
Unsupervised User-Based Insider Threat
Detection Using Bayesian Gaussian Mixture

Models

Simon Bertrand[0000−0002−8518−0770], Josée Desharnais[0000−0003−2410−3314], and
Nadia Tawbi[0000−0002−1030−0918]

Département d’informatique et de génie logiciel
Laval University, Québec Qc, Canada

siber93@ulaval.ca, {josee.desharnais,nadia.tawbi}@ift.ulaval.ca

Abstract. Insider threats are a growing concern for organizations due
to the amount of damage that their members can inflict by combining
their privileged access and domain knowledge. Nonetheless, the detec-
tion of such threats is challenging, precisely because of the ability of the
authorized personnel to easily conduct malicious actions and because
of the immense size and diversity of audit data produced by organiza-
tions in which the few malicious footprints are hidden. In this paper, we
propose an unsupervised insider threat detection system based on audit
data using Bayesian Gaussian Mixture Models. The proposed approach
leverages a user-based model to optimize specific behaviors modeliza-
tion and an automatic feature extraction system based on Word2Vec for
ease of use in a real-life scenario. The solution distinguishes itself by not
requiring data balancing nor to be trained only on normal instances,
and by its little domain knowledge required to implement. Still, results
indicate that the proposed method competes with state-of-the-art ap-
proaches, presenting a good recall of 88%, accuracy and true negative
rate of 93%, and a false positive rate of 6.9%. For our experiments, we
used the benchmark dataset CERT version 4.2.

Keywords: Insider Threat · Bayesian Gaussian Mixture Model · Gaus-
sian Mixture Model · Unsupervised · Word2Vec

1 Introduction

Insider threats occur when a privileged member of an organization wrongfully
uses their access in a way that causes harm to their organization. Those damaging
actions can be intentional, as in the case of theft or sabotage, however, uninten-
tional dangerous actions are also to be considered, which adds to the complexity
of the insider threat. The unintentionally dangerous insider is mostly acting by
negligence or misinformation. An example is an employee who copies corporate
sensitive data locally by convenience. Such actions, even if seen as negligible, can
compromise the confidentiality of the data by creating a second access point to

ar
X

iv
:2

21
1.

14
43

7v
1

 [
cs

.C
R

]
 2

3
N

ov
 2

02
2

2 S. Bertrand et al.

the information that can be exploited by a hacker. The insider threat is then a
broad type of cyber menace which makes its detection particularly difficult.

For organizations, the confidentiality, the integrity, and the availability of
their information are an increasing concern. Yet many underestimate the magni-
tude of the insider threat against the maintenance of those ideals. Indeed, even
though insider threats are only a fraction of all existing cyber threats, this type
of menace presents a real and unique danger for organizations. Firstly, the insider
threat can be more damaging to an organization than a traditional cyberattack.
This is mainly explicable by the privileged accesses and great domain knowledge
that the insider possesses over an outsider. The insider has then a better op-
portunity to use their access and domain knowledge to carry out efficiently and
quietly the attack. Moreover, over the last years, some reports suggest that most
institutions suffer from that kind of cyber threat yearly. For instance, according
to the "Insider Threat Report" of 2019, about 60% of organizations were victims
of at least one insider attack in 2019 [2].

Insider threat detection is then a relevant problem that attracted many re-
searchers to deploy their efforts in the last decades. One common strategy to
detect malicious insiders is by modeling the behaviors of the users and identify-
ing any significant divergence as a potential threat. In that matter, audit data,
describing the activity of every member of an organization in the network, are
regularly chosen to learn user behaviors using statistical or machine learning
models.

However, detecting insider threats based on audit data presents many chal-
lenges, one of which is to efficiently consider sequence information to learn be-
haviors. Indeed, like most cyber threats, an insider attack is rarely defined by
a single malicious event, but mostly as a series of events. Additionally, not only
can the malicious series of events be scattered over a period of time, but they
are also often sequence dependent, meaning that the order in which the events
occur is important to identify if the sequence is malicious or not. For instance,
considering a simple data exfiltration threat, the event of reading sensitive data
before writing an email is more suspicious than the other way around. Few
existing works, based on machine learning, focus on using the event sequence
information in the behavior learning process on long time windows.

In addition, another challenge is to create a solution that is flexible and
adapted for real-life organizations. This challenge is mostly due to the singular-
ity and complexity of all organizations’ technology architecture, which leads to a
lack of public datasets that represent the reality of all organizations. While using
public datasets is convenient for comparison purposes, one needs to be careful
when processing the data from such datasets. One risk is to overfit a solution
to a specific dataset which can lead to the solution performing poorly in other
settings. For instance, to use the label information in the dataset can be con-
venient to balance the data classes or extract positive instances for One-Class
training. However, relying on such information is an issue when implementing
the solution in a real-world case where organizations rarely possess historically
labeled audit data. Furthermore, in some cases, organizations can even diffi-

Title Suppressed Due to Excessive Length 3

cultly guarantee that historical audit data are threat free. Those limitations
make supervised solutions unsuitable for organizations and highlight a need for
unsupervised alternatives.

2 Contributions

Considering those challenges, in this paper, we propose an insider threat detec-
tion system that uses unsupervised machine learning, trained on processed audit
data, to detect malicious conduct. More precisely, the proposed technique con-
sists of training a Bayesian Gaussian Mixture Model (BGMM) for every user, uti-
lizing their historical audit data to learn normal behavior clusters/components.
By using a user-based framework, not only do we differentiate between users, but
we can take advantage of the BGMM’s ability to determine an effective number
of components for every single user, which allows for an adapted model that fits
the different types of behaviors of a specific user. In addition, to address the
challenge of sequences dependencies of insider threats, and to facilitate feature
extraction, a user-based Word2Vec model is trained to capture contextual infor-
mation about the activities in the host logs to generate a daily activity summary
vector. The proposed solution is then a combination of deep learning models used
for data pre-processing and statistical models to learn user behaviors.

A user-based model is uncommon among existing insider threat detection
techniques which motivates our efforts to research for improvements in that field.
In that matter, we explore the effects of a custom number of clusters/components
for every user on insider threat detection performances, which is the main thesis
of this paper. There is, to our knowledge, no existing work that combined an
automatic number of clusters/components in a user-based setting.

Furthermore, to deal with the flexibility challenge, the proposed method is
developed with the restriction of requiring as little domain knowledge and data
pre-processing as possible, thus increasing its flexibility. In that matter, the pro-
posed method doesn’t require data balancing nor to be trained only on normal
instances which we believe reflects as fairly as possible the reality of real orga-
nizations. In addition to those characteristics, we believe that the simplicity in
the selection of features also contributes to making the solution more suitable
for a real-life scenario.

Despite those restrictions, the proposed approach outperforms state-of-the-
art methods in the accuracy, false positive rate, and true negative rate metrics,
and still offers a competitive recall rate.

To sum up, the proposed solution stands out because of the following char-
acteristics:

– Completly unsupervised.

– User-based framework.

– Automatic feature extraction with Word2Vec models.

4 S. Bertrand et al.

– Automatic selection of an efficient number of components per user with
BGMM models.

– Low on domain knowledge.

– No data balancing.

– Beats relative state-of-the-art techniques.

The rest of this paper is organized as follows. Section 3 presents previous research
concerning insider threat detection. Section 4 introduces the proposed method,
while section 5 presents experimental results and a comparison of the proposed
method with similar state-of-the-art techniques. Finally, section 6 presents a
conclusion containing potential improvements for future work.

3 Related Work

Previous work in the field of unsupervised insider threat detection based on
audit data can principally be grouped into two categories: signature-based and
machine learning based techniques.

Signature-based threat detection techniques mainly consist of the creation
of a dictionary of allowed and/or disallowed activity patterns. The dictionary is
then prompted to check if any sequence of activity matches those in the lexicon
to determine if the behavior is normal or abnormal. Signature-based techniques
offer the advantage of a low false positive rate, but requires frequent updates to
detect new anomalies [12] which requires manually introducing the new threats
in the dictionary.

Machine learning techniques present an appealing alternative to signature-
based methods because of their ability to learn automatically normal and ab-
normal behaviors. This feature generally increases their flexibility and reduces
the required domain knowledge [16]. In the last decades, many machine learning
based insider threat detection systems were constructed on statistical or clus-
tering techniques. For instance, Eldardiry et al. [8] propose a user-based model
system that uses the K-Means algorithm to model daily user behavior. Happa &
Tabash [3] presente a similar framework but Gaussian Mixture models (GMMs)
are used to detect anomalous instances by selecting the data points that are the
less likely to have been generated by the learned Gaussian distributions. Kim
et al. [13] propose a study on the existing clustering and statistical techniques
presenting the performances of K-Means, Parzen Window Density Estimation,
Principal Component Analysis, and Gaussian algorithms. In general, statistical
and clustering techniques offer a simple way to detect the malicious insider, but
suffer from a high false positive rate [6].

A leap in the field of unsupervised insider threat detection has been the use
of Autoencoders. Zhang et al. [21] propose the use of compressed daily feature
representations obtained with a Denoising Autoencoder as input to a GMM, to
learn normal behaviors and detect divergent instances. The suggested solution

Title Suppressed Due to Excessive Length 5

stands out from other techniques partly because of the use of a Word2Vec model
for automatic feature extraction, which inspired part of this work.

Finally, with the increasing popularity of deep learning in recent years, many
researchers integrated the use of deep models to the detection of the insider
threat issue. Many RNN-based methods have been proposed to detect insider
threats because of their ability to model time series data. However, the con-
ventional RNN tends to perform poorly in long time series [4], which can be
problematic in audit data based anomaly detection tasks due to the long se-
quences of events a user usually performs daily. This limitation is why most
current efforts in the deep learning field use LSTM neural networks which are
known to capture long-time dependencies [9]. As examples, Nasir et al. [19] and
Sharma et al. [20] propose the use of LSTM-AutoEncoders to encode and decode
session activity summary vectors and label the sessions with the highest recon-
struction error score as being of malicious nature. Results demonstrate that deep
learning methods provide overall better results compared with shallow machine
learning models, specifically a lower false positive rate.

4 Methodology

The proposed solution consists in learning the daily behaviors of every user in
the organization and detecting any day diverging significantly from the typical
user behavior as being anomalous, thus probably containing at least 1 malicious
event. To do so, a feature extraction process that necessitates as little domain
knowledge as possible, and user-specific behavior learning models are used.

The proposed framework is presented in Fig. 1. The framework is separated
into a data pre-processing phase and a behavior learning/insider detection phase.

Fig. 1. Proposed Framework

4.1 Data Collection

The dataset used in this study is the commonly used CERT insider threat dataset
version 4.2 [1] created by Carnegie Mellon’s Software Engineering Institute [11].

6 S. Bertrand et al.

This synthetic dataset is composed of audit data generated by simulating a
1000 employees organization within 502 days. The audit data is separated into
5 domain types: logon, emails, files, HTTP, and devices. Each domain contains
one or two specific activity types. All the activities in the Dataset count for
32,770,227 events in total. Table 1 presents the different domains and activity

Table 1. Dataset Activities Description

Domain Activity Description

Logon Logon Connection using the userid

Logon Logoff Disconnection of the userid

HTTP HTTP Website access

Email Email Creation of an email

File File File-level access

Device Connect Connection of a USB device

Device Disconnect Disconnection of a USB device

types. Each activity domain audit data is stored in a CSV file. The dataset is
mainly composed of normal events, but malicious activities perpetrated by 70
users were injected and account for only 0.03% of the dataset instances. In that
regard, one challenge regarding the use of this dataset is the fact that the normal
and malicious instances are imbalanced. Even though balancing efforts have been
proven, in other works, to be beneficial for the detection of malicious insiders [14],
in this work no data balancing is performed. This decision is motivated by our
goal to create a solution that is more appropriate for a real-world scenario, where
it is difficult to have any knowledge about past anomalous actions.

4.2 Data Pre-processing

User Behavior Data Extraction Using the previous dataset, the activity in
the 5 domains is firstly aggregated for every single user. This aggregation allows
to easily get the activity of a user across all domains. Furthermore, having a
user-based model configuration, this data grouping is essential.

The user aggregated data is then grouped by day, so every instance represents
the daily activities of an individual for a total of 330 452 instances, with only
966 having any malicious activities occurring during the day. In this work, we
only consider the activity type itself and the order in which it occurs to create
the behavioral model, so every other information is ignored. Motivated by our
objective to create an easy-to-implement solution, the choice to keep only the
activity type is driven by its standardness and little domain knowledge required
to identify. The results of this step are strings object composed of event types
carried out by a user daily.

Title Suppressed Due to Excessive Length 7

Feature Extraction One of the difficulties in generating feature vectors rep-
resenting a condensed summary of a time window is capturing the temporality
and dependencies of events. In that matter, we explore the use of Word2Vec [17]
models. Using the Skip-gram model, Word2Vec can capture syntactic and seman-
tic word relationships automatically [18]. Therefore, in this work, this model’s
purpose is to capture the user’s daily specific behavior patterns like the typi-
cal order of the activities. Specifically, a Word2Vec model is trained for every
user using their daily activity strings to learn context-rich word embeddings for
every event. This step ensures that every user has custom word embeddings
depending on their behaviors. In addition to its ability to generate context-rich
word embeddings, using Word2Vec models contributes to our objective to reduce
the dependency of the domain knowledge [21], by automating the extraction of
complex features from simple data, being the activity type.

Finally, using the trained Word2Vec models, every user’s daily activities are
summarized into a vector for every day they were active in the organization. To
do so, the Word2Vec model receives one by one the daily activities of a user and
transforms every single activity into an embedding that is then summed with the
other activities embedding that occurred during that same day. The resulting
vector is then a daily summary that has information about the volume and type
of events carried out and contains contextual details about the order of execution
of the user’s daily activities. It is important to note that the embeddings are
generated from past data, meaning that if used in a real-time scenario, the new
sequences will not have an impact on the embeddings generated.

4.3 Behavior Learning

In the pre-processing phase, daily activity summary vectors containing contex-
tual information are extracted for every user. To learn the user’s normal be-
haviors using those vectors, we explore GMMs for their high recall rate [21].
Furthermore, assuming that a user can have more than one normal behavior,
we rely on the GMM’s ability to learn from multimodal data distributions to fit
clusters/components representing behaviors. Moreover, because of the low vol-
ume of malicious records in the dataset, our intuition is that every component
mostly describes a normal behavior for the user, and thus high-density regions
in a component describe normal behaviors, and low-density ones abnormal be-
haviors. In other words, we deal with the detection of abnormal behaviors as an
outlier detection task.

However, GMMs present the challenge of the selection of the right number
of components. For that reason, in this work, we decide to explore the effects
of an automatic solution for the selection of the number of components in a
user-based framework. Leveraging the fact that the solution is user-based, the
intuition is that we could optimize the performance by selecting the right number
of components for every user versus a global number of components for all users.

This intuition comes from the fact that every user has different and unique
normal behaviors. Consequently, because in a GMM every component is likely
to represent a behavior, choosing the right number of Gaussian distributions

8 S. Bertrand et al.

for every user could result in better modeling and anomaly detection power. A
simple example could be a user that exhibits two normal behaviors, the first
one being their email intensive days, maybe occurring early on in the week and
the second one being characterized by higher file and website activities. For this
particular user, a 2 component model would probably suffice. A higher number
of components, in this case, could mean overfitting the data. In an anomaly
detection task using partitioning models, overfitting a model can lead to the
creation of a separate cluster, grouping the anomalies and making them appear
normal by most distance or density metrics. However, for another user having
a specific behavior depending on the day of the working week, a 5 component
model could be more appropriate. In that last example, choosing a lower number
of components could mean underfitting the data, and thus overgeneralizing the
behaviors.

Many options are available to optimize the number of components of GMMs,
like the Bayesian Information Criterion (BIC) score and the Akaike Information
Criterion (AIC) score, but in this work, we select a variation of the GMM: the
Bayesian Gaussian Mixture Model which is fundamentally a GMM but using
the Dirichlet process to infer a weight of importance for every component. This
technique only requires that a likely superior number of components be provided
as an input. Irrelevant components will be assigned a weight of 0.

To understand the Bayesian Gaussian Mixture Model, it is important to first
present the Gaussian Mixture Model.

Gaussian Mixture Model The GMM is a probabilistic model often used in
anomaly detection tasks due to its high recall rate [21]. The GMM is composed
of a set of parameters which are described in Table 2.

In this model, we assume that the data obey a mixture of several Gaussian
distributions defined as:

N (x|µi, Σi) =
1√

(2π)
K |Σi|

exp−1

2
(x− µi)

TΣ−1
i (x− µi). (1)

For instance, when analyzing a user’s daily activity summaries, a Gaussian
distribution could explain email intensive days and another Gaussian distribution
could explain file intensive days.

The GMM, knowing the number of components, learns to fit the instances
in a way that maximizes the log-likelihood of the dataset, defined as:

log p(x|µ, φ,Σ) =

N∑
n=1

log

K∑
i=1

φiN (x|µi, Σi). (2)

To do so, the Expectation Maximization algorithm [7] learns the µ, φ and Σ
parameters that maximize Equation 2 for the dataset, which is the sum of every
instance’s log probability.

Title Suppressed Due to Excessive Length 9

Table 2. Gaussian Mixture Model’s Parameters

Parameter Description

K Number of Gaussian distributions (number of components)

N Number of instances

φi=1...K Prior probability of component i

µi=1...K Mean of component i

Σi=1...K Covariance of component i

φ K-dimensional Prior probability vector

µ K-dimensional mean vector

Σ K x K covariance matrix

N Gaussian distribution

The probability of a single instance having been generated by the mixture
model is calculated as follows:

p(x) =

K∑
i=1

φiN (x|µi, Σi), (3)

which is simply the sum of the probability of the instance to be part of each
Gaussian distribution multiplied by the prior probability or the weight of the
component.

So the log-likelihood is calculated as follows:

log p(x) = log

K∑
i=1

φiN (x|µi, Σi). (4)

Even though GMMs are often used in anomaly detection tasks, the choice
of a good number of components can be a difficult chore. Our intuition is that
the optimal number of components will vary from user to user, because user’s
behaviors are unique. Therefore, a potential gain can be achieved by having a
per-user model for which a custom number of components is selected.

Bayesian Gaussian Mixture Model In this work, a variation of GMMs, the
BGMM is explored. This variation can infer an efficient number of components
from the data. The BGMM is very similar to a GMM except for the fact that it
is a non-parametric model, meaning it uses variational inference to estimate the

10 S. Bertrand et al.

model parameters. This variation requires the use of prior distributions over the
parameters of the GMM. Then the parameters optimization process follows the
Expectation Maximization algorithm, but computes the entire posterior distri-
bution over the parameters for regularization.

Precisely, the proposed BGMM uses the same parameters as described in
table II, but with a Dirichlet process as a distribution to infer the number of
components φ.

To understand the Dirichlet process, the stick-breaking analogy can be used.
Imagining the prior weights of our unknown number of components as a long
stick with a length of 1, the Dirichlet process consists of breaking the stick
continually and associating the points that fall into a group of a mixture. For
each division of the stick, new Gaussian distributions or components are created,
having for weight the length of the piece of the stick. The stick can be broken
down infinitely, thus generating an infinite number of components. From that
division, a good number of components can be assessed by removing components
with negligible weights and thus avoiding overfitting. Because of the infinite
nature of the Dirichlet process, and the inability of computers to deal with
infinity, the model used in this solution still requires to give an upper-bound
number of components.

4.4 Insider Threat Detection

After the learning process, a score for every user’s day is calculated using the
trained BGMM. The score represents the log-likelihood, presented in Equation
4, of the instance compared to its model. A low score means that the day is
at the furthest end of our learned Gaussian Distributions or/and is part of a
lower weight component, which we interpret as abnormal behavior. Every day’s
score is divided by the mean of the user’s scores to get a ratio of that day’s
score against what is normal for the user. The reason for that ratio is because
a normal score varies from one user to another and so using the ratio will tell
how far from its mean the day is, which can be compared across users. Finally,
with the daily score ratios of every user, every day that has a greater score to a
threshold is identified as malicious.

5 Implementation and Results

In this section, we evaluate the performance of our solution. We first compare
it with similar state-of-the-art techniques. Then, we verify our assumption that
a custom number of components for every user is beneficial. Finally, we check if
the performance varies between executions.

The implementation is done using an Ubuntu 20.04.4 LTS operating system
with an Intel(R) Core (TM) i7-8700 CPU @ 3.20GHZ X 12 cores and 16 GB
of RAM. The language used is Python and is executed on a jupyter notebook.
Scikit-learn’s [5] Bayesian Gaussian Mixture Model and Gensim’s Word2Vec li-
braries are used. 100% of the data is used for training and detection in an

Title Suppressed Due to Excessive Length 11

unsupervised way. The proposed method doesn’t require data balancing or to be
trained only on normal instances.

To evaluate our solution we use the false positive rate (FPR), recall, true
negative rate (TNR), and accuracy metrics, being common metrics to evaluate
anomaly detection models. The metrics formulae are as follows, where a negative
instance refers to a normal day and a positive to a day containing at least one
malicious event:

FPR = FP/(TN + FP) (5)

Recall = TP/(TP + FN) (6)

TNR = TN /(TN + FP) (7)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (8)

Where TN is true negative, FP is false positive, TP is true positive and FN
is false negative.

We use the preceding metrics to compare how the proposed method performs
comparatively with other relevant techniques using the same dataset. Table 3

Table 3. Results Comparison

Method Reference Recall FPR Accuracy TNR

Isolation Forest [10] NA NA 79% NA

LSTM-AutoEncoder [20] 91.03% 9.84% 90.17% 90.15%

DBN-OCSVM [15] 81.04% 12.18% 87.79% NA

DA With Clustering [21] 88.9% 20% 75% NA

Proposed NA 88.38 6.9% 93.08% 93.10%

presents a comparative table where the selected metrics for each method are
displayed if it is available in the corresponding paper. For the proposed approach,
the results were obtained by calculating the mean of 100 random executions, for
validity.

According to the results presented in Table 3, we can see that the proposed
approach outperforms other comparative techniques on the accuracy, false pos-
itive rate, and true negative rate metrics and still presents a competitive recall.
Furthermore, it is important to mention that the presented results were achieved
even if the proposed method does not rely upon more domain knowledge intensive
attributes, data balancing, or one-class training, as opposed to other techniques.

12 S. Bertrand et al.

Table 4. Confusion Matrix

Predicted Class

Insider Normal

T
ru
e
C
la
ss

Insider 863 106

Normal 22 960 306 526

Table 4 presents the confusion matrix of one execution of the solution. A
strong diagonal can be observed, with 860 days containing malicious activities
accurately detected out of 966 in total (for a recall of 89% for this particular
execution). Most normal days are correctly identified, with 306 526 days accu-
rately predicted out of 329 486. Even though 22 960 days were wrongfully labeled
as anomalous, which is quite high, it is a common problem with unsupervised
anomaly detection methods. Nonetheless, a false positive rate of around 7% still
outperforms similar state-of-the-art techniques. Furthermore, in this particular
field, it is preferable to have a higher false positive rate than to miss out on
falsely labeled benign attacks.

We present the receiver operating characteristic or ROC curve to evaluate
the performance of our binary classifier. This curve shows the recalls and false
positive rates obtained at different threshold configurations. This representation
can be a good way for cyber analysts with different time budgets to find a good
compromise by choosing a threshold that doesn’t lead to an unrealistic amount of
false positives and offers an expected recall rate with which they are comfortable.
Because it can be hard to draw valid conclusions from a ROC curve, the area
under the ROC curve (AUC) is a metric that can be used to globally evaluate
and compare a model’s performance.

Fig. 2 presents the ROC curve of an instance of the proposed method. The
curve shows that the proposed solution offers many interesting opportunities
for insider threat detection depending on an organization’s available resources.
For instance, an organization with a low budget for the analysis of instances
could use a low threshold to minimize the false positive rate, thus reducing the
total amount of instances to analyze and still capturing a good portion of all
anomalies. The proposed solution presents an AUC score of 0.958. To compare
with another state-of-the-art method using the same dataset, an AUC score of
0.949 is achieved by Sharma et al. [20].

Because a machine learning model’s performance can vary due to its random
elements, we wanted to see if the proposed solution was sensitive to randomness.
Fig. 3 presents the recall of the 100 random executions of the solution. This
figure shows that the performance doesn’t vary greatly and so is not substantially

Title Suppressed Due to Excessive Length 13

Fig. 2. ROC Curve

Fig. 3. Recall of 100 random executions. The mean is identified in red.

14 S. Bertrand et al.

affected by randomness. This means that for any execution, one can assume to
have performances close to the presented mean.

In this study, we also wanted to verify the intuition that performance could be
optimized by a per-user custom number of components. To do so, we compare
our results with three configurations of the traditional GMM in Table 5.. All

Table 5. Fixed versus custom number of components

METHOD Recall FPR Accuracy TNR

GMM-1 78.05% 9.02% 90.94% 90.98%

GMM-3 78.88% 8% 91.95% 92%

GMM-5 78.05% 7.28% 92.68% 92.71%

BGMM 88.38 6.9% 93.08% 93.10%

the pre-processing is the same as the proposed solution, only the model itself
is changed for a GMM. Even the score function is identical because, as seen
earlier, the GMM and the BGMM are extremely similar and only differ in their
parameters learning steps. The 3 configurations are a GMM for every user with
1, 3, and 5 components.

Results suggest that a custom number of components for every user is ben-
eficial, beating every other fixed number of component configurations in every
metric.

6 Conclusion

In this paper, an unsupervised insider threat detection model is proposed and
tested on the benchmark CERT dataset. The dataset is grouped by user and by
day with only the ordered activity type kept. Word2Vec model is used to gener-
ate user-specific activity embeddings, capturing activity sequence information.
BGMMs are finally used with the daily summary vectors to train and detect
malicious behaviors. The proposed method is competitive with state-of-the-art
techniques without requiring data balancing or being trained only on normal
data, all of which with minimal domain knowledge required, which is in line with
or objective of creating a flexible solution. Even though the proposed method
performs well using only the activity type and its order, we believe that further
improvements could be made by integrating other relevant information like the
time of the activity, the weekday, and the content of the activities. Furthermore,
in future work, we would like to improve the daily embedding generation process
in a way that is more suitable for real-time execution. Finally, we would also like

Title Suppressed Due to Excessive Length 15

to explore the GMM’s performance in a real-time setting, and precisely study
the inference of the number of components in an evolving environment.

References

1. Insider Threat Test Dataset. (2016). Retrieved January 2022 from
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099

2. Insider threat report 2019. CA Technol. San Jose, CA, USA (2019)
3. Al Tabash, K., Happa, J.: Insider-threat detection using gaussian mixture models

and sensitivity profiles. Computers & Security 77 (03 2018). https://doi.org/
10.1016/j.cose.2018.03.006

4. Althubiti, S., Nick, W., Mason, J., Yuan, X., Esterline, A.: Applying long short-
term memory recurrent neural network for intrusion detection. In: SoutheastCon
2018. pp. 1–5 (2018). https://doi.org/10.1109/SECON.2018.8478898

5. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. pp. 108–122 (2013)

6. Chen, Y., Nyemba, S., Malin, B.: Detecting anomalous insiders in collaborative
information systems. IEEE Transactions on Dependable and Secure Computing
9(3), 332–344 (2012). https://doi.org/10.1109/TDSC.2012.11

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), 1–38 (1977), http://www.jstor.org/stable/2984875

8. Eldardiry, H., Bart, E., Liu, J., Hanley, J., Price, B., Brdiczka, O.: Multi-domain
information fusion for insider threat detection. In: 2013 IEEE Security and Privacy
Workshops. pp. 45–51 (2013). https://doi.org/10.1109/SPW.2013.14

9. Fu, Y., Lou, F., Meng, F., Tian, Z., Zhang, H., Jiang, F.: An intelligent net-
work attack detection method based on rnn. In: 2018 IEEE Third Interna-
tional Conference on Data Science in Cyberspace (DSC). pp. 483–489 (2018).
https://doi.org/10.1109/DSC.2018.00078

10. Gamachchi, A., Sun, L., Boztaş, S.: Graph based framework for malicious insider
threat detection. In: HICSS (2017)

11. Glasser, J., Lindauer, B.: Bridging the gap: A pragmatic approach to generating
insider threat data. In: 2013 IEEE Security and Privacy Workshops. pp. 98–104
(2013). https://doi.org/10.1109/SPW.2013.37

12. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion de-
tection systems: techniques, datasets and challenges. Cybersecur. 2, 20 (2019)

13. Kim, J., Park, M., Kim, H., Cho, S., Kang, P.: Insider threat detection based
on user behavior modeling and anomaly detection algorithms. Applied Sciences
9(19) (2019). https://doi.org/10.3390/app9194018, https://www.mdpi.com/
2076-3417/9/19/4018

14. Le, D.C., Zincir-Heywood, N., Heywood, M.I.: Analyzing data granularity levels
for insider threat detection using machine learning. IEEE Transactions on Network
and Service Management 17(1), 30–44 (2020). https://doi.org/10.1109/TNSM.
2020.2967721

15. Lin, L., Zhong, S., Jia, C., Chen, K.: Insider threat detection based on deep be-
lief network feature representation. In: 2017 International Conference on Green
Informatics (ICGI). pp. 54–59 (2017). https://doi.org/10.1109/ICGI.2017.37

https://doi.org/10.1016/j.cose.2018.03.006
https://doi.org/10.1016/j.cose.2018.03.006
https://doi.org/10.1016/j.cose.2018.03.006
https://doi.org/10.1016/j.cose.2018.03.006
https://doi.org/10.1109/SECON.2018.8478898
https://doi.org/10.1109/SECON.2018.8478898
https://doi.org/10.1109/TDSC.2012.11
https://doi.org/10.1109/TDSC.2012.11
http://www.jstor.org/stable/2984875
https://doi.org/10.1109/SPW.2013.14
https://doi.org/10.1109/SPW.2013.14
https://doi.org/10.1109/DSC.2018.00078
https://doi.org/10.1109/DSC.2018.00078
https://doi.org/10.1109/SPW.2013.37
https://doi.org/10.1109/SPW.2013.37
https://doi.org/10.3390/app9194018
https://doi.org/10.3390/app9194018
https://www.mdpi.com/2076-3417/9/19/4018
https://www.mdpi.com/2076-3417/9/19/4018
https://doi.org/10.1109/TNSM.2020.2967721
https://doi.org/10.1109/TNSM.2020.2967721
https://doi.org/10.1109/TNSM.2020.2967721
https://doi.org/10.1109/TNSM.2020.2967721
https://doi.org/10.1109/ICGI.2017.37
https://doi.org/10.1109/ICGI.2017.37

16 S. Bertrand et al.

16. Liu, L., Chen, C., Zhang, J., De Vel, O., Xiang, Y.: Unsupervised insider detection
through neural feature learning and model optimisation. In: Liu, J.K., Huang, X.
(eds.) Network and System Security. pp. 18–36. Springer International Publishing,
Cham (2019)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013). https://doi.org/10.48550/ARXIV.1301.3781,
https://arxiv.org/abs/1301.3781

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality (2013). https:
//doi.org/10.48550/ARXIV.1310.4546, https://arxiv.org/abs/1310.4546

19. Nasir, R., Afzal, M., Latif, R., Iqabl, W.: Behavioral based insider threat detection
using deep learning. IEEE Access PP, 1–1 (10 2021). https://doi.org/10.1109/
ACCESS.2021.3118297

20. Sharma, B., Pokharel, P., Joshi, B.: User behavior analytics for anomaly detec-
tion using lstm autoencoder - insider threat detection. In: Proceedings of the 11th
International Conference on Advances in Information Technology. IAIT2020, As-
sociation for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3406601.3406610, https://doi.org/10.1145/3406601.3406610

21. Zhang, Z., Wang, S., Lu, G.: An Internal Threat Detection Model Based on
Denoising Autoencoders, pp. 391–400 (01 2020). https://doi.org/10.1007/
978-981-13-9710-3_41

https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.48550/ARXIV.1310.4546
https://arxiv.org/abs/1310.4546
https://doi.org/10.1109/ACCESS.2021.3118297
https://doi.org/10.1109/ACCESS.2021.3118297
https://doi.org/10.1109/ACCESS.2021.3118297
https://doi.org/10.1109/ACCESS.2021.3118297
https://doi.org/10.1145/3406601.3406610
https://doi.org/10.1145/3406601.3406610
https://doi.org/10.1145/3406601.3406610
https://doi.org/10.1145/3406601.3406610
https://doi.org/10.1145/3406601.3406610
https://doi.org/10.1007/978-981-13-9710-3_41
https://doi.org/10.1007/978-981-13-9710-3_41
https://doi.org/10.1007/978-981-13-9710-3_41
https://doi.org/10.1007/978-981-13-9710-3_41

	Unsupervised User-Based Insider Threat Detection Using Bayesian Gaussian Mixture Models

