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Establishing Trust in Distributed Storage Providers

Germano Caronni and Marcel Waldvogel

Abstract— Corporate IT as well as individuals show
increasing interest in reliable outsourcing of storage infras-
tructure. Decentralized solutions with their resilience against
partial outages are among the most attractive approaches.
Irrespective of the form of the relationship, be it based on
a contract or on the more flexible cooperative model, the
problem of verifying whether someone promising to store
one’s data actually does so remains to be solved, especially in
the presence of multiple replicas. In this paper, we introduce
a lightweight mechanism that allows the data originator or
a dedicated verification agent to build up trust in the replica
holder by means of protocols that do not require prior trust
or key establishment. We show how naive versions of the
protocol do not prevent cheating, and then strengthen it
by adding means that make it economically attractive to
be honest. This provides a foundation for further work in
providing trustworthy distributed storage.

I. INTRODUCTION

The outsourcing of storage infrastructure is becoming
increasingly interesting for corporate IT as well as for
individuals. Besides the use of tainted peer-to-peer (P2P)
content sharing systems such as Gnutella [1], the appeal
of completely decentralized storage is steadily increasing.
Ranging from niche applications such as censor-resistant
publishing (e.g., Freenet/Eternity [2], [3] and Publius [4]),
to the scalable use of promising overlay networks based
on distributed hash tables (DHT) [5]–[9], the potential
of storing Petabytes of data accessible whenever and
wherever required has spurred great enthusiasm.

The advent of DHTs has given such systems a strong
boost, as DHTs allow an efficient, scalable, and often
failure-tolerant addressing of stored documents, including
decentralized replication mechanisms [10], [11]. These
and similar file distribution and storage mechanisms also
make sense in more traditional scenarios, ranging from
distributed backup (as e.g. marketed by HiveCache or
Permabit) and mirroring facilities to distributed storage
facilities for gridware [12] or a gridware-like environment.

There is, however, one crucial problem with indepen-
dent agents holding copies of your data: How can you
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make sure that they really store a copy locally, and not
just claim to do so? The existence of this problem becomes
immediately evident in collaborative environments. Even
in the presence of contracts, how can you verify that
the storage providers are actually providing the promised
number of replicas? If you ask them to provide you with
some file content, they can easily forward that request to
another replica holder without your knowledge.

Ignoring performance issues, the most immediate risk
here is that replicas of your data are being retained in
fewer places than you ask for. In the extreme, this can
lead to the existence of a single point of failure, exactly
the scenario distributed storage eagerly tries to avoid. If
storing your data gives replica holders the right to store
some of their data at your place, a financial compensation,
or some other kind of tangible benefit, the economic
incentive for falsely claiming to store your data becomes
clear.

A. Our Contribution

In this paper, we introduce a mechanism that returns
power to the data originator. It allows the originator (in
fact, anyone) to establish trust into the replica holder. We
show that naive approaches are susceptible to cheating
by the replica holder. Our proposed lightweight protocol
allows building up trust, even without a prior phase
of authenticated key exchange and trust establishment,
both major criteria in collaborative systems. The resulting
protocol does not provide a direct proof of storage, but
requires dishonest replica holders to use significantly more
resources than an honest replica holder would have to
use. It does not, however, prevent malicious, resource-
rich entities from performing their intentionally mali-
cious goal at considerable expense. Using appropriate cost
functions, the protocol provides the necessary leverage
against “lazy” replica holders, whose goal it is to obtain a
seizable advantage and which we expect to be the common
cheating candidate. Our symmetrical protocol limits the
possibilities of Denial-of-Service (DoS) attacks.

B. Organization of the Paper

In Section II, we first introduce and then improve
methods that help verify whether a replica holder actually
keeps its promises. Section III describes how to minimize
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the impact of DoS attacks. In Section IV, we present
related work, and in Section V, we draw our conclusions.

II. VERIFICATION OF CONTENT

Standard solutions to verify whether a replica holder
has a copy of some file are to either ask it to send the
file back to the verifier, or to compute a hash value over
the file (a keyed hash with a verifier-defined key is used
if a proof of freshness of the computation is required).
Unfortunately, they require considerable host bandwidth
(storage-to-CPU) and network bandwidth (former case) or
CPU power (latter case) for each request. The exclusive
use of optimizations such as hash trees over the file are
not appropriate, because the supposed replica holder can
just precompute them, thus obviating the need for storing
the entire document.

A viable compromise is to have the verifier request
the hash value to be computed only over a chunk of
the data at one time, with the chunk being selected at
random. Thus a smooth trade-off between full verification
and partial verification as well as between CPU/disk load
and bandwidth usage is achieved.

Let us now take this as the most naive practical starting
point. By considering the different ways in which a replica
holder might cheat, followed by appropriate adaptations
to our protocol, this initial idea will steadily evolve into
a simple, efficient, and secure protocol.

A. Options of Dishonest Replica Holders

As mentioned above, a replica holder can try to cheat
in many ways. It can

1) pre-compute information and only remember that
data,

2) forward the request for verification to another un-
suspecting replica holder,

3) forward the request to a colluding replica holder, or
4) download the file or parts of the file needed for

verification from another replica holder on demand.

We will discuss these attacks and appropriate counter-
measures in the following subsections. Most items deal
with the possibility of smart fraudulent replica holders
trying to obtain full benefits of the “contract” while
delegating the costs to unsuspecting third party. Unfortu-
nately, there are clear economic benefits of such parasitic
behavior; fortunately, there are also efficient technical
countermeasures.

Item 3 above is the exception to the parasitic behavior,
differing substantially from item 2. Technical countermea-
sures against such symbiotic collusion are rather limited,
but so are the incentives, fortunately.

Step A B
1 A, R1, H(R1‖R2) −→
2 ←− B, R3, H(R3‖R4)
3 R2 −→
4 ←− R4, K

Ri are random values; A, B are not easily forgeable identities to
deter work delegation. The result of the protocol, the key K, is defined
as K = H(A‖B‖R1‖R2‖R3‖R4).

Fig. 1. Key exchange protocol

B. Precomputation

The attempt using pre-computed data is most easily
thwarted by making all computations over the data involve
some fresh nonce as the key to a Message Authentication
Code (MAC) [13] or by modifying the range of data to
be verified sufficiently (see also Section II-E).

C. Delegation to Unsuspecting Replica Holders

One way to counter this would be to have the data
originator produce “personalized” replicas for each holder,
e.g. by tying them to the identity of the replica holder.1

However, this would require the underlying replication
architecture to be strictly star-shaped, with the originator
being the hub: no replica holder would be able to forward
its copy to somebody else, without going first through
the data originator. This contradicts the goal of avoiding
single points of failure and performance bottlenecks.

A far more effective, but still simple solution is to use
a key for a MAC that is derived from random inputs
of both verifier and replica holder in a secure fashion.
In this way, neither party can a priori force a result
with specific parameters. Therefore, the replica holder
cannot forward the request, as a delegation attempt would
create a different key. The initial agreement can be kept
simple because no confidentiality or authenticity issues
exist; a man-in-the-middle trying to hijack the protocol at
worst can persuade the verifier that the replica holder is
uncooperative, an accusation that can be achieved more
easily by simply dropping the packets (Section III).

A sample key agreement protocol is shown in Figure 1.
Note that B’s messages are not chained to A’s messages,
until the key is sent back. The inclusion of the identities
of A and B is required to prevent a dishonest replica
holder B from transparently forwarding traffic between A

and C . Sending back the key K is not necessary, as both
parties are able to calculate its value. However, exchanging
K in or after step 4 helps determine protocol errors before
more resources are spent.

1Identities, as used in this paper, might be as simple as the addresses
used by the communications protocols, e.g., IP addresses. They are
neither required to be cryptographically strong nor signed by a central
authority.
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TABLE I

LATENCY AND BANDWIDTH COMPARISON

Intra- Inter-
Disk LAN MAN continental

Latency [ms] 10a 1 10 50. . . 100 100. . . 400
Bandwidth [Mbps] 250. . . 500 10. . . 1000 1. . . 100 1. . . 10 0.1. . . 10

a The disk time is for a random seek; track-to-track seek is around 1ms. As disks typically
buffer at least an entire track, seek times within a track become basically negligible.

D. Delegation to Colluding Replica Holders

In Section II-C, we have seen how to prevent a dis-
honest replica holder from abusing an honest one. But
the problem becomes much more difficult if the two
replica holders actively collaborate and share information
beyond what is exchanged in the protocol in Figure 1. This
might include having random number generators running
in lockstep, exchanging the random values R3 and R4, or
allowing the key K to be set without going through the
key exchange.

In general, it seems difficult to even identify any will-
ful collusion between replicas. The available options are
either extremely expensive or do not seem effective. They
are listed below mainly for completeness.

1) Detecting the additional message delay (this seems
impossible to detect even if all nodes and links
provide hard real-time guarantees; even in that case,
it is likely that verification would require immense
resources for all parties involved2).

2) Having each replica hold a different version of the
document (this would remove all incentives, but see
the discussion in Section II-C above).

3) Having the computation include another piece of
information that the replica holder would not want
others, including the co-conspirators, to know (but
why would this information be shared with the
verifier?).

Instead, we believe in non-technical measures against
collusion. Economic incentives toward collusion seem to
be limited, and are likely to be outweighed by the risks
incurred. Consider the following example:

A partnership of colluders provides a substantial portion
of the storage infrastructure, say, 10%. In addition, assume
that the typical customer requests two replicas. Given a
random selection of replica holders, the dishonest service
could be offered at a storage savings of about 10% of their

2A potential way to do this is to reveal only half of R2 and R4,
and have the peer use these revealed halves, while the other party uses
the non-revealed halves, and reveal them only after a sufficient number
of verification steps. This has the added benefit that both the replica
holder and the verifier need to perform some work that the other can
then check on.

storage infrastructure, and no bandwidth savings (which
currently is more costly). We believe that the savings
obtained are not worth the risk of suddenly being put out
of business because of fraudulent behavior. A company
owning the sizable business of 10% of the total storage
market should not incur this risk lightly.

Therefore, the incentives at work against collusion in
both large (business risk) and small (no profit gain)
partnerships are expected to support honest behavior.

E. Download on Demand

Whenever a verifier requests a check from a replica
holder, the replica holder could theoretically request the
specific data to be covered by a check from other replica
holders. This works well when the range to be verified
is mostly contiguous and relatively small. Otherwise, the
efforts and bandwidth spent by the fraudulent replica
holder in downloading the data are large compared with
the storage space saved.

The predicament for the replica holder can be made
even stronger, by making the range to be verified consist
of several hundred very small chunks (e.g. only a single
byte), each residing a random distance apart from the
previous chunk. The selection of actual distances should
discourage downloading large chunks. The best distance
would be such that issuing a separate request for each
chunk of a pair is considered at least as costly as re-
questing a range that includes both chunks. Taking into
account packet headers and other overhead, the traffic
would greatly exceed the number of bytes over which to
checksum.

If the bytes are sufficiently close (Table I), the replica
holder will not even incur many disk-seek penalties.3

As can be seen from typical disk and network pa-
rameters as listed in Table I, accessing local disks is
significantly faster than network accesses, both in terms
of bandwidth and latency, for all except local replicas.
The main differentiating factor is latency, unless huge

3The verifier could even analyze the delays incurred by the replica
holder when answering verification requests and try to derive a model
of the disk parameters, e.g. rotational delay and cylinder or cache size,
by using techniques similar to the DiskSim [14] parameter discovery.
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Listing 1 First-cut verification procedure
1: Verifier and replica holder agree on common key (Figure 1)
2: Verifier specifies chunk size, maximum step size, and upper

number of steps.
3: Replica holder and verifier seed their stepping function

(RC4) with the key
4: current position ← 8 bytes out of RC4 (modulo file size)
5: while number of steps < upper number of steps do
6: value ← chunk at current position in file
7: insert value into hash
8: step size ← (value + 8 bytes out of RC4) (modulo

maximum step size)
9: next position ← (current position + step size) (modulo

file size)
10: end while

data blocks are to be transferred. Latency hiding through
pipelining of requests can be efficiently prevented by
reverting to a data-dependent step function, in which the
address of the next item to be checksummed becomes
available only after the current data value has been in-
corporated into the checksum result.

This procedure can be used to differentiate between
honest replica holders that access the document from a
disk and dishonest replica holders that access it over a
network.

F. Resulting Verification Process

As a first cut, consider the verification procedure in
Listing 1. Given the amount of randomness involved in the
selection of bytes to verify, we cannot conceive of any way
a dishonest replica holder would use this to precompute
and store information about the verification value. Thus
we suggest to use an inexpensive checksumming function
such as Adler-32 [15], instead of a more expensive cryp-
tographically strong hash function.

Using Listing 1 with the data provided in Table I, we
need about 1 s of disk drive time (probably much less
CPU time) to check some 30 MB available on the local
disk, independent of the number of samples, assuming a
contiguous layout of the file. Over a network (50 ms at 1
MB/s (∼10 Mb/s), which is roughly the rate with which
medium-sized enterprises connect to the Internet), it takes
30 s to download everything; the same time is necessary
when requesting 1200 data-dependent samples.

Even at higher bandwidths, the replica being exploited
also needs to have the same amount of bandwidth available
and the dishonest replica needs to be willing to waste this
(expensive) bandwidth to save some (cheap) disk space.
By using this scheme, we can easily remove any economic
benefits that cheating may have entailed.

III. DENIAL-OF-SERVICE CONSIDERATIONS

The verification protocol as outlined so far is an excel-
lent way to run a DoS attack on replica holders: Just have
them perform unlimited verification operations. That will
keep them busy and unable to provide their normal service.
Although this situation can be prevented by intricate
identity and ownership management of files, we choose
not to explore this direction. Instead, we keep things
simple and again base trust only on verifiable behavior.
We balance costs such that a verifier has to spend at least
as much effort on continued verification processes as the
replica holder does.

The first mechanism to limit DoS opportunities against
replica holders is by giving the replica holder the option
of requiring the verifier to perform a hash-cash [16],
[17] operation. Thus, the verifier has to “pay” for the
verification with CPU cycles. The amount of hash-cash
will be defined by the current load experienced by the
replica holder. The result of the calculation is a ticket of
limited lifetime that grants access to the actual verification.
Should the replica holder repeatedly pose impossibly high
hash-cash challenges, the verifier can assume the replica
holder does not want to comply with the protocol.

When replica holder and verifier are in symmetric
positions, i.e., both are interested in verifying each other’s
content, then a second ticket-granting mechanism becomes
available: A successfully executed verification of one party
will grant this party the right to request a slightly larger
verification from the other side by issuing an appropriate
ticket. Here, both sides actually perform useful work,
eliminating the waste of CPU cycles performed by hash-
cash.

In effect, mutual work (through hash-cash, reciprocal
verification, or a combination thereof) will be used to
establish a lasting trust relationship.

A man-in-the-middle attacker can use the proposed
mechanism for DoS by falsifying or suppressing the mes-
sages exchanged (see also Section II-C). Even though this
attack is typically not controlled by the replica holder, the
replica holder effectively becomes an unreliable storage
provider. The use of overlay networks may help circum-
vent such packet dropping or modification attacks, but this
is beyond the scope of this paper.

A possible implementation of the resulting protocol is
sketched in Table II. To avoid inflation, issued tickets may
be worth a little less than what they were offered for,
and protocol initiation may lead into a small hash-cash
challenge being required in addition to consuming a ticket.
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TABLE II

POSSIBLE IMPLEMENTATION OF THE DOS PREVENTION PROTOCOL

Verifier Replica Holder

Initiate protocol by requesting ticket for a given verification cost (i.e.
number of steps in verify operation).

Note that no trust relationship exists so far. Ask for hash-cash
appropriate for the requested verification and current load on holder.

Compute response and send.
Compute ticket, containing verifier identity (e.g. IP address), serial
number, end-time stamp, and HMAC with a secret key, only known
by holder. Send ticket.

Issue first verification request, including agreement on K, and ticket. Receive verification request, note that K is correct. Verify ticket. Note
ticket as used.

Optionally provide H(H(R)), to allow the replica holder to know that
the verifier has also perfomed the verification operation.

Of significance later.

Compute requested verification, and reply with H(R). If verifier
provided H(H(R)), then also issue a ticket to facilitate the next round,
since this proves that the verifier invested the same amount of work.

Receive and validate response. Store ticket for future use.
Optional: Issue verification request and if successful, issue ticket to
verifier for the next round.

IV. RELATED WORK

While some of the work mentioned in the introduction
(i.e. The Eternity Service [3]) has considered the issue of
replica holders being able to cheat, the proposed solutions
are somewhat simplistic. Most commonly, a MAC or
chunk of the file is requested. As outlined above, the
benefit of requesting a chunk out of the file is that the
replica holder can not distinguish between verification
checks and actual downloads. The same observation has
already been made by Free Haven [18]. This property
needs to be balanced against the increase in bandwidth
consumption that is caused by the verifications.

Trust has been a research topic for decades [19], ranging
from agreements even in the presence of untrusted entities
[20] to the total trust in a peer in a web-of-trust [21]
setting. In practice, however, trust is often handled through
centralized hierarchies: Everyone ultimately trusts a single
entity, which in turn delegates some of its trust to other
principals, who may or may not have the right to delegate
this further.

As all of these systems have weaknesses, people have
started working on other, more immediate ways to deal
with this issue, namely, reputation systems [22]. Advogato
[23] uses a hybrid system in which users can rank their
peers; the overall reputation of a ranked individual then
depends on the result of a network flow calculation.
Mobile ad-hoc networks are a prime area of reputation
research to determine whether intermediate nodes actually
do forward the packets or prefer to behave egotistically
and instead conserve their own power by not helping the
others [24], [25]. In this domain, it is relatively simple

to see the result, either through reciprocal reception of
the radio signal, through the help of other nodes, or by
seeing communications progress and getting the desired
answer from the communication peer. Systems such as
CONFIDANT [26] use reputation gossip to augment their
first-hand experience.

V. CONCLUSIONS

In this paper we have presented a first algorithmic
approach at fairly verifying whether replica holders indeed
perform the service they promised. Our protocol is based
on a checksum or hash that is calculated over key-defined
ranges of shared data. This check is performed in an
iterative fashion with alternating roles, or compensated by
the calculation of responses to challenges to prevent DoS
attacks. At the same time this builds a trust relationship
between replica holder and verifier which can be reused
in later rounds of the protocol.

To the best of our knowledge, this is the first paper
raising the issue of fair verification of stored data in a
non-trivial fashion. Given the increased interest in (po-
tentially massively) distributed storage, the need for a
lightweight mechanism is well covered in the protocol
developed herein. We believe that it will give first answers
to some of the issues that have arisen in the peer-to-peer
and distributed storage communities, but also raise new
questions and challenges. Open issues include tightening
many of the loose ends and gathering experience in a real
environment.
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