[24]. They often work on slightly
changing the output prediction values without highly affecting
the model’s performance. This may hinder the possibility of
an attack, or at some points make it require more queries to
achieve a sufficient extraction.

In addition to the extraction attacks that compromise the
privacy of models, the ML security gained significant attention
during the last decade especially with the serious threats of
adversarial attacks [25]. Recently, model owners find them-
selves required to modify their regular training process that
results in unprotected models referred also as natural models.
They apply a defense technique to their Deep Neural Networks
(DNNs) such as adversarial training before deploying them
as final oracles [26]. Nevertheless, existing extraction attacks
do not take into consideration these security-imposed and
uncommon scenarios that deviate from the normal training
process, and this is still, to the best of our knowledge, an
open research problem. Since researchers tend to work on
different attack objectives separately and evaluate different
potential threats independently, this may raise concerns about
the robustness under these circumstances. Hence, we don’t
know how the risk of model extraction would develop in the
case of adversarial training and whether models get more or
less vulnerable to these attacks. As a matter of fact, a recentTo appear in Proceedings of PST 2022, Fredericton, Canada ©2022 IEEE
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work showed that when working on improving the security
of a model, they may have increased the risk of the training
data’s privacy and leaked information about it [27].

In this paper, we explore important intersections between
extraction attacks and an unavoidable security-imposed sce-
nario which is protecting natural models (i.e., unmodified mod-
els) against adversarial examples. We assess the robustness
against extraction attacks of DL models under different learn-
ing circumstances. Thus, we make the following contributions:
• an open source framework to assess a model’s extractabil-

ity against extraction attacks under different unexplored
situations in the state-of-the-art using potential defenses
against adversarial attacks1;

• an evaluation of the extraction risk of models with in-
creased robustness against adversarial examples showing
that adversarially trained models can achieve up to ×1.2
higher accuracy and agreement (i.e., fidelity) of natural
models with a fraction lower than ×0.75 of the queries,
and;

• an empirical proof that the adversarial robustness capabil-
ity of adversarially trained models is transferable through
models extraction attacks.

The remainder of the paper is organized as follows: Sec-
tion II introduces the basic notions to ML and DL; Section III
reviews the background and the state-of-the-art that relates to
privacy and security threats and attacks; Section IV details our
methodology; we include our experiments and obtained results
in Section V; Section VI summarizes potential defenses and
countermeasures against extraction attacks; and Section VII
concludes this paper.

II. MACHINE LEARNING AND NEURAL NETWORKS

A machine learning algorithm is an algorithm that can learn
from data to perform a task. The data includes examples with
quantitatively measured features [28]. An example is typically
represented as a vector x ∈ Rn where each entry of the
vector xi is another feature. ML algorithms can be broadly
categorized as supervised and unsupervised:
• supervised learning algorithms involve working on anno-

tated datasets which means every example x in the dataset
is associated with a provided label y. The algorithm
learns to predict y from x by estimating p(y|x) [28],
and;

• unsupervised learning algorithms experience an unla-
beled dataset containing a collection of examples, and
try to learn interesting properties about the dataset’s
structure [28]. The algorithm wants to learn implicitly
or explicitly a probability distribution that generated the
data p(x).

Other ML algorithms do not work on just fixed data, such as
reinforcement learning algorithms where the learning system
interacts with a dynamic environment in which it must perform
a certain goal. The system is provided with a feedback loop

1Our code is available at the GitHub repository:
https://github.com/KacemKhaled/model-stealing

Fig. 1. An illustration of a neural network with multiple layers. The
input values are fed to the first layer and propagated to the following
layers multiplied by weights. For each layer, the nodes output the results
of an activation function to the sum of their entries. The last layer outputs
probabilities for each class at the corresponding node.

in terms of rewards as it takes actions in the environment, and
through experience the agent learns a policy that maximizes
that reward [29].

Deep learning is a subset of ML involving techniques
based on Artificial Neural Networks (ANN) [28]. An example
of a deep learning model is a feed-forward deep network,
or a Multilayer Perceptron (MLP), which is a mathematical
function defined as y = F (x) mapping input vectors x ∈ Rn

to output values y ∈ Rm. A Neural Network (NN) has L
layers characterizing the model’s depth where each layer has
a width and is characterized with a number of nodes called
neurons. Fig 1 illustrates an example architecture where the
neurons connect the layers together through weights W . Each
neuron perform an activation function g(z) to the weighted
sum of the output values of the previous layer’s neurons:
z = W Th + b.

To obtain a meaningful set of weights, a training process
is performed and the parameters are optimized via approaches
such as stochastic gradient descent (SGD) in order to minimize
a certain loss function [28].

Convolutional Neural Networks (CNNs) are a particular
type of feed-forward NNs, that are mostly suitable for image
classification tasks, with the requirement that at least one of the
layers performs a mathematical operation called convolution
operation followed by a non-linear activation. After enough
training, CNNs are able to learn filters and characteristics
relevant to the task [30].

III. BACKGROUND AND RELATED WORK

Recently, ML models including DNNs were shown to be
vulnerable to several attacks [7], [31]–[34]. In this section we
taxonomize these attacks depending on the adversary’s goals



and capabilities as well as the underlying assumptions of his
knowledge about the victim.

A. Adversary’s capability

It defines the actions that the attacker could perform against
the victim model. These capabilities could be related to the
training phase or the testing phase depending on the attacker
strategy and purposes. In the training phase, the attacker may
be able to inject new data to the training set, or add malicious
modifications to the current one. In the testing phase, the
attacker can only control the test data, for example inject
well crafted examples to the model in order to lead it to
misclassification.

B. Adversary’s knowledge

Models could be affected by different attacks depending
on the knowledge level of the adversary which reflects the
strength of the attack. Taking the attack settings into consid-
eration, we can cite three types of attacks:
• White-box attacks: the adversary has full access and

knowledge about the model (e.g. network architecture,
parameters, training set...);

• Gray-box attacks: the adversary assumes a partial knowl-
edge about the targeted model (e.g. the distribution of the
training set, the classifier type), and;

• Black-box attacks: the attacker has a very limited access
to the target model. He can observe the inputs and
outputs, but has no access to the internal working of the
model neither the training set.

C. Adversary’s goals (attacks on machine learning models)

The attacker can exploit several parts of the machine
learning pipeline to achieve various malicious goals [35].
Attacks can be performed in the training phase or during the
inference phase. We present the different threats depending on
the adversary’s objective.

1) Poisoning attacks: refer to causative attacks in which
specially crafted attack points are injected into the training data
in order to increase the model’s test error [33] and corrupt it.
“Causative attacks alter the training process through influence
over the training data” [31]. Poisoning attacks assume that
the attacker knows the learning algorithm and can draw points
from the data distribution. Finding such an attack point can be
formulated as an optimization problem. In fact, for a poisoning
attack against ML model, the adversary’s goal is to find an
attack point whose addition to the training set maximally de-
creases the model’s classification error [32]. Poisining attacks
were demonstrated against several applications such as spam
filters, PDF malware detection, Denial-of-Service (DoS) attack
detection, handwritten digits recognition and healthcare [36]–
[39].

2) Membership inference attacks: in these attacks, the
adversary aims to determine whether an individual data record
is part of the training set of the attacked model. This attack
reflects the leaked information about the training set from
the model [27]. This attack leverages the inference part of

the model, so it does not interfere with the training phase,
but instead the adversary uses test data in order to achieve
his goal. This attack poses a high risk on the privacy of the
data when sensitive information is used to train the model
(e.g. medical records). In some cases, this attack relies on
a confidence thresholding technique, in which the adversary
concludes about a membership of data through the prediction
confidence given by the model about this input.

3) Evasion attacks (i.e., adversarial examples attacks):
this attack happens on the inference part of the model, so it
does not interfere with its training phase. Instead, it interferes
with the test data through creating adversarial examples. “An
adversarial example is a sample of input data which has been
modified very slightly in a way that is intended to cause a
machine learning classifier to misclassify it” [40]. Usually
these modifications are not subtle to humans, but they cause a
huge error in machine learning models and it was shown that
even state-of-the-art algorithms can be fooled by this malicious
input. The methods of crafting adversarial examples rely on
optimization problem that aims to maximise the networks
prediction error [7].

Papernot et al. [41] demonstrated that these adversarial
attacks against feed-forward neural networks can be adapted
to fool Recurrent Neural Networks (RNNs). They particularly
demonstrated an attack against the Long-Short-Term-Memory
(LSTM) architecture. Adversarial attacks were also shown to
be applied in the physical world, Kurakin et al. [42] proved that
adversarial images printed on paper can be misclassified when
they are fed to a classifier through a cellphone camera. Fur-
thermore, Eykholt et al. [43] explored the use case of safety-
critical situations where road signs could be manipulated to
fool the autonomous vehicles classifiers. They succeded in
proposing physical perturbations such as stickers and graffiti
to road signs that were misclassified by the target classifier in
lab settings as well as in field test with captured video frames
obtained from a moving vehicle.

Several countermeasures has been proposed to mitigate
these attacks, for example adversarial training, which rely
on creating a bigger dataset rich with adversarial examples
through generating adversarial examples using the methods
that could be used by the attacker and then, retrain the
model using that dataset [26], [27]. Another way to defend
against adversarial examples is through modifying the model
with network distillation [44] which relies on transferring the
knowledge from an initial network to a distilled network.

4) Model extraction attacks (model stealing attacks): in
these attacks the adversary exploits the inference phase of
the machine learning pipeline. Through observing the predic-
tion outputs of his queries, even in black-box settings, the
attacker aims to steal the functionality or parameters of a ML
model [8]. The adversary attempts to learn a classifier f̂ that
matches or closely approximates a target classifier f . These
attacks have a great risk on the Intellectual Property (IP) of
model owners. Additionally, they facilitate other attacks such
as membership inference and evasion attacks.



In the literature, extraction attacks can broadly be catego-
rized as:
• attacks that exploit hardware access, or side-channel

extraction attacks: when a ML model is deployed in a
hardware platform where the user has access to it, for
example on an FPGA, on a NN accelerator or sometimes
the same host machine as the victim, the adversary has
more access than the API software level case. Leveraging
the leaked information through side-channels (e.g. cache,
memory, power, electromagnetic, timing), the adversary
can gain more knowledge about a NN architecture, its
parameters, or even duplicate its functionality [45]–[52],
and;

• attacks that leverage API query access, through exploiting
the input-output predictions on a software level [4], [8]–
[16]. These attacks are the main focus of our paper,
therefore, we describe them in more details in the next
section.

5) API based extraction attacks: Jagielski et al. [16] tax-
onomize model extraction around the two adversarial objec-
tives: accuracy and fidelity. Accuracy measures how well the
extracted model is performing on the underlying learning
task and the goal is to extract a model that tries to make
accurate predictions. Fidelity measures the matching between
the predictions of the extracted model and the victim model
on any input.

Initial works on stealing attacks have been demonstrated
by Lowd & Meek [53] where they extract linear classifiers
suchs as support vector machines (SVM) with linear kernels
and logistic regressions (LR). They assume that the adversary
has a black-box access to the oracle and the queries return
just the predicted class label. Tramer et al. [8] propose more
attack techniques that works on simple linear and non-linear
architectures such as SVMs, LRs, decision trees and simple
neural networks. They present the scenario of ML model
stealing where a data owner has a trained model f and
allows others to make prediction queries, an adversary uses q
prediction queries to extract an f̂ ≈ f . Some of their attacks
are based on equation-solving to find the parameters of a target
model relying on the queries. They also suggest a path-finding
algorithm to extract decision trees.

Papernot et al. [4] propose an extraction attack technique
that facilitates crafting transferable adversarial examples fool-
ing the target victim. The idea of their attack is to select a
substitute Deep Neural Network (DNN) architecture to the
attacked DNN and train it in a way that imitates the target
model using synthetic data generation and labeling the data
with the target model. They assume that the attacker has a
black-box capability, but initially draw a dataset from the same
distribution to query the target model, then using a Jacobian-
based data augmentation approach, they find examples defin-
ing the decision boundary of the target model. Finally, using
these labeled examples they obtain a high-fidelity surrogate
model. Then, they craft adversarial examples that are trans-
ferable for evading the classification on the original target
model. Juuti et al. [22] present a concurrent framework which

relies on synthetic data generation with Jacobian-based data
augmentation and randomly perturbing color channels. They
further investigate selecting hyperparemeters for the surrogate
model instead of using fixed ones.

Correia-Silva et al. [9] demonstrate that a Convolutional
Neural Network (CNN) can be copied using public data to
query the target model. Their technique ”Copycat CNN” lever-
ages a mix of problem domain and non-problem domain data.
They follow the same concept of generating a fake dataset
labeled by the target network, then use it to train the copycat
network. They successfully extracted models on problems
such as facial expression, object and crosswalk classification.
Orekondy et al. [10] propose ”Knockoff Nets” attack where
the adversary is lacking knowledge about the train/test data
used by the target model and its internal architecture. They
assume that the attacker is only capable to interact with the
victim model through querying it with images and observing
the predictions. Like previous work, their attack is based
on querying the target model with samples and contructing
a dataset which serves to train the knockoff model. They
investigate more complex DNNs and rely on publicly available
datasets to steal the victim model such as ILSVRC [54], [55]
and OpenImages [56].

In addition to computer vision tasks, model extraction is also
effective on natural language processing (NLP) tasks. Krishna
et al. [57] demonstrate an extraction attack against pretrained
and fine-tuned large language models such as BERT [58]. The
attacker uses the same pretrained model as the one assumed
to the victim and fine-tunes it on his obtained fake dataset.
In order to build this dataset, the adversary queries the target
model with random sequences of words coupled with task-
specific heuristics and does not need to have grammatical nor
semantical meaning, and then uses the victim outputs as labels.

Recently, other works in extraction attacks focus on the
techniques used to generate the adversary’s dataset instead of
relying on public datasets [19], [59]. In addition to synthetic
data generation and data augmentation, they leverage genera-
tive models to generate data with an objective that enables a
better extraction [18].

D. Positioning with the state-of-the-art

Stealing attacks are diverse and were proven to be suc-
cessful in many cases, yet they were only demonstrated
on unaltered and standard sate-of-the-art models that were
trained under natural training circumstances. They still do not
consider security-imposed scenarios that modify the model’s
architecture or its behavior for instance towards adversarial
examples. Adversarial training impacts the prediction proba-
bilities that could be leveraged by malicious users to perform
other attacks through observing the model’s response to their
queries. Particularly, adversarially robust models were proven
to be more vulnerable to membership inference attacks due to
their wider generalization compared to natural models which
raises concerns about the training data privacy [27]. Extraction
attacks rely on the predictions probabilities of the victim model
to the adversary’s queries and have not yet been evaluated on



Fig. 2. Evaluation of the extraction risk of natural models versus adversarially trained models. First, model owners train an oracle under natural training
circumstances (a) and offer their model for queries with an API. The adversary labels a public dataset through observing the queries responses from the victim
model (b) which he uses later to train a surrogate, called extracted model (c). Alternatively, a model owner generates adversarial examples (d) to adversarially
train their model (e) which the adversary would extract using the same process (b), (f).

adversarially robust models, hence, the extraction robustness
of the latter is still an open research problem. It is unknown if
we alter the models through adversarial training, we increase
or not their vulnerability to extraction. In order to answer to
this question, we propose a new methodology and a significant
empirical study.

IV. METHODOLOGY

Consider a victim classifier trained solely on benign (i.e.,
natural) examples and another victim trained on both benign
and adversarial examples to increase its adversarial robustness.
We call the former Natural model and the latter Adversarially
(Adv.) trained model.

A. Threat model

In our work, we consider the state-of-the-art extraction
attack KnockoffNets [10] that aims to steal the functionality
of black-box model trained with an architecture F through
leveraging the API access. Fig. 2 gives an overview of our
methodology. Following the attack strategy, we query a victim,
trained on a dataset DV , with a different dataset DA and
through observing the obtained prediction probabilities for
each sample, we obtain a labeled transferset (Fig. 2 (a), (b)).
Then, we select an architecture F ′ to train the surrogate model
leveraging the probabilities as soft labels for the adversary’s
dataset DA (Fig. 2 (c)). The attack is performed in black-box
settings, i.e., the adversary has no prior knowledge about the
victim’s architecture nor the training set.

B. Extraction of Adversarially trained models

We adopt different state-of-the-art techniques to generate
adversarial examples, namely Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD):
• FGSM [60] uses the gradient of the loss with respect

to the input image to craft new adversarial image that
maximizes the loss.

xadv = x+ εsign(∇xL(θ, x, y)) (1)

=0
Pr

ed
ict

ed
__

__
__

__
__

__
__

Actual:
cat

__________
cat

Actual:
ship

___________
ship

Actual:
airplane

___________
airplane

Actual:
frog

___________
frog

Actual:
automobile
___________
automobile

Actual:
truck

___________
truck

Actual:
dog

___________
dog

Actual:
horse

___________
horse

=0
.0

1
Pr

ed
ict

ed
__

__
__

__
__

__
__ dog automobile truck bird cat truck frog horse

=0
.0

3
Pr

ed
ict

ed
__

__
__

__
__

__
__ dog automobile truck deer truck ship frog automobile

=0
.0

5
Pr

ed
ict

ed
__

__
__

__
__

__
__ dog automobile bird deer truck ship deer frog

=0
.1

Pr
ed

ict
ed

__
__

__
__

__
__

__ frog frog truck deer cat ship frog frog

=0
.1

5
Pr

ed
ict

ed
__

__
__

__
__

__
__ frog frog frog deer bird frog frog frog

=0
.2

Pr
ed

ict
ed

__
__

__
__

__
__

__ frog frog frog deer frog frog frog frog

Fig. 3. A demonstration of PGD evasion attack on a ResNet-34 architecture
trained on CIFAR-10 dataset. The header shows the actual ground truth labels.
Then, for each row, we visualize a set of the resulting adversarial images and
their prediction labels with relation to the attack perturbation level ε. For lower
ε values, the attack is imperceptible, yet effective in changing the predicted
labels. The higher the perturbation level ε, the more visible the distortion on
the adversarial examples.

The equation 1 summarizes this technique, where xadv is
the adversarial image, x the input image, y the input label,
ε a parameter to control the perturbations amplitude, θ the
model parameters, L the loss of the trained model and
∇x the gradient with respect to x.

• PGD [26] is an iterative method that is considered as a
multi-step variant of the previous technique, which is a
projected gradient descent on the negative loss function.



The PGD attack contains T gradient descent steps.

xt+1 = Πx+S(xt + εsign(∇xL(θ, x, y))) (2)

Equation 2 summarizes this technique, where Πx+S de-
notes the projection onto the perturbation constraint x+S
and S is the set of allowed perturbations.

We demonstrate in Fig. 3 a PGD attack that generates an
adversarial example for each image by adding an impercep-
tibly small vector. The resulting malicious input changes the
prediction of each image by ResNet-34 [61], one of the state-
of-the-art classifiers for images.

Leveraging the generated adversarial examples from either
the PGD technique or the FGSM technique, we expand the
training set and retrain the models (Fig. 2 (d), (e)). We obtain
adversarially robust models. We evaluate the robustness of
obtained models against adversarial examples generated with
both techniques. Finally, we evaluate the extraction risk of
these obtained adversarially robust models (Fig. 2 (b), (f)).

C. Evaluation metrics

To evaluate the success of extraction attacks, we calculate
the accuracy of the surrogate model on the victim’s test
set, which is the fraction of correct predictions from all
predictions. This metric measures the stolen functionality from
the victim, i.e., how well the surrogate model performs on
the same task. In addition, we measure the agreement (i.e.,
fidelity) between the victim model and the extracted model
through calculating the fraction of matching predictions (both
correct and wrong) from the victim and the surrogate model,
this is similar to calculating the accuracy of the extracted
model using the predictions of the attacked victim as ground
truth labels. Both metrics are calculated using a heldout
labeled test set that was not seen before by the victim (during
the training) nor the extracted model.

Then, we evaluate the success of extraction attacks against
Adv. trained models versus Natural models and study whether
making the models robust against adversarial examples makes
them more vulnerable to extraction attacks. Finally, we mea-
sure the robustness of victims and surrogates against evasion
attacks. We compute the adv. accuracy of each model against
various adversarial examples generated with FGSM and PGD
techniques using multiple levels of perturbations ε.

V. EXPERIMENTS

A. Setup

In our experiments we tackle DNNs trained on 3 benchmark
images datasets: MNIST [62], CIFAR-10 [63] and SVHN [64].
We describe these datasets as well as the adversary’s datasets
in Table I. Following our methodology, we begin by evalu-
ating the extraction risk of naturally trained models, then of
adversarially robust models.

First, we train a DNN on a given dataset. In our work,
for both CIFAR-10 and SVHN we fine-tune a ResNet-34 [61]
pretrained model on ImageNet. For MNIST, we train a simple
CNN architecture composed of two 2D-convolutional blocks,
max pooling, dropouts and fully connected layers [65]. In

TABLE I
SELECTED DATASETS IN OUR EXPERIMENTS. THE FIRST THREE ROWS ARE

THE VICTIM’S DATASETS AND THE FOLLOWING ROWS ARE THE
ADVERSARY’S DATASETS.

Dataset Description Image
size

Nb. of
samples

Nb. of
classes

MNIST Handwritten grayscale
digits

28×28 Train: 50k
Test: 10k

10

CIFAR-10 Images of animals and
vehicles

32×32 Train: 60k
Test: 10k

10

SVHN Images of street view
house numbers

32×32 Train: 73k
Test: 26k

10

Fashion
MNIST

Grayscale images of
clothes

28×28 Train: 50k
Test: 10k

10

ImageNet Various real-world im-
ages belonging to 1000
different categories

224×224 Train:
1.2M
Test: 50k

1000

training, we use an SGD optimizer with an initial learning rate
of 0.01 that is decreased by a factor of 10 every 60 epochs
over up to 200 epochs [66]. Then, we extract the victim model
using the extraction attack KnockoffNets [10]. We experiment
with multiple query budgets for up to 50000 samples. We use
as an adversary dataset, to query both CIFAR-10 and SVHN
victims, a subset of images from ImageNet resized to 32× 32
pixels using bilinear interpolation to match our input shapes
for both victims networks. For the MNIST victim extraction,
we leverage the FashionMNIST dataset (Table I).

Using the victim’s prediction probabilities as labels for
the adversary’s dataset, we train our surrogate models with a
different architecture. We steal ResNet-34 victims with VGG-
16 [67] and the MNIST CNN with LeNet architecture [68].
Surrogate models are trained using an SGD optimizer with an
initial learning rate of 0.01 that is decreased by a factor of 10
every 60 epochs over up to 100 epochs. Next, we evaluate the
extraction success for each of these attacks.

After that, we assess the extraction of adversarially robust
models. Therefore, we take the training dataset and craft
adversarial examples using one of the state-of-the art tech-
niques in order to use them for retraining. In our work, we
use two techniques Fast Gradient Sign Method (FGSM) [60]
and Projected Gradient Descent (PGD) [26] with 8 different
perturbation levels ε ∈ [0.01, 0.3]. Fig. 3 illustrates some
adversarial examples generated for the CIFAR-10 dataset using
the PGD attack.

Using the generated adversarial examples from one of the
techniques for a selected perturbation levels ε ∈ [0.01, 0.15],
where the noise added to the images does not fully deteriorate
its visual perception, we augment the training set and retrain
our models using the same training hyperparameters for the
naturally trained victims. We obtain 8 adversarially robust
models for each ε with PGD and FGSM techniques. Then,
we perform the same extraction attack procedure on these
models. Finally, we compare the success of each attack on
natural models versus their adversarially robust versions.

All experiments were performed on a Ubuntu 20.04 op-
erating system with 8-core processor (3.7GHz ×8) and a
GPU NVIDIA Quadro RTX 6000. We used Weights & Biases



TABLE II
RESULTS OF EXTRACTION ATTACKS WITH SELECTED BUDGETS (B)

AGAINST NATURALLY TRAINED DNN AND ADV. TRAINED DNNS WITH
DIFFERENT LEVELS OF ε (DATASET: SVHN). THE BEST ACCURACY AND

AGREEMENT OF EXTRACTED MODELS FOR EACH BUDGET B ARE IN BOLD.

Victim
Model ε

Test
Acc.

Extracted Models
Accuracy & Agreement

B=15k B=25k B=50k
Natural - 96.14 57.17 57.50 71.65 72.01 84.29 84.84

Adv.
trained
FGSM

0.03 96.33 59.36 59.73 72.08 72.62 85.69 86.29
0.05 96.54 61.07 61.42 76.34 76.79 86.46 86.92
0.10 96.41 62.91 63.35 78.12 78.74 86.36 86.97
0.15 96.37 61.48 61.85 75.52 76.03 84.07 84.62

Adv.
trained
PGD

0.03 96.53 59.36 59.73 72.08 72.62 84.57 85.17
0.05 96.40 63.09 63.37 75.21 75.59 86.76 87.37
0.10 96.47 65.39 65.83 76.26 76.76 85.72 86.28
0.15 96.42 62.76 63.34 74.81 75.29 84.81 85.54

(WandB) [69] for experiment tracking and visualizations to
develop insights for this paper 2.

B. Results

1) Extraction of natural and adversarially trained models:
Table II shows detailed results about the extraction attacks on
naturally trained and adv. trained models on SVHN dataset.
Each adv. trained victim is either an FGSM or PGD Adv.
trained model with a specific ε ∈ [0.03, 0.15]. Each victim
is extracted using a set of queries budget (B). We visualize
the accuracy and the agreement results of stolen models from
different types of victims for SVHN, CIFAR-10 and MNIST
datasets in Fig. 4. We observe that adv. trained models have
higher accuracy and higher agreement than naturally trained
models. This gap is more noticeable with smaller budgets. This
entails that adv. trained models are faster to extract compared
to naturally trained models, i.e., adv. trained models require
less number of queries in a stealing attack to have a higher
extraction results.

We quantify in Fig. 6 the accuracy and agreement gains
for the extraction of adversarially trained models with respect
to naturally trained models depending on the noise level ε
that we use to generate adversarial examples for adversarial
training. For both types of adv. trained models with different
levels of ε, in most cases the average gain in accuracy and
agreement is higher than a naturally trained model. We find
that surrogate models from the adv. trained models reach up to
×1.2 the extraction metrics of models stolen from a normally
trained victim.

2) Adversarial robustness of victims and surrogate models:
We evaluate the robustness of all models against several sets of
adversarial examples with different levels of ε. Fig. 5 shows
the adversarial accuracy of each model. Note that naturally
trained models are the most vulnerable to evasion attacks.
We discover that an extracted model have a higher robust-
ness against adversarial examples. The adversarial training of
our victims is verified to be effective as a defense against
evasion attacks as it shows an exceedingly better adversarial

2Our project runs and visualizations are available at the WandB link:
https://wandb.ai/kacem/MSF

10k
15k

20k
25k

30k
35k

40k
45k

50k

0.5

0.6

0.7

0.8

10k
15k

20k
25k

30k
35k

40k
45k

50k

0.5

0.6

0.7

0.8

Victim: Natural Adv. trained-PGD Adv. trained-FGSM

Budget (B) Budget (B)

A
cc

ur
ac

y 
(%

)

A
gr

ee
m

en
t (

%
)

(a) Dataset: SVHN

10k
15k

20k
25k

30k
35k

40k
45k

50k

0.5

0.6

0.7

10k
15k

20k
25k

30k
35k

40k
45k

50k

0.5

0.6

0.7

Victim: Natural Adv. trained-PGD Adv. trained-FGSM

Budget (B) Budget (B)

A
cc

ur
ac

y 
(%

)

A
gr

ee
m

en
t (

%
)

(b) Dataset: CIFAR10

1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

0.75

0.8

0.85

0.9

0.95

1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

0.75

0.8

0.85

0.9

0.95

Victim: Natural Adv. trained-PGD Adv. trained-FGSM

Budget (B) Budget (B)

A
cc

ur
ac

y

A
gr

ee
m

en
t

(c) Dataset: MNIST

Fig. 4. Impact of the adversarial training on the extraction attack success.
For each victim model type, multiple extraction attacks are performed with
different numbers of queries (B). The adv. trained models from FGSM and
PGD results are grouped in box plots. For each technique, the boxes present
results from victims with different levels of ε ∈ [0.03, 0.15] that were used
in the adversarial training.

accuracy compared to naturally trained victims. Additionally,
we discover that stolen models from adv. trained victims are
as robust as the target models against adversarial examples
and their adv. accuracy is higher than one of a stolen model
from a natural victim. This demonstrates that the capability to
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Fig. 5. Adversarial robustness of victims and corresponding stolen models against multiple sets of adversarial examples with different ε levels. The top row
shows the accuracy against adversarial examples generated with PGD attack, while the second row concerns the FGSM attack. For each victim model type,
we select the corresponding stolen model obtained with the highest budget in the performed extraction attack. The adv. trained models from FGSM and PGD
trained with different ε levels are grouped in box plots as well as each of their corresponding stolen models.
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Fig. 6. Accuracy and agreement gains for the extraction of adversarially
trained models compared to naturally trained models for different ε levels.
The adv. trained models from FGSM and PGD results are grouped in box
plots. For each technique, the boxes present results from multiple extraction
attacks which were performed with different numbers of queries (B).

be robust against adversarial examples is transferable through
extraction attacks.

C. Discussion

Our evaluation demonstrates that defending against adver-
sarial examples through adversarial training may increase the
vulnerability of models against extraction attacks. This proves
that following a security-imposed scenario, the privacy of
models can be jeopardized through stealing attacks.

In addition, our work finds that stealing adversarially trained
models rewards the thief with a surrogate model that is
robust to adversarial examples. In fact, this finding may be
explained by the generalization capacity of surrogate models.
Since stolen models are trained by images from outside the
distribution of the attacked victim’s train set, the adversarial
examples, which were crafted to evade the classification of the
victim, fool less the extracted models. Hence, this makes the
latter more robust to adversarial examples. This concept have
some intersections with a prior defense against adversarial
examples through knowledge distillation of a model to another
one using a temperature T [44]. In fact, both distillation and
extraction attacks rely on training a model with data labeled by
another model. However, the defensive distillation technique
relies on the same training data rather than a different out of
distribution images. Besides, this technique is performed by



the model owner (white-box settings), not a malicious user
that aims to steal the model (black-box settings).

VI. DEFENSES AND COUNTERMEASURES

Model extraction attacks have several drawbacks on ML
security and privacy, therefore, researchers propose different
techniques to defend against them and mitigate their risk.
Some techniques suggest watermarking the model to help
claim it when stolen [70], [71], for example by changing
the output probabilities for a small subset of queries (e.g.,
≤ 0.5%) from API clients which allows model owners to
reliably demonstrate ownership. Other defenses can be broadly
categorized into two main categories: proactive and reactive
techniques. The former includes techniques to reduce effi-
ciency of an extraction attack such as changing the prediction
probabilities [21], [23], [24]. But, they may sometimes degrade
the model accuracy and result in inference delays and an
increase in computational costs. Reactive defenses are based
on the detection of extraction attacks when they are happening
which enables the victim to take action immediately. These
techniques continually observe the API query and response
streams of users in order to either train a substitute model
to assess the knowledge gained by the adversaries [20], or
analyse the distribution of successive users queries to identify
a deviation from a normal (Gaussian) distribution [22] or a
large number of out of distribution queries [23]. However,
these defenses do not detect all the attacks and they often
consume more computational power.

VII. CONCLUSION

Despite the tremendous progress of neural networks and
their trending and wide use in critical applications such as
robotics and autonomous vehicles, they are still showing flaws
and vulnerabilities in both security and privacy. We have sys-
tematically explored model privacy threats through extraction
attacks on a security-imposed scenario of adversarially trained
models on three benchmark vision datasets. We discovered that
adversarially trained models might have a higher extraction
rate compared to natural models for a lower number of queries.
This calls for a required attention from model owners when
improving the security of their models against adversarial
examples through adversarial training. We additionally found
that extracted DNNs from adv. trained models show an en-
hanced robustness against adversarial examples compared to
extracted DNNs from naturally trained models.
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