
PKI-Based Security for Peer-to-Peer Information Sharing

Anonymous
Anonymous

anonymous@anonymous.org

Abstract

The free flow of information is the feature that has
made peer-to-peer information sharing applications
popular. However, this very feature holds back the
acceptance of these applications by the corporate and
scientific communities. In these communities it is
important to provide confidentiality and integrity of
communication and to enforce access control to shared
resources. We present a number of security mechanisms
that can be used to satisfy these security requirements.
Our solutions are based on established and proven
security techniques and we utilize existing technologies
when possible. As a proof of concept, we have developed
an information sharing system, called scishare, which
integrates a number of these security mechanisms to
provide a secure environment for information sharing.
This system will allow a broader set of user communities
to benefit from peer-to-peer information sharing.

1. Introduction

The free flow of information is the feature that has
made peer-to-peer information sharing applications
popular. However, this very feature holds back the
acceptance of these applications by the corporate and
scientific communities. In these communities it is
important to provide access control mechanisms so that
the information owner can clearly and securely define just
what is shared and with whom. For example, a group of
collaborating scientists would like to share the initial
findings of their research within their group, but do not
want these findings available to the general audience until
they have had a chance to verify them.

Ideally, an information sharing application should
allow end users to:

1. Search for information.
2. Make their information available.
3. Download information.

In order to secure this type of information sharing
application we need to provide confidentiality and

integrity of all communication, and to enforce access
control of resources i.e. communication channels and
shared information. Existing systems have some
combination of these features and security properties, but
none provide all of them.

Searching in peer-to-peer systems often involves
broadcasting a query to all of the known peers. We refer
to this type of communication as group communication.
A number of systems provide confidentiality and integrity
of group communication [9] [16]. This is typically
achieved by building an overlay that encompasses the
group and then using TLS to secure the communication
between pairs of peers. This solution is inefficient as it
requires decryption and encryption of each message that a
peer forwards and is exasperated by the fact that a peer
often forwards multiple copies of a received message.
We use the Secure Group Layer (SGL) [1] to provide
confidentiality and integrity of group communication in a
more efficient manner. SGL accomplishes this by using a
shared group key for securing the messages.

In existing peer-to-peer information sharing systems,
authorization and authentication of peers is performed in a
purely centralized manner [9] or autonomously by each
peer [16]. The first of these is not fault-tolerant and the
second may lead to inconsistent enforcement. Our
solution distributes the authorization and authentication
enforcement while maintaining consistency among the
peers. We use SGL to provide authentication
enforcement and build extensions for SGL to provide
fine-grained authorization. In addition, we allow for
trusted peers to invite or escort other peers into the group.

Existing peer-to-peer information sharing systems do
not differentiate between resources. That is, an
authenticated peer has access to all the shared information
of every other authenticated peer. We provide
mechanisms that allow each end user to autonomously
specify the authentication and authorization requirements
for each information item. We leverage previous work on
fine-grained authorization for distributed environments by
using the Akenti authorization system [14]. We modify
Akenti in order to distribute the enforcement mechanism
to each peer and develop a group-based authorization
model that hides many of the complexities of the Akenti
system to the users.

We have developed an information sharing system that
satisfies the desired feature set for information sharing
and utilizes the security mechanisms described. This
system, called scishare, is not only a proof of concept, but
also a fully functioning information sharing system. Our
solutions are based on established and proven security
techniques. We have made considerable effort to not
reinvent the wheel and have utilized a number of existing
PKI-based technologies.

In Section 2, we present an overview of the system and
its architecture. Then, in Section 3 we discuss our
solutions to securing communication in a peer-to-peer
environment. In Section 4, we describe our solutions for
fine-grained, distributed, resource access control. Section
5 describes related work in the peer-to-peer information-
sharing arena. Finally, we conclude and present possible
future work in Section 6.

2. System design

In this section we first provide an overview of our
secure information sharing system, including the security
model. We then present the architecture and technologies
used in our system.

2.1 System overview

Group

P2 P1

P6

P5
P4

P3
1

1

1
1

1

1

2

3

4

Figure 1. Peer interactions

Figure 1 shows the interactions between peers. A peer,
P1, searches for information by sending a query message
to the group (step 1). Peers P3 through P6 don’t have
content that matches the query, so they do not respond.
Peer P2 has content that matches the query, so it sends a
query response message (step 2). P1, can then request to

download content from P2 by sending a transfer request
message (step 3). P2 answers this request with the
content or an error message (step 4). In this respect, our
system is very similar to existing peer-to-peer file sharing
systems, such as Gnutella [8]. The difference stems from
our security model. In the remainder of this section we
discuss the system actions in more detail, the security
requirements they impose, and our security model.

Communication primitives. We consider a set of peers,
P, that form a peer group, G. The peers communicate by
exchanging messages. A peer, Pi, can send a message to
any other peer, Pj, or to the peer group, G.
Communication between two peers, Pi and Pj, is direct,
i.e. we do not consider the scenario where a third peer, Pk,
acts as proxy, forwarding messages for the
communication. Messages sent to the peer group G are
intended for every peer in G.

Searching for information. An important feature of an
information sharing system is the ability to search for the
desired information. In our system model, a peer Pi

searches for information by sending a query message to a
peer group G, where Pi is a member of G. Each peer, Pj in
G, that receives the query message, checks whether any
items match the query and responds directly to Pi with a
query response message that contains the metadata
associated with the items that matched the query.

The security requirements for the search are:

1. The query message is confidential to G.
2. The query response message is confidential

between a Pj and Pi.
3. Each query response only contains the

metadata for items for which Pi is authorized
access.

4. Pi is able to verify its trust relationship with
each Pj from which it receives a query
response.

Transferring information between peers. A peer Pi

may request a transfer of information from a peer Pj, by
sending a transfer request message to Pj. Pj, upon
receiving this message checks whether it has the
information item associated with the request. If Pj has the
item then Pj transfers the requested information to Pi. If
the information is transferred to Pi, then Pi becomes the
owner of that copy of the information.

The security requirements for information transfer are:

1. The transfer request message and the transfer
of the information are confidential between Pi

and Pj.

2. Pi and Pj are able to identify each other and
thus determine the level of their trust
relationship.

3. The information is transferred from Pj to Pi

only if Pi is authorized to access that
information.

Managing locally shared information. Each end user
designates a set of information items that its peer host can
share with the other peers in the group. Each information
item has a pair of authorization requirements. One is for
the metadata associated with the information item and the
other is for the actual item. Users should be able to
specify these requirements through a simple user
interface.

The specified requirements for an information item are
autonomous. For example, if peer Pi allows Pj access to
an information item I, it indirectly relinquishes the right to
fully control access to I. We do not prohibit Pj, once it
obtains a copy of I, from specifying its own authorization
requirements for I that are independent of those specified
by Pi.

Security model. Our security model adapts a number of
security solutions built around the X.509 public-key
infrastructure (PKI) to provide confidentiality, integrity,
authentication, and authorization. We have developed
mechanisms that allow X.509 entities to build secure
collaborations. These mechanisms do not prevent
outsiders from participating and provide a secure
environment where members and outsiders can meet and
interact. Outsiders can earn the right to become full
partners based on their contribution and/or behavior.

We also accommodate peers which do not have
certificates. We call these pseudo users. Pseudo users
are provided with automatically generated X.509
certificates and have access to public resources.
However, these peers cannot be granted higher levels of
trust in the system.

We only allow peers that have obtained X.509
certificates from a verifiable certification authority (CA)
to become trusted peers in our system. We made this
decision because: (1) our target communities (research
labs, universities, and corporations) have the resources to
deploy certification infrastructures, (2) in this model peers
are shielded from being tricked into giving away too
much power to untraceable and potentially dangerous
entities, and (3) our trust verification mechanism ensures
that certificates presented by peers have not been revoked,
a very important component of the security guarantees we
provide. In summary, our mechanisms enable all peers to
easily determine the trustworthiness of other peers and
information, and also provide them with options to disable
interactions with outsiders.

2.2 Architecture

Figure 2 shows the architecture at a peer. SGL is used
to send and receive queries within a group and TLS [14] is
used for all other communication. The authentication
managers are used to provide coarse-grained access
control to the communication channels. The
authorization manager and the Akenti engine are then
used to provide fine-grained access control to the
communication channels and shared information.

InterGroup

SGL

HTTP

TLS

Authentication
Manager

Authentication
Manager

Data
Authorization
Manager

AkentiResource
Mapping

1

2 3

4

1

5

Figure 2. Peer architecture

When a query message or transfer request message is
received by the peer it is first processed by the appropriate
authentication manager. Queries are processed by the
authentication manager associated with SGL and transfer
requests are processed by the one associated with TLS.

If the message is approved by the authentication
manager, it is passed on to the authorization manager
(step 1). If the message is a transfer request, the
authorization manager then determines the policy
associated with the content requested from the resource
mapping (step 2). The resource mapping component
maintains a mapping between a resource and its
associated policy. The policy and identity of the
requestor are then handed to the Akenti engine, which

returns the actions that the requestor is allowed to perform
on the resource (step 3). If the requestor has read access,
the data is retrieved from the data store (step 4) and sent
to the requestor (step 5).

The remainder of this section describes SGL and
Akenti. The authentication managers are described in
Section 3 and the authorization manager is further
described in Section 4.

SGL. SGL [1][7] provides the security services required
by applications utilizing reliable group communication in
wide-area environments. SGL establishes secure
multicast channels among application components. An
SGL secure multicast communication channel is
established by first exchanging a session key among the
legitimate application components. This key is then used
to achieve multicast message confidentiality and/or
multicast data integrity within the group.

SGL provides the application with a security context
within which messages multicast over the wire can be
cryptographically protected. The essential building block
for setting up a secure multicast context is a distributed
key exchange protocol that allows the participants to
exchange a session key as equals and, therefore, treats
them as peers. The first step in solving this problem was
to design an algorithm that allows a set of participants to
agree on a session key [4]. We refer to this kind of group
key genesis as the initial group Diffie-Hellman key
exchange. Alone, the group Diffie-Hellman key exchange
is of relatively little practical use. A mechanism to
enforce restrictions on who can participate in the key
exchange and, therefore, the multicast group is needed.
SGL integrates the Diffie-Hellman key exchange and
authentication mechanisms into a security layer.

In our system, we layer SGL on top of the InterGroup
protocols [3] to provide secure and reliable group
communication. InterGroup provides membership
services, reliable message delivery, and ordered message
delivery for many-to-many communication. The
InterGroup protocols are designed to scale to wide-area
environments such as the Internet. SGL secures
InterGroup in much the same way that the TLS secures
TCP.

Akenti. Akenti [14] provides scalable authorization
services in highly distributed network environments.
Stakeholders, i.e. resource owners are able, in a flexible
and secure way, to remotely and independently define and
deploy distributed resource policies used for fine-grained
access control.

The Akenti engine allows for multiple and distributed
resource owners and supports very powerful ways to
express the constraints on the use of resources.
Furthermore, it uses minimal centralized knowledge to
securely collect distributed policy in the form of

certificates during the evaluation phase. This dynamic
policy collection enables Akenti to scale well to large and
cross-domain populations both in terms of policy
management and in terms of users joining and leaving
organizations. After evaluating the policy for a resource,
Akenti can issue a signed authorization token to the
holder of a X.509 public key, authorizing him/her to
perform actions with respect to the resource.

3. Securing communication

We use multicast to send and receive queries and
unicast for all other communication. We use SGL to
secure the multicast and TLS to secure the unicast. Both
support authentication services and trust decisions based
on X.509 certificates.

Our security model enables secure interactions among
peers that do not necessarily know each other and
encourages a gradual build-up of trust. Peers with
certificates from verifiable CAs have the potential of
becoming full partners in the system, while peers with no
certificates are provided pseudo certificates by the
application software which can be used to participate in
the SGL and TLS session key generation. However, these
pseudo certificates can never be used to establish the
holder as a fully trusted partner. In our system, pseudo
users have access to world readable files and can express
policies to protect their own files. The remainder of this
section presents the approach we have taken to allow for
gradually building trust in peers [2] and to promote
sharing in the overall system.

3.1 Multicast communication

SGL allows a group of peers to communicate securely.
The peers participate in a handshake protocol that results
in the derivation of a group shared secret key to encrypt
and protect messages.

The SGL specification [7] allows extensions to its
authentication mechanism. Pluggable authentication
managers are used during the initial phase of the SGL
handshake protocol, called the HELLO phase. Every peer
has an authentication manager that presents the peer’s
credentials to SGL, collects the credentials of the other
peers attempting to join the group, and finally determines
the set of eligible peers that may proceed with the
handshake.

We define a secure multicast channel as the 4-tuple,
<IP address, port, locator, public key>. The channel’s
administrator, who may not be a user of the information
sharing application, creates a channel configuration policy
(CCP). The administrator then signs the CCP with a ‘well
secured’ private key. Each peer interested in joining a
group obtains the channel 4-tuple using offline methods,

uses the locator to retrieve the CCP, and finally verifies
the CCP using the public key. It is important to note that
each peer performs these steps before attempting to join
the channel, as the CCP is part of the authorization data
sent in the HELLO phase.

The CCP contains a serial number, which allows each
peer to detect the case where more than one CCP is
received from the group. This scenario, which can occur
when some of the peers have not downloaded the latest
CCP, is resolved by simply picking the CCP with the
highest serial number. Consequently, all peers use the
same security and operational parameters. In particular,
when the X.509 authentication method is used, they all
use the trusted CAs listed in the CCP to determine the
trustworthiness of other peers. Normally, untrusted peers
are not part of the next phase of the SGL handshake, and
thus cannot join the group.

In order to allow a gradual build-up of trust our
solution uses two SGL channels, each with a separate
CCP. The first channel is secure (encrypted) and only
allows trusted peers to know the group key (referred to as
the trusted channel), while the other is secure but allows
anyone with a X.509 or pseudo certificate to join (referred
to as the untrusted channel).

Only peers that satisfy policies defined by the
administrator are admitted into the trusted channel. In
order to distinguish peers by their privileges, this channel
uses Akenti capabilities, which contain the X.509
certificate of the peer, rather than the X.509 certificate
alone in order to verify their right to join the group.
Section 4.1 describes this authentication method in detail.

Every peer is admitted into the untrusted channel. This
channel’s CCP uses the X.509 authentication method but
with a minor modification. At the SGL level, the
authentication managers accept any peer that presents a
valid X.509 chain and proof of possession of the
corresponding private key. However, at the application
level, after the handshake is complete, each peer performs
the trust check based on the CAs it trusts. Each non-
pseudo user for which this check fails is added to a list of
untrusted peers. Peers have access to their list of
untrusted peers and may add these peers to their trust
world. Queries sent by untrusted peers get marked as
such by the application allowing the peer to not respond
to such queries.

3.2 Unicast communication

Peers may play the traditional role of a client in some
cases and the traditional role of a server in others. In our
system each peer plays the role of a client when sending a
query response or transfer request message, and the role
of a server when providing content. TLS, at a minimum,
requires that the server side present a certificate chain.
We use TLS in Mutual Authentication mode where the

client authentication is optional. In other words the server
side of a connection will always present a certificate (a
pseudo one if necessary) and the client will only present
one if it has a real certificate. The use of pseudo
certificates does not in any way compromise the security
of the sever-client connections. The pseudo private keys
are securely generated and stored. In fact, users are not
even aware that these certificates exist.

As we have done for the SGL untrusted channel, we
defer the trust check and only do authentication at the
TLS level. This way, untrusted peers are able to complete
the TLS handshake. The trust check is performed at the
application level immediately after the completion of the
TLS handshake protocol. If the trust test fails at the
application level, we flag the metadata or the content as
untrusted. In our system, untrusted peers only have
access to world readable files. Trusted peers, on the other
hand, may have access to other files depending on the
policy described in Section 4.2.

We also allow the peers to elect to only communicate
with trusted peers. In that case, the trust check is
performed immediately at the TLS level. If the trust
check fails, the handshake fails and the connection is
aborted. Peers electing this option prevent untrusted peers
from even opening a communication channel.

Upon establishing a secure unicast channel with an
untrusted entity, the peer is prompted to add this entity to
their trust domain. If the peer declines, that entity is
added to the list of untrusted peers. The peer can later add
these untrusted entities to their trust domain.

4. Fine-grained access control

In this section we present fine-grained access control
mechanisms that allow trusted peers to have different
privileges. We have identified two resources in the
system. These are the multicast communication channel
and shared information (content and its metadata).

The sharing of resources within rather large and
dynamic peer communities, that may span a number of
trust domains, must be highly controlled. Each end user
should be able to define in a clear and a secure manner
just what is shared and with whom. We have already seen
in the previous section how SGL and TLS can be used to
perform coarse-grained access control to provide equal
access to authenticated peers.

We use the Akenti authorization system as a basis for
our work on fine-grained access control since it scales
well to very large and dynamic populations. The Akenti
engine allows for multiple and distributed resource
owners and supports very powerful ways to express the
constraints on the use of resources. Furthermore, it uses
minimal centralized knowledge to securely collect
distributed policy in the form of certificates during the
evaluation phase. This dynamic policy collection enables

Akenti to scale well to large and cross-domain
populations not only in terms of policy management, but
also in terms of peers joining or leaving (perhaps forcibly)
organizations.

In this section we first introduce a design for fine-
grained access control to multicast communication. Then,
we present the fully integrated group-based authorization
model we have developed to secure access to shared
content and its metadata.

4.1 Multicast channel

 In Section 3.1, we showed how the CCP is used to
make sure that all peers have a consistent way of
configuring the SGL channel at runtime as well as how
X.509 certificates may be used for authentication. Here
we make minor modifications to the authentication
method and use Akenti capabilities to provide peers
different levels of access to the trusted channel.
 The owners of the channel, which are not necessarily
peers, generate and deploy the authorization policy. If the
system is set up correctly, only minimal policy elements
are kept at a central site. The policy elements that change
frequently, such as resource usage constraints, are
deployed at sites conveniently accessible to the owners.
The Akenti engine uses this minimal central knowledge to
collect the dynamic policy elements at runtime. Once the
policy elements are collected, the engine evaluates the
privileges of each peer and produces capability
certificates for trusted eligible peers.

Capability certificates signed by the Akenti engine
contain the name associated with a peer (typically the end
user), the peer’s public key, the name of the channel, and
a list of rights or actions that can be awarded to the named
peer. The actions may have additional, application-
specific conditions attached to them such as the time
period during which the action is valid. The channel’s
authentication managers present the CCP and capability
certificates to SGL on behalf of their peers. They verify
the integrity of all received capabilities by using the
Akenti engine’s public key, conveniently contained in the
CCP, and verify the identity of all other peers by using
public keys contained in the capability certificates.

The possible actions granted to peers are join, invite,
escort, attend, and reject. The join action allows a peer to
join the SGL group as a full-fledged member, while the
attend action allows a peer to join the SGL group as a
guest. A peer must have a join or attend action listed in
its capability in order to access the channel.

A peer who has been granted the invite action, called
the inviting peer, may allow other peers to join the SGL
group as guests. The inviting peer provides the potential
guest with a signed invitation in the form of a capability
certificate listing attend as one of the actions along with
its own capability. The guest then presents this chain of

two (or more if invitation chaining is allowed) certificates
during the SGL handshake. Each peer is then able to
verify the validity of the invitation(s) without having to
contact the inviting peer.

A peer who has been granted the escort action, called
the escorting peer, may also allow other peers to join the
SGL group as guests. However, in this case, the escorting
peer must also participate in the SGL handshake for the
guest to be admitted into the group. The escorting and
guest peers follow the same steps as in the case of an
invitation. The only change is that each peer needs to also
make sure that the escorting peer(s) are present during the
handshake.

A peer who has been granted the reject action may
remove another peer from the SGL channel by forcing a
re-key operation and presenting a ‘negative’ capability
certificate of the peer to be removed. This ‘negative’
capability certificate names the peer and does not list any
action.
 In summary, the channel owners specify which peers
can join the trusted channel. Some of these peers may
have the capability to invite untrusted peers to the trusted
channel, based on their experience. This flexibility is
essential when forming secure and spontaneous
collaborations.

4.2 Information

We hide many of the complexities of the Akenti policy
language by providing a group-based authorization model
layered between the user and Akenti. Currently, a policy
is simply a named container that holds a set of groups and
a set of rejected peers. The Akenti engine asserts that a
peer satisfies a policy if the following conditions are
satisfied:

1. The peer is not listed in the rejected peer list.
2. The peer belongs to at least one of the listed

groups or the policy does not list any groups.

A group is a named set of peers, which is managed by
one or more authorities that assert which peers belong to
the group. Peers can create their own groups or reference
groups created by other peers or third party entities. A
peer can make a group available for reference by storing
that group’s membership certificate, in public directories.

Peers can reference groups in the policies they create
by simply supplying the owner of the group and the
location of the public directories containing the group
information. The Akenti engine asserts that a peer
belongs to a referenced group if and only if the engine
locates, in one of the listed public directories, the peer’s
valid group membership certificate. Consequently, peers
can be added and removed from groups without any
communication among the peers.

Finally, when a peer wants to access a resource we
simply retrieve the relevant policy from a one-to-one
resource-policy mapping managed by each peer and
evaluate the peer’s privileges based on that policy. In our
system, resources are hierarchical and the peer must
satisfy the first policy found in the hierarchy.

5. Related work

A number of peer-to-peer information sharing systems
have been developed in the last few years (e.g. [8], [11],
[12]). The focus of these systems has been on usability
and scalability, rather than security. Our system focuses
on all three of these aspects, particularly security.

The majority of security research in peer-to-peer has
focused on providing anonymity to the user and data (e.g.
[5], [6]), and automating the construction of trust
relationships in systems utilizing untrusted identities (e.g.
[10], [13]). Our system allows users to participate
without having to prove their identity, but does nothing to
enhance the anonymity of the users or the data. We also
leave the construction of trust relationships to the users,
providing them with historical data about their interaction
with other users, trusted or untrusted.

Waste [16] is a secure file-sharing system that provides
security of information within a small trusted group of
peers. It secures all communication at the link-level using
TLS and builds a PKI web of trust between the trusted
peers. Waste assumes that all of the trusted peers are
equal. In addition, peers are forced into trust relationships
that are commutative and associative. Thus, any peer that
is allowed into the system has full access to all the
information in the system. Our system provides similar
properties, but also allows for building autonomous trust
relationships, fine-grained authorization control, and for
sharing of public data with peers outside the trusted
group.

Groove [9] allows a small group of collaborators to
form spontaneous shared spaces in which they exchange
information. It essentially implements PKI without the
certification framework to build trust among users and it
is not clear if any of the implemented security protocols
have been proven secure. Groove did put a lot of effort
into making the system usable, and has automated a
number of protocols to hide the key management issues
from the users. It does not support fine-grained access
control, but provides support for incremental trust through
its built-in invitation protocol.

6. Conclusion and future work

Providing security in peer-to-peer environments is
difficult due to the distributed and autonomous nature of
peers. The major challenges are providing confidentiality

and integrity of group communication in an efficient
manner, and distributing the authentication and
authorization enforcement such that security is not
compromised.

Secure group communication is most efficient if the
group members have a common, shared key for securing
the communication. This is difficult to achieve in
dynamic groups, as a new key must be generated every
time a membership change occurs to preserve forward
secrecy. SGL provides efficient, distributed, mechanisms
for re-keying in this environment. We make use of these
mechanisms to provide efficient, secure delivery of
queries in our system.

SGL also provides basic authentication mechanisms
for the group. However, SGL does not specify the
manner in which policies are specified or used. We have
developed a group policy and associated mechanisms to
guarantee that every peer in a group proceeds with the
same policy. This results in every peer in the group
providing the same authorization enforcement for that
group. In order to provide fine-grained access control for
the group, additional mechanisms that leverage of the
Akenti authorization system were put in place. We used
techniques similar to the ones for authentication to
guarantee consistency, allow for peers to invite guests into
the group, and allow for peers to invoke re-keying in
order to remove peers whose privileges have been
revoked from the group.

In our system, peers can build their trust relationships
autonomously. An underlying associative trust still exists
since peers essentially become owners of data they
download. The enforcement of a stricter policy that
prevents a peer from modifying the authorization
requirements for data it has downloaded is outside the
scope of this paper. It is a possible avenue of future work
that would need to take into further consideration the area
of digital rights management.

By adding authentication and authorization to an
application users are often required to obtain credentials
from a centralized authority to gain access to even the
most basic functionalities. Often, this is unnecessary, as
only a subset of the application functionalities needs to be
secure. We allow users immediate access to the
application by automatically generating pseudo
certificates for users that do not have credentials. This
allows these pseudo users access to the basic functionality
of the system without compromising the security model.

We have presented a number of security mechanisms
that can be used to provide PKI-based security for peer-
to-peer information sharing. Our solutions are based on
established and proven security techniques and we utilize
existing technologies when possible. As a proof of
concept, we have developed an information sharing
system, called scishare, which integrates a number of
these security mechanisms to provide a secure

environment for information sharing. At the moment, the
security mechanisms related to SGL are not yet
implemented.

We are currently working on implementing and
incorporating the security mechanisms related to SGL into
scishare. We are also currently evaluating the security
mechanisms described in this paper.

The ideas presented in this paper could be used in
other types of peer-to-peer applications. We plan on
refining and further simplifying our security mechanisms
so that security can be incorporated into peer-to-peer
applications in a way that adds value and not
inconvenience.

7. References

[1] D.A. Agarwal, O. Chevassut, M.R. Thompson, G. Tsudik,
“An Integrated Solution for Secure Group Communication
in Wide-Area Networks”, Proceedings of the 6th IEEE
Symposium on Computers and Communications,
Hammamet, Tunisia, July 3-5, 2001, pp 22-28.

[2] D. Agarwal, M. Lorch, M. Thompson, and M. Perry, "A
New Security Model for Collaborative Environments,"
Proceedings of the Workshop on Advanced Collaborative
Environments, Seattle, WA, June 22, 2003.

[3] K.Berket, D.A. Agarwal, O. Chevassut, “A Practical
Approach to the InterGroup Protocols”, Future Generation
Computer Systems, Vol. 18 (5), Elsevier Science B.V.,
2002, pp. 709-719.

[4] O. Chevassut, “Authenticated Group Diffie-Hellman Key
Exchange: Theory and Practice”, PhD Dissertation,
Universite Catholique de Louvain, Belgium, October 2002.

[5] I. Clarke, O. Sandberg, B.Wiley, and T.W. Hong. “Freenet:
A distributed anonymous information storage and retrieval
system”, Lecture Notes in Computer Science, 2001.

[6] R. Dingledine, M. J. Freedman, and D. Molnar. “The free
haven project: Distributed anonymous storage service”, In
Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, July 2000.

[7] G. Egles, O. Chevassut, K. Berket, A. Essiari, D. A.
Agarwal. “The Secure Group Communication Protocol
version 2”, Work in progress.

[8] “Gnutella”, http://www.gnutella.com/

[9] “Groove”, http://www.groove.net/.

[10] S. Kamvar, M. Schlosser, and H. Garcia-Molina.
“Eigenrep: Reputation management in p2p networks”, In
Twelfth International World Wide Web Conference, 2003.

[11] “Kazaa Media Desktop”, http://www.kazaa.com

[12] “Limewire: The Most Sophisticated File-Sharing
Application”, http://www.limewire.com.

[13] A. Singh and L. Liu "TrustMe: Anonymous Management
of Trust Relationships in Decentralized P2P Systems", in

Proceedings of The Third International IEEE Conference
on Peer-to-Peer Computing, September 2003.

[14] M.Thompson, A. Essiari, S. Mudumbai , “Certificate-based
Authorization Policy in a PKI Environment”, ACM
Transactions on Infomation and System Security (TISSEC),
Volume 6, Issue 4, pp: 566-588, November 2003.

[15] “ T h e T L S P r o t o c o l V e r s i o n 1 . 1 ” ,
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc2246-
bis-06.txt.

[16] “Waste”, http://waste.sourceforge.net/.

