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Abstract

Peer-To-Peer (P2P) networks are self-organizing, dis-
tributed systems, with no centralized authority or infras-
tructure. Because of the voluntary participation, the avail-
ability of resources in a P2P system can be highly variable
and unpredictable. In this paper, we use ideas fromGame
Theory to study the interaction of strategic and rational
peers, and propose adifferential service-based incentive
scheme to improve the system’s performance.

1 Introduction

Peer-To-Peer (P2P) systems are self-organizing, dis-
tributed resource-sharing networks. They differ from tra-
ditional distributed computing systems in that no central
authority controls or manages the various components;
instead, nodes form a dynamically changing and self-
organizing network. By pooling together the resources
of many autonomous machines, P2P systems are able
to provide an inexpensive platform for distributed com-
puting, storage, or data-sharing that is highly scalable,
available, fault tolerant and robust. As a result, a large
number of academic and commercial projects are un-
derway to develop P2P systems for various applications
[2, 3, 10, 9, 12, 1].

The democratic (or anarchic) nature of P2P systems,
which is responsible for their popularity and scalability,
also has serious potential drawbacks. There is no cen-
tral authority to mandate or coordinate the resources that
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each peer should contribute. Because of the voluntary
participation, the system’s resources can be highly vari-
able and unpredictable. Indeed, in a recent experimental
study of Napster and Gnutella, Saroiu et al. [11] found
that many users are simply consumers, and do not con-
tribute much to the system. In particular, they found that
(1) user sessions are relatively short;50% of the sessions
are shorter than 1 hour, and (2) many users arefree riders;
that is, they contribute little or nothing. For example, in
the Gnutella system, 25% of the users share no files at all.

Short sessions mean that a significant portion of the
data in the system might be unavailable for large periods
of time—the hosts with those data are offline. Short upti-
mes also hurt system performance because there are fewer
servers to download files from. Similarly, as a growing
number of users become free riders, the system starts to
lose its peer-to-peer spirit, and begins to resemble a more
traditional client-server system.

If the P2P systems are to become a reliable platform
for distributed resource-sharing (storage, computing, data
etc), then they must provide a predictable level of service,
both in content and performance. A necessary step to-
wards that goal is to develop mechanisms by which con-
tributions of individual peers can be solicited and pre-
dicted. In a system of autonomous butrational partici-
pants, a reasonable assumption is that the peers can be
incentivized using economic principles. Two forms of in-
centives have been considered in the past [5]: (1) mon-
etary payments (one pays to consume resources and is
paid to contribute resources), and (2) differential service
(peers that contribute more get better quality of service).
The monetary payment scheme involves a fictitious cur-
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rency, and requires an accounting infrastructure to track
various resource transactions, and charges for them using
micropayments. While the monetary scheme provides a
clean economic model, it seems highly impractical. For
instance, see [8] for arguments against such a scheme for
network pricing.

The differential service seems more promising as an in-
centive model, and that is the direction we follow. There
are many different ways to differentiate among the users.
For instance, one could define areputation index for the
peers, where the reputation reflects a user’s overall contri-
bution to the system. In fact, a reputation based mecha-
nism is already used by the KaZaA [3] file sharing system;
in that system, it’s called theparticipation level. Quanti-
fying a user’s reputation and prevention of faked reputa-
tions, however, are thorny problems.

In general, since the nodes in a P2P systems are strate-
gic players, they are likely to manipulate any incentive
system. As a result, we argue that a correct tool for mod-
eling the interaction of peers isgame theory [4]. We in-
troduce a formal model ofincentives through differential
service in P2P systems, and use the game theoretic notion
of Nash Equilibrium to analyze the strategic choices by
different peers.

We treat each peer in the system as a rational, strate-
gic player, who wants to maximize his utility by partici-
pating in the P2P system. The utility of a peer depends
on his benefit (the resources of the system he can use)
and his cost (his contribution). Ourdifferential service
model links the benefit any peer can draw from the sys-
tem to his contribution—the benefit is a monotonically
increasing function of a peer’s contribution. Thus, this
is a non-cooperative game among the peers: each wants
to maximize his utility. The classical concept of Nash
Equilibrium points a way out of the endless cycle of spec-
ulation and counter-speculation as to what strategies the
other peers will use. An equilibrium point is alocally op-
timum set of strategies (contribution levels in our case),
where no peer can improve his utility by deviating from
the strategy. While Nash equilibrium is a powerful con-
cept, computing these equilibria is not trivial. In fact, no
polynomial time algorithm is known for finding the Nash
equilibrium of a generalN person game.

We first consider a simplified setting,homogeneous
peers, where we assume that all peers derive equal ben-
efit from everybody else (homogeneity of peers). In this

case, we show (1) there are exactly two Nash equilibria,
and (2) there are closed-form analytic formulae for these
equilibria. We also investigate the stability properties of
these equilibria, and show that in a repeated game setting,
the equilibrium with the better system welfare will be re-
alized.

We next consider the case ofheterogeneous peers,
where the interaction matrix is an arbitraryN × N ma-
trix. That is, we allow an arbitrary benefit function for
each pair of peers. No closed form solution is possi-
ble for this setting, and so we study this using simula-
tion. We use the homogeneous case as a benchmark to
see how well the simulation tracks the theoretical predic-
tion. Our main findings are that thequalitative properties
of the Nash equilibrium are impervious to (1) exact form
of the probability function used to implement differential
service, (2) perturbations like users leaving and joining
the system, (3) non-strategic or non-rational players, who
do not play according to the rules, etc. Finally, we dis-
cuss practical ways of implementing a differential service
incentive scheme in a P2P system.

2 Our Incentive Model

2.1 Strategy and Nash Equilibrium

A traditional distributed system assumes that all partici-
pants in the system work together cooperatively; the par-
ticipants in the system share a common goal, do not com-
pete with each other or try to subvert the system. A P2P
systems, on the other hand, consists of autonomous com-
ponents: users compete for shared but limited resources
(e.g. download bandwidth from popular servers) and, at
the same time, they can restrict the download from their
own server by denying access or not contributing any re-
sources. As such, the interaction of the various peers in
a P2P system is best modeled as anon-cooperative game
among rational and strategic players. The players are ra-
tional because they wish to maximize their own gain, and
they are strategic because they can choose their actions
(e.g. resources contributed) that influence the system. The
behavior that a player adopts while interacting with other
players is known as that player’sstrategy. In our set-
ting, a peer’s strategy is his level of contribution. The
player derives a benefit from his interaction with other
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players which is termed as a payoff orutility. Interest-
ing economic behavior occurs when the utility of a player
depends not only on his own strategy, but on everybody
else’s strategy as well. The most popular way of char-
acterizing this dynamics is in terms ofNash equilibrium.
Since the utility or payoff of a player is dependent on his
strategy, he might decide to unilaterally switch his strat-
egy to improve his utility. This switch in strategy will af-
fect other players by changing their utility and they might
decide to switch their strategy as well. The collection of
players is said to be at Nash equilibrium if no player can
improve his utility by unilaterally switching his strategy.
In general, a system can have multiple equilibria.

2.2 Incentives and Strategies in P2P System

We assume that there areN users (peers) in the system,
P1, P2, . . . , PN . We will denote the utility function of the
ith peer asUi. This utility depends on several parameters
which we shall discuss below one by one.

2.2.1 Measuring the Contribution

We will use a single numberDi to denote the contribution
ofPi. The precise definition ofDi is immaterial as long as
it can be quantified and treated as a continuous variable.
For concreteness, we will takeDi to be thecumulative
disk space: disk space contribution integrated over a fixed
period of time, say a week. One can also use other metrics
such as number of downloads served by this peer to other
peers.

For each unit of resource contributed, the peer incurs
a costci (measured in dollars). So the total cost ofPi

for participating in the system isciDi. We shall find it
convenient to define a dimensionless contribution

di ≡ Di/D0, (1)

whereD0 is an absolute measure of contribution (say
20MB/week).D0 is a constant that the system architect
is free to set—our incentive scheme will strive to ensure
that all peers make a contribution at leastD0.

2.2.2 The Benefit Matrix

Each peer’s contribution to the system potentially benefits
all other peers, but perhaps to varying degrees. We encode

this benefit using aN × N matrixB, whereBij denotes
how much the contribution made byPj is worth toPi

(measured in dollars). For instance, ifPi is not interested
in Pj ’s contribution, thenBij = 0. In general,Bij ≥ 0,
and we assume thatBii = 0, for all i. Again, we define a
set of dimensionless parameters corresponding toBij by

bij = Bij/ci, bi =
∑

j

bij , bav =
1

N

∑

i

bi (2)

bi is the total benefit thatPi can derive from the system
if all other users make unit contribution each.bi will turn
out to be an important parameter in determining whether
it is worthwhile forPi to join the system. We shall show
that there exists a critical value of benefitbc such that if
bi < bc, thenPi is better off not joining the system.bav is
simply the average ofbi for the whole system.

2.2.3 Probability as Service Differentiator

The differential service is a game of expectations: a peer
rewards other peers in proportion totheir contribution. A
simple scheme to implement this idea is as follows: peer
Pj accepts a request for a file from peerPi with probabil-
ity p(di), and rejects it with probability1 − p(di). Thus,
if Pi’s contribution is small, its request is more likely to
be rejected. There are many enhancements and improve-
ments to this simple idea. One could, for example, curtail
the search capabilities of a peer depending on his con-
tribution. In the Napster model, one could return only a
fractionp(di) of the total results found. We also assume
that every request from peerPi is tagged with his con-
tribution di as metadata. We will discuss some of these
enhancements and implementation issues in section 5.

It turns out that the choice of the exact probability func-
tion does not affect thequalitative nature of our results.
Any reasonable probability function that is a monotoni-
cally increasing function of the contribution should do. In
our analysis, we have chosen the following natural form:

p(d) =
dα

1 + dα
, α > 0. (3)

It has the desirable properties thatp(0) = 0, andp(d) →
1 asd gets large. The choice of the exponentα deter-
mines how “step-function-like” the probability function
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Figure 1:p(d) plotted as a function ofd for values ofα
1/2, 1, 4 and 10.

is. See Figure 1. For small values, sayα = 1, the func-
tion is rather smooth; but for larger values, sayα = 10,
the function has a steep step; for contribution below the
step, requests have high probability of rejection; and for
contribution above the step, requests have high probabil-
ity of acceptance.

2.2.4 The Utility Function

With these cost and benefit parameters, the total utilityUi

thatPi will derive by joining the system is

Ui = −ciDi + p(di)
∑

j

BijDj , Bii ≡ 0 (4)

The first term is the cost to join the system, while the sec-
ond term is the total expected benefit from joining the sys-
tem. In terms of the dimensionless parameter

ui =
Ui

ciD0

(5)

we rewrite the utility as

ui = −di + p(di)
∑

j

bijdj , bii ≡ 0 (6)

The−di term is simplyPi’s cost to join the system and it
increases linearly asPi contributes more disk/bandwidth
to the system.Pi’s benefit depends on how much the other
peers are contributing to the system (dj), what that con-
tribution is worth to him (bij), and how probable it is that

0 

0

Contribution

U
til

ity

Low benefit
Critical benefit
High Benefit

Figure 2: A qualitative plot of utility vs. the contribu-
tion/strategy; the scales on X and Y axes are arbitrary.
Unless there is a critical level of benefitbc, the utility for
the peer is always less than 0.

he will be able to download that content (p(di)). Using
the fact thatp(0) = 0 andp(∞) = 1, we can find the two
limits of the utility function :

lim
di→0

ui = 0, lim
di→∞

ui = −∞. (7)

Thus, neither extreme maximizes a peer’s utility. The
value of an intermediate strategy depends on the contri-
bution of other users and the worth of those contributions.
See Figure 2 for a graphical representation of a possible
utility function for different levels of benefitbi. If bi ex-
ceeds a critical valuebc, then it is possible for the utility
function to have a maximum and only then the peer would
want to join the system.

In the next section we start with the discussion of Nash
equilibrium for the model that we have just described.

3 Nash Equilibrium in the Homoge-
neous System of Peers

We define a homogeneous system of peers to be a sys-
tem wherebij = b for all i 6= j; in other words in this
system all peers derive equal benefit from everybody else.
This simplified system allows us to study the problem in
an idealized setting, and gain insights that can be applied
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to the more complex heterogeneous system. In the homo-
geneous system, the model of equation 6 reduces to

u = −d+ p(d)(N − 1)bd. (8)

bi = bav = b(N − 1) for all peersPi. By symmetry,
therefore, the problem reduces to a 2-person game, which
we analyze below.

3.1 The Two Player Game

In a homogeneous system of two players, Equation 6 re-
duces to

u1 = −d1 + b12d2p(d1)

u2 = −d2 + b21d1p(d2) (9)

For algebraic simplicity, let us also assume thatα = 1,
i.e. p(d) = d/(1 + d). As discussed in section 2.2, we
expect that if the benefits that the peers derive from each
other, i.e.b12 andb21 are too small then it will be best for
the peers not to join. The question to ask at this point is
whether a Nash equilibrium exists for large enough values
of benefits where both peers can derive non-zero utility
from their interaction.

This model is very similar to the Cournot duopoly
model [4] and we can analyze it using similar method-
ology. SupposeP2 decides to make a contributiond2 to
the system. Given this contributiond2, naturally the best
thing forP1 to do is to tune hisd1 such that it maximize
his utility u1. Maximizingu1 with respect tod1, we im-
mediately find that the best responsed1 is given by

r1(d2) ≡ d1 =
√

b12d2 − 1, (10)

wherer1(d2) is known as thereaction function for P1.
This is the best reaction forP1, given a fixed strategy for
P2. SinceP2 knows thatP1 is going to respond in this
fashion, his own reaction function to 1’s strategy is

r2(d1) ≡ d2 =
√

b21d1 − 1. (11)

Nash equilibrium1 exists if there is a set of(d∗
1
, d∗

2
), such

that they form a fixed point for equations 10 and 11, i.e.
1For readers versed in game theory, we want to say that we are only

interested in pure strategy Nash equilibrium. A mixed strategy will cor-
respond to a peer probabilistically choosing a contribution. Such a sce-
nario is inadmissible and and we shall not discuss it any further

the fixed points satisfy

d∗1 =
√

b12d∗2 − 1,

d∗2 =
√

b21d∗1 − 1. (12)

Finding the fixed point is much easier if we assumeb12 =
b21 = b (this is the homogeneous peer system). In that
cased∗1 = d∗2 = d∗ and the solution of equation 12 is

d∗ = (b/2− 1)±
(

(b/2− 1)2 − 1
)1/2

(13)

A solution to this equation exists only if b ≥ 4 ≡ bc. 2

Thus,bc = 4 is the critical value of benefit illustrated in
Figure 2 below which it is not profitable for a peer to join
the system. Note that this critical value4 is an artifact of
the form of thep(d) we chose. For different choices of
p(d), this constantbc will change, but will always be a
constant independent of the number of peers in the sys-
tem. Forb = bc, the only solution isd∗

1
= d∗

2
= 1. For

b > bc, there are two solutions

d∗1 = d∗2 = d∗lo < 1, and d∗1 = d∗2 = d∗hi > 1. (15)

which are plotted in Figure 3

3.2 TheN Player Game

At this point we can come back to the homogeneous sys-
tem of peers of equation 8. A comparison of equations 8
and 9 shows that for the homogeneous system of peers,
the fixed point equations 12 are now

d∗ =
√

b(N − 1)d∗ − 1, (16)

or in other words

d∗ = (b(N − 1)/2− 1)±
(

(b(N − 1)/2− 1)2 − 1
)1/2

.
(17)

So, with the replacement ofb by b(N − 1), the results
for the two peer system are exactly applicable for theN
player system as well. Although the homogeneous peer
system is not realistic, we shall see that theaverage prop-
erties of the Nash equilibria for the heterogeneous system
closely follow the homogeneous case.

2For general values ofα,

d∗ =

(

(bα/2 − 1)±
(

(bα/2 − 1)2 − 1
)

1/2
)

1/α

(14)

A solution to this equation exists only ifbα ≥ 4.
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Figure 3: The Nash equilibrium contributions for the two
peer system plotted as a function of scaled benefit(b −
bc)/bc. Forb < bc, there are no equilibria. For allb > bc
there are two possible equilibria

3.3 Stability of the Nash Equilibria

Since our system has two possible Nash equilibria, the
natural question arises which equilibrium will be chosen
by the system in practice. There is a natural learning sce-
nario between peers which can help us answer this ques-
tion. Suppose the userP2 sets his contribution to some
d2 to start with. In this situation,P1 can use the reac-
tion function r1(d2) to set his optimum contribution at
d1. Seeing this contributionP2 adjusts his own contribu-
tion and thus each peer takes turns in setting their contri-
bution. If this process converges, then naturally that level
of contribution forP1 andP2 will constitute a Nash equi-
librium, i.e.

d∗1 = r1(r1(r1(r1(.....(d2)))))

d∗
2

= r2(r2(r2(r2(.....(d1))))). (18)

The learning process and convergence is graphically out-
lined in Figure 4. From the figure we see that under this
learning process, either the peers will quit the game (zero
utility) or they will converge to the equilibriumd∗

hi
. Note

that this iterative procedure gives us an algorithm to find
the stable Nash equilibrium of a game and we shall make
use of it in section 4. The fixed pointd∗

hi
(d∗

lo
) is locally

stable(unstable), i.e. if the two peers start near the fixed
point, under iteration of the mappings, they will move
closer to (away from) the fixed point. It is gratifying to

d

d

2

1

21 2r (d  ) r (d  )1

Stable

Unstable

Figure 4: The Cournot learning process near the vicinity
of the two fixed points. Here we have plotted the reaction
functions from equations 10,11. For any starting value of
d2 > d∗

lo
(d∗

lo
is the unstable fixed point), the learning

process converges to the stable fixed point. If the starting
point is too close to the origin, then the iteration moves
away from the unstable fixed point and eventually ends
up at 0.

see that the stable Nash equilibriumd∗
hi

is also the desir-
able equilibrium for the performance of the system.

The stability of the fixed points can be estimated by
linearizing the mappingsr1 andr2 near the fixed point [7].
Consider a point(d∗1 + δd1, d

∗
2 + δd2) close to the fixed

point (d∗
1
, d∗

2
). Expanding equation 12 around the fixed

point, we find that after one iteration, the new deviations
are given by

[

δd′
1

δd′2

]

=

[

0 (d∗
1
+ 1)/(2d∗

2
)

(d∗2 + 1)/(2d∗1) 0

] [

δd1
δd2

]

.

(19)
The new deviation will be smaller in magnitude than
the old deviation provided the maximum eigenvalue
√

(d∗
1
+ 1)(d∗

2
+ 1)/(4d∗

1
d∗
2
) of the matrix on the RHS is

smaller than 1. Forb > bc, the fixed point (d∗
hi

> 1),
is stable and the other fixed point (d∗

lo
) is unstable. For

b = bc, the two fixed points collapse into one. The eigen-
values of the matrix are exactly equal to one and the de-
viations neither increase, nor decrease in magnitude, i.e.
the fixed point isneutral.
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4 Nash Equilibrium in the Hetero-
geneous System of Peers

In a heterogeneous system, we need to deal with the full
complexity of the model. The fixed point equations for
α = 1 can be immediately derived in analogy with the
two player game (equation 12) as

d∗i =





∑

j 6=i

bijd
∗
j





1/2

− 1. (20)

Since it is not possible to solve this set of equations ana-
lytically, we use an iterative learning model to solve this
system of equations.

4.1 The Learning Model and Simulation
Results

Let us consider the interaction of users in a real P2P sys-
tem. Any particular peerPi interacts only with a limited
set of all possible peers — these are the peers who serve
files of interest toPi. As it interacts with these peers,Pi

learns of the contributions made by them and to maximize
its utility adjusts its own contribution. Obviously this con-
tribution thatPi makes is not globally optimal because it
is based only on information from a limited set of peers.
But afterPi has set its own contributions, this information
will be propagated to the peers it interacts with and those
peers will adjust their own contribution. In this way the
actions of any peerPi will eventually reach all possible
peers. The reaction of the peers toPi’s contribution will
affectPi itself and it will find that perhaps it will be better
off by adjusting its contribution once more. In this way,
every peer will go through an iterative process of setting
its contribution. If and when this process converges, the
resulting contributions will constitute a Nash equilibrium.

The iterative learning algorithm that we have chosen to
solve equation 20 mimics this learning process. To start
with, all the peers have some random set of contributions.
In a single iteration of the algorithm, every peerPi de-
termines the optimal value ofdi that it should contribute
given the values ofd for other peers and the values ofbij .
At the end of the iteration the peers update their contribu-
tion to their new optimal values. Since now the contribu-
tionsdi are all different, the peers need to recompute their

optimal values ofdi and we can start the next iteration.
When this iterative process converges to a stable point,
we reach a Nash equilibrium. In the following numerical
experiments we demonstrate that for heterogeneous sys-
tem of peers, the iterative learning process does converge
to the desirable Nash equilibriumd∗

hi
and we compare the

results with the analytic results for the system of homoge-
neous peers.

4.1.1 Choice of Parameters

We choose the number of peersN to be from 500-1000.
Since a peerPi interacts only with a small subset of its
peers,bij is non-zero only for a few values ofj. We also
assume that the peers for whichbij is non-zero are picked
randomly from all possible peers. Note that this subset is
not the set of neighbors in the overlay network sense, but
the set of other peers with whom it exchanges files. The
size of the set for whichbij 6= 0 is chosen to be 2% ofN .
In general for smaller value of this fraction, the algorithm
takes longer to reach the Nash equilibrium, but the equi-
librium itself does not change. The values ofbij do not
evolve in time and we choose them from a Gamma distri-
bution. The choice of Gamma distribution was arbitrary,
we have experimented with Gaussian distribution as well.
We choose the initial values ofdi from a Gaussian distri-
bution. The distributiondi evolves at every iteration and
eventually converges to the Nash equilibrium distribution.
The value ofα for all our results is 1.0 unless otherwise
specified.

4.1.2 Convergence to Nash Equilibrium

In Figure 5 we show the distribution ofbij and di for
N = 1000 peers. The values ofbij were chosen from a
Gamma distribution such thatbav = 6.0. The equilibrium
valuesd∗i distribute themselves in a bell shaped distribu-
tion with meand∗

av
= 3.68. If the system was completely

homogeneous, than the distribution ofbij would consist
of a single peak atb = bav/(N − 1) and the correspond-
ing value ofd∗

hi
from equation 17 would be 3.73 which is

less than 1.5% away from the value ofd∗av. In Figure 6 we
show the equilibrium average contribution by the peers as
a function of average benefit. The solid line is the solution
from the homogeneous system. As expected, the equilib-
rium contribution increases monotonically with increas-
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ing benefit. For average benefitbav < bc, the iterative
algorithm converges todi = 0. Note that the two sets of
results for 500 and 1000 peers almost coincide with each
other. So our results are essentially independent of system
size.

In Figure 7 we show the approach to convergence for
the learning algorithm. The two data sets correspond to
different values of averagebav. Higher the average value
of bav, faster is the convergence to equilibrium. As the
value of bav approach the critical valuebc, approach to
equilibrium becomes slower and slower. This is to be ex-
pected since we have argued in section 3.3 that near the
critical point, any deviation dies out very slowly. We have
observed that for a wide set of initial conditions fordi, the
process always converges to a unique Nash equilibrium.
For very small initial values ofdi, we are close to the
unstable Nash equilibrium and the iteration converges to
zero, i.e. the contribution by all peers vanish and the sys-
tem collapses. The data for system collapse is not shown,
but Figure 4 illustrates the situation.

4.1.3 Inactive or Uncooperative Peers

In Figure 8, we show the effect of some peers leaving the
system. Intuitively one would think that if some peers

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

2

3

4

5

6

7

8

9

10

Fraction of Failed Peers

A
ve

ra
ge

 C
on

tr
ib

ut
io

n 
(d

* av
)

b
av

/b
c
−1 = 0.5

b
av

/b
c
−1 = 1.0

b
av

/b
c
−1 = 2.0

homogeneous
homogeneous
homogeneous

Figure 8: Average contribution at Nash equilibrium plot-
ted against fraction of peers alive. Total number of peers
is 1000. The solid lines are predictions from the homoge-
neous system model (equation 13).

leave the system, the benefit per peer would be reduced
and we should be seeing pretty much the same behavior
as in Figure 6. Our simulations confirm this intuition. As
the fraction of active peers dwindle, the contribution from
each of the peers decrease and at some point, the benefits
are too low for the peers and the whole system collapses.
The system can be pretty robust for high benefits : for a
benefit level of(bav − bc)/bc = 2.0, the system can sur-
vive until 2/3 of the peers leave the system. In contrast
to traditionally fragile distributed systems, we see that for
P2P systems robustness increase with size : as the system
grows bigger and bigger, benefits for each peer increases
and the system becomes more robust to random fluctua-
tions.

In Figure 9 we explore the effect of having peers which
behave uncooperatively, i.e. they refuse to adjust their
contribution and simply make a constant contribution.
The effect of such non-cooperative peers is clear. If they
constitute 100% of the peers, of course the average con-
tribution is equal to their contribution. Otherwise their
effect is to bias the equilibrium contribution value toward
them.

5 Discussion

In this paper we have proposed a differential service based
incentive mechanism for P2P systems to eliminate free
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Figure 9: Average contribution at Nash equilibrium plot-
ted against fraction of uncooperative peers. Total num-
ber of peers is 1000. The labels specify the average
contribution of uncooperative peers. Average benefit is
bav/bc − 1 = 0.5.

riding and increase overall availability of the system. We
have shown that a system with differential incentives will
eventually operate at Nash equilibrium. The strategy of
a peerPi wishing to join the system depends on a single
parameterbi which is the benefit thatPi can derive from
the system. If the benefitbi is larger than a critical benefit
bc, then the peer’s best option is to join the system and
operate at the Nash equilibrium value of contribution. If
on the other handbi < bc, the peer is better off not joining
the system. Whenbi = bc, the peer is indifferent between
these two options. These properties are robust and do not
depend on the details of the particular incentive mecha-
nism that is used.

5.1 Implications for System Architecture

The incentive policy that we have discussed can be imple-
mented with minor modifications to current P2P systems.
Let us look at some of the modifications required.

Current P2P architectures do not restrict download in
any way except by enforcing queues and maximum num-
ber of possible open connections. Our incentive scheme is
easily implemented by accepting requests from peers with
a probabilityp(d). To prevent rapid fire requests from the
same peer, it will be necessary to keep record of a request
for a small duration of time. In our discussion we have as-
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sumed that the functionp(d) is same for all users, i.e. it is
part of the system architecture which can not be modified
by users. For greater flexibility, it is possible to allow in-
dividual peers to configurep(d), but the effects on overall
system performance is not clear.

The contribution is measured in terms of uptime and
disk space. When a peer makes a request for a file,
the contribution information can be attached as an extra
header to the request. In fact, the current Gnutella pro-
tocol already sends metadata like shared disk space and
uptime with its request messages. New users can be given
a default value of contribution for a limited period of time
so that they can start using the system at a reasonable
level.

There is incentive for peers to misreport contributions
so that they can reap the benefit of the system while mak-
ing no contribution. To prevent such misuse, it is possible
to implement aneighbor audit scheme. Such a scheme is
especially attractive in a fixed network topology such as
the CAN [9] or Chord [12] system. Every peer will con-
tinually monitor the uptime and disk space of its neighbor.
If any doubt exists about the accuracy of the information
reported by a peer, the information can be verified from
its neighbor.

5.2 Alternative Metrics for Contribution
and Incentive

We have touched upon only a handful of questions that
are relevant to building a reliable P2P architecture with
incentives. There are many unresolved issues which will
have to be addressed in future by system architects. For
example, what is the best metric for the contribution of a
user? A popular metric is the number of uploads provided
by a peer. So the peers that provide the most popular files
and have the highest bandwidth are deemed to contribute
the most. Our metric, which simply integrates disk-space
over time does not discriminate against low bandwidth
peers or peers which provide file which are not very pop-
ular. Such a metric is very appropriate for a project like
Freenet [1] which aspires to be an anonymous publish-
ing system regardless of the popularity of the documents
published. The metric that is in practical use by KaZaA is

calledparticipation level and is given by

participation level =
uploads inMB

downloads inMB
× 100. (21)

The participation level is capped at a maximum of 1000.
Our analysis of incentives relied on the peers being ra-

tional and trustworthy. Trust is not easy to enforce. The
neighbor audit scheme will deter individual misbehavior,
but collusion among a set of peers is still possible. An-
other trust related problem involves malicious peers who
contribute fake files. The idea of EigenTrust [6] is a sig-
nificant step in this direction which also protects against
collusion among malicious peers.

The incentive scheme we have outlined is through se-
lective denial of requests. There are other ways to imple-
ment incentives. For example one could implement dif-
ferential service forPi by restricting the download band-
width to a fractionp(di) of the total bandwidth available.
KaZaA’s participation level operates on a similar princi-
ple: if more than one peer requests the same file, the peer
with smaller participation level is pushed to the back of
the queue.

Instead of implementing incentives on download level,
one could also restrict the search capabilities of a peer.
The basic idea is to reduce the number of peers to which
queries are propagated. In Gnutella, a peer forwards a
query to its neighbors based on the Time To Live (TTL)
field. By reducing the TTL of the query or by forward-
ing the query only to a fraction of the total neighbors, the
search space for the query can be restricted.

scaledTTL forPi = ⌈p(di)× initial TTL⌉ (22)

We note that the effect of restricting search using a func-
tion p(d) is not equivalent to restricting download using
the same function. Network topology will have a signifi-
cant role to play in determining the actual set of files that
a user has access to. Regardless of the actual implemen-
tation of incentives, our conclusions concerning existence
and properties of the Nash equilibrium in the system will
remain qualitatively unchanged.

References

[1] The free network project.
http://freenet.sourceforge.net.

10



[2] Gnutella.http://gnutella.wego.com.

[3] Kazaa.http://www.kazaa.com.

[4] D. Fudenberg and J Tirole.Game Theory. MIT
press, Cambridge MA, 1991.

[5] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lil-
libridge. Incentives for sharing in peer-to-peer net-
works. Proc. of the 2001 ACM Conference on Elec-
tronic Commerce, 2001.

[6] S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina. The eigentrust algorithm for reputation
management in p2p networks.Proc. of the Twelfth
International World Wide Web Conference, 2003.

[7] H. Moulin. Game Theory for Social Sciences. NYU
Press, New York, NY, 1986.

[8] A. M. Odlyzko. The history of communi-
cations and its implications for the internet.
http://www.research.att.com/∼amo/,
1999.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
Proc. of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications, 2001.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems.IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middle-
ware), 2001.

[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing sys-
tems.Proc. of Multimedia Computing and Network-
ing, 2002.

[12] I. Stoica, R. Morris, D. Karger, Frans Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications.Proc. of the
2001 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communi-
cations, 2001.

11


	Introduction
	Our Incentive Model
	Strategy and Nash Equilibrium
	Incentives and Strategies in P2P System
	Measuring the Contribution
	The Benefit Matrix
	Probability as Service Differentiator
	The Utility Function


	Nash Equilibrium in the Homogeneous System of Peers
	The Two Player Game
	The N Player Game
	Stability of the Nash Equilibria

	Nash Equilibrium in the Heterogeneous System of Peers
	The Learning Model and Simulation Results
	Choice of Parameters
	Convergence to Nash Equilibrium
	Inactive or Uncooperative Peers


	Discussion
	Implications for System Architecture
	Alternative Metrics for Contribution and Incentive


