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A Multi-Layered Image Cache for Scientific Visualization

Eric LaMar

ABSTRACT

We introduce a multi-layered image cache system that
is designed to work with a pool of rendering engines to
facilitate an interactive, frameless, asynchronous ren-
dering environment. Our system decouples the render-
ing from the display of imagery. Therefore, it decouples
render frequency and resolution from display frequency
and resolution, and allows asynchronous transmission of
imagery instead of the compute–send cycle of standard
parallel systems. It also allows local, incremental re-
finement of imagery without requiring all imagery to be
re-rendered. Images are placed in fixed position in cam-
era (vs. world) space to eliminate occlusion artifacts.
Display quality is improved by increasing the number
of images. Interactivity is improved by decreasing the
number of images.

keywords: image cache, impostors, scientific visualiza-
tion, multi-resolution techniques, hierarchical tech-
niques, parallel techniques.

1. INTRODUCTION

In this paper, we consider the problem of providing a
simple and general solution to the problem of scaling the
performance of a graphics system with respect to large
variations of the input data set and the resources avail-
able. Given a basic rendering engine, it is a major task
to provide scalability of the engine’s performance with
respect to (i) size of the input dataset, (ii) resolution
of the output display and (iii) amount of computational
resources available (including parallel and distributed
processing units, memory, and hardware acceleration).
In a complex system, this task may also be replicated
several times as several rendering engines are used con-
currently (such as slicing, volume rendering, and iso-
contouring). Previous parallel rendering techniques are
based on a compute–send–display cycle that must be
executed strictly within the time elapsed between the
display of two frames. That is, while the parallel ren-
dering engines are producing images, the network is not
being used. When rendering of the images is complete,
all of the render engines synchronize; the slowest engine
therefore determines the overall time that is used to pro-
duce images. The previously idle network then becomes
saturated with traffic as the images are all sent at the
same time. The network is being used very inefficiently
as it alternates between disuse and over use.

Caching and reusing imagery over several display
cycles relaxes the requirement that all images be re-
rendered every frame. Moreover, the images can be sent
continuously, thereby spreading the load over time and
utilizing the communications resources more efficiently.

This generation of images without a strict sense of a
frame is called “frameless rendering.”

There is a large body of research on using impostor
images generated off-line to approximate large scenes
that cannot be rendered interactively. However, exist-
ing techniques are unable to meet the demands of sci-
entific visualization in that they expect static scenes,
and require significant preprocessing time and user as-
sistance to place impostors. Scientific visualization
methods require user-controlled, run-time parameters
that can significantly alter the visualization results, i.e.,
transfer-functions for volume visualization, iso-value for
iso-contouring, or temporal movement for time-varying
datasets. All of these require adaptive refinement and
dynamic updating of the imagery.

Outline of the approach. We have developed our
Multi-Layered Image Caching (MLIC) system to cache
rendered images and to address issues specific to the
use of impostors for scientific visualization. The com-
ponents of our system include a display engine, an image
database, and a set of rendering engines. Our system
uses a special decomposition of space about the view-
point: the first is to refine the space into a set of non-
occluding (with respect to the viewpoint) polyhedra.
These polyhedra are then refined by an individual k-D
tree to allow for adaptivity. As the viewpoint moves, so
do the polyhedra and k-D trees move.

Each node of the k-D trees has an associated image
produced from the data enclosed by that node; the im-
ages have specific spatial position and extent.

The images all have the same pixel resolution, so
low-resolution regions are covered by fewer images with
larger spatial extent, and high-resolution regions are
covered by more images with smaller spatial extent.

The images can overlay each other with respect to
the viewpoint, so they include both color and opacity
information. The images cover the space around the
viewpoint, although only those currently visible in the
camera’s view frustum are displayed. The images do
not move with respect to the viewpoint (or each other),
so do not include depth information.

The rendering engines receive requests to generate
new images. Upon completion, they send an acknowl-
edgment to the display engine and send images to the
image database.

By combining an image database, a display engine
that displays only what is available, and the explicit no-
tification of render requests and acknowledgments, the
MLIC system accomplishes the decoupling of image dis-
play rates from image generation rates. The decoupling



of display resolution from rendering resolution is accom-
plished by images covering different spatial extents. Lo-
cal refinement of data does not require re-rendering all
images. Instead, only those images that intersect the
refinement region need to be re-rendered.

As the images are held at fixed positions with re-
spect to the viewpoint, a translation of the viewpoint
through the data means that images have also moved
from where they were rendered. These images should
be re-rendered; however, if the translation is small, they
can be used to approximate the correct image. Hence,
if the rate at which images can be re-rendered is slow,
and the viewpoint is moving slowly, not all images need
be re-rendered each display cycle.

The display engine displays images from the image
database. It iterates through the set of polyhedra that
decompose the space about the viewpoint. For each
polyhedra in the view frustum, traverse the associated
k-D tree, displaying images that meet the current dis-
play requirements. If an image does not meet display
requirements (i.e., it was generated when the viewpoint
was an a different location or it covers too large a spatial
extent), the display engine sends a request to the ren-
der engines to generate one or more new images. When
these new images are available, the display engine dis-
plays them.

Main Results. We have implemented a parallel
shared memory and distributed MPI versions of our
MLIC system, on an SGI Origin3000 and a Linux clus-
ter, respectively. Our intent is to provide interac-
tive rendering of large datasets and linear scaling on
the number of rendering engines. Both implementa-
tions show linear scaling for some modest-sized (5123)
datasets.

We currently use VTK for rendering because it sup-
ports a very large array of rendering modalities. How-
ever, none of the modalities is very fast, and VTK can-
not seem to handle datasets larger than 5123.

Both implementations use simple FIFO queues for
render requests and acknowledgments. When moving
through a dataset quickly and displaying it at high res-
olution (i.e., displaying a large number of images), the
rendering engines are not able to re-render images from
the current viewpoint quickly enough to produce a con-
sistent view of the data (i.e., all the images are from
slightly different locations). This can make it difficult
to navigate through the dataset. Prioritizing re-render
requests to provide a consistent view for the very center
of the display, while letting the periphery be less consis-
tent, could make navigation easier. Similarly, predicting
the viewpoint location would allow generation of images
that will be correct.

2. RELATED WORK

In this section we discuss related works in the areas of
parallel and distributed rendering, image-based render-
ing techniques, multiresolution data structures, special-
ized hardware, and other related techniques.

2.1. Parallel and Distributed Rendering

Ma etal.1 introduces Binary-Swap composition to re-
duce the total amount of imagery sent over the net-
work of a parallel machine when performing parallel,
distributed rendering. The data are distributed as thin
slabs that cover the viewport. Instead of each node
transmitting its entire image to one common node to
be composited, the images are composited in a binary
tree hierarchy. Progressively smaller portions of the im-
ages are swapped and composited, until each processor
contains a P/N portion of the final image, where P is
number of pixels in the final image and N is the num-
ber of processors. The N partial images are sent to
the display buffer. They observe that communication
takes a small portion of the overall time used to gen-
erate a single, complete image, when using up to 512
processors. This method, however, requires a hyper-
cube topology to efficiently implement non-interfering
image-swaps. The authors implemented their system on
a Connection Machines CM5 (which has a hyper-cube
topology and very high bi-section bandwidth), and did
not discuss issues or possible problems with other com-
munication topologies.

Parker etal.2 discuss parallel isosurface computation
on an Origin2000. They observe that while ray-tracing
has a high per-instance cost, it is extremely paralleliz-
able. They use a two-level hierarchy to enable skipping
of empty space, and observe near-linear scaling, and a
10 frames-per-second visualization, on the 1GB Visible
Woman dataset. Their technique relies on the data to
be a regular, Cartesian grid, for efficient traversal and
iso-contour tests.

Ahrens etal.3 discuss an on going project to par-
allelize the general data-path of Kitware’s Visualiza-
tion Toolkit,4 with the goal of visualizing extremely
large datasets on large, parallel machines, using VTK’s
pipeline. The current MPI extensions to VTK only par-
allelize individual filter modules. Their system shows
reasonable, but sub-linear, scaling. What is more
promising in this work is that VTK is a popular,
portable package for scientific visualization, with sup-
port for a large number of rendering modalities.

Wald etal.5 discuss the parallelization of a highly op-
timized ray-tracer on a cluster of PCs. Scenes with mil-
lions of triangles can be ray-traced at several frames per
a second. They show linear speed-up up to 16 nodes,
at which point the network connection on the display
node becomes saturated. They observe that this config-
uration can compute 5 millions rays per a second. The



scene data is replicated on all nodes; thus, the system
does not scale with respect to data.

2.2. Image-Based Rendering Techniques

Light-Field Techniques. There are several tech-
niques that can create a novel view of an object of
scene from a set of pre-computed, pre-recorded views.
Gortler etal.6 and Levoy etal.7 are among the first to
demonstrate the efficacy of these “light-field” techniques
(so called because they attempt to represent all of the
possible light rays in a scene, a 5D function). Both
techniques use simplifying assumptions to reduce the
dimensionality of the function and make the problem
tractable. The images can either be synthetic or of
a real-world object. A new image can be generated
for a new viewpoint by blending images from near-by
viewpoints. Both techniques can easily be implemented
on contemporary graphics hardware. However, neither
technique is able to handle large differences between im-
ages, as these techniques are intentionally oblivious of
the underlaying representation. The resulting images
can be blurry.

Layered Images. Several software techniques have
been designed decompose a scene into layers, then dis-
play the layers from viewpoints close to the original.
Mueller etal.8 allow transparent volume visualization,
but must keep track of all composited depth values, so
the system can place the layers such that no gaps appear
when viewing the layers from new viewpoints. Schau-
fler9 uses multiple layers to render fully opaque models.
Gaps are avoided by overlapping the spatial extents of
the layers such that the images overlap by several pix-
els. Layers are re-rendered just before a gap is predicted
to appear. His prediction mechanism only characterizes
error with respect to camera translations and not with
camera rotations about the model. Shade etal.10 dis-
cuss techniques to use layers of images (with color and
depth) to approximate complex objects. Images are re-
projected on a pixel-by-pixel basis and require a well-
defined depth value; this this technique is useful only
for fully opaque objects.

Impostors. A significant amount of work11–15 has
been done on the use and pre-processing of impostors
for viewing extremely large CAD datasets. Typical ap-
plications are architecture walk-throughs, either of in-
dividual buildings, or of whole cities or city districts.
Significant preprocessing effort (with user assistance) is
required to find good locations to place impostors and
to segment the model, with respect to the impostor’s
location, to near and far sets. Far geometry is rendered
and cached with that impostor. At run-time, near ge-
ometry is rendered directly and the far geometry is ap-
proximated with the cached imagery. These datasets are
static and are intended to be visualized many times, so

it is reasonable to spend a large amount of preprocessing
time to accelerate this rendering.

Multi-Resolution Data Structures

Octrees. Shekar etal.16 discuss an octree-based iso-
surface decimation approach. A seed-cell and surface
tracking technique is used to extract the initial sur-
face. The geometry is then progressively decimated and
stored at different levels of the octree. They also de-
scribe how to patch the surface between different levels
of detail without cracks or introducing more triangles.

LaMar etal.17, 18 introduce multiresolution volume
visualization and multiresolution cutting plane tech-
niques. The data volume is first decomposed by an
octree into a hierarchy of approximations. The origi-
nal data is stored at the leaf nodes, and approximations
are stored in the interior nodes. The root node contains
the coarsest approximation. To generate an approxima-
tion to render, the octree is traversed from root to leaf
nodes, adding nodes to the approximation, until error
criteria or rendering budgets are met. The approxima-
tion is then rendered. These techniques only work with
rectilinear datasets.

Adaptive Mesh Refinement (AMR). AMR19 is a
technique used in CFD (computation fluid dynamics)
simulations where interesting phenomena vary signif-
icantly in spatial extent. Compared to “regular” re-
finement approaches (i.e., octrees), AMR more closely
resembles a “soup of nested grids.” This “soup” is
refined around regions of interest and coarsened else-
where. This refinement/coarsening can occur each time
step.

Bethel etal.20 discuss the Visipult system, a dis-
tributed volume visualization system for time varying
AMR datasets. Imagery is produced at the brick-level
and is, therefore, not independent of the data decom-
position.

Weber etal. discuss iso-surface extraction21 and vol-
ume visualization22 on AMR grids, with the emphasis
of maintaining C0 continuity across boundaries of bricks
of different resolutions. For iso-surfacing, continuity re-
quires computing a dual grid of the AMR grid, comput-
ing a set of “stitching” cells, then extracting geometry
from the grid voxels and “stitching” cells. A similar
technique is used for volume visualization, but without
explicitly constructing of a dual grid of “stitching” cells.

Specialized Hardware

Numerous specialized hardware solutions have been pro-
posed to parallelize rendering of large datasets or to
drive large display walls.



There are several research projects23–25 that have ex-
plored using COTS (common off the shelf) desktop ma-
chines with specialized interconnects to improve render-
ing speeds. The first two use a M ×N cross-bar switch
to connectM PCs to N display devices. The latter con-
nects N machines in a daisy chain. The first (23) has
a nice notion of adaptivity with respect to image size
and location on the output device, but is only a software
simulation. The latter two have a very limited notion of
adaptivity with respect to image size and location. All
of these can scale if only one of render size (M), display
size (N), or data size is scaled up, but to not scale if all
are increased.

The SGI Origin SMPs (symmetric multi-processor)
systems, equipped with InfiniteReality26 rendering en-
gines, provide a general solution to parallel rendering.
While these machines have a extremely fast, general
purpose interconnect fabric, the InfiniteReality engine is
significantly out-performed by newer cards, and the Ori-
gin can hold only a a limited number of InfinteReality
engines. The PixelFlow27 is a very specialized machine
that uses a deeply pipelined compositing network con-
nected to a set of rendering engines. Data is distributed
over the rendering engines, which compute a full frame,
and ship the frame to the compositing network.

All of the hardware techniques show reasonable
speed-ups for small numbers of rendering engines, dis-
plays, and datasets, but extremely expensive and very
specialized. These systems have an explicit notion of
frames and are not tolerant of delays or stalls in render-
ing engines. Two recent commercial products, SGI’s
InfinitePerformance28 and HP’s SV6,29 use a larger
number of rendering nodes, connected by a composit-
ing network. While neither are COTS, both are more
commodity-and component-oriented than prior offer-
ings by SGI and HP.

Other Related Techniques

The Tapestry project by Simmons etal.30 renders a
scene by drawing a set of gouraud-shaded triangles
where the color and depth of the vertices are calcu-
lated by a ray-tracer. Triangles are refined if they are
physically large or have large changes in color or depth.
As the user moves, sample points (vertices) that be-
come occluded are removed from the mesh. Their tech-
nique does not handle transparent volumes as it assumes
opaque surfaces and maintains only one layer of sample
points.

The MLIC Technique

While our technique relies on a set of parallel processes
to quickly produces images, it does not require an ex-
plicit notion of frames, thus avoiding the communica-
tions loading of the compositing phase of traditional
parallel rendering techniques. Our technique also uses

impostors - cached images. However, it only caches run-
time generated imagery - there are (and can be) no pre-
processed images. The rendering engines can use any
form multiresolution representation or any kind of ren-
dering technique “under the hood” without affecting the
design or operation of any other component of the sys-
tem, as the interface is extremely simple. The image
database is a hierarchical data structure, but we use
the term “multi-layered” to differentiate it from multi-
resolution rendering or datasets. Our system requires
not rely on any special hardware, outside of a generic
parallel machine, so it does not have the cost consider-
ation of specialized hardware solutions. However, the
faster the network and processors, the better our sys-
tem will fair. Our system requires no preprocessing of
the data, nor generation of any imagery before explor-
ing a dataset. All cached imagery is imagery produced
during the exploration of the dataset.

3. THE MLIC SYSTEM

Render Engines
Work Queue

Done Queue

Display Engine

Image Database

Figure 1. The conceptual MLIC system structure.

Figure 1 shows the conceptual structure of our MLIC
system. The display engine (shown in red) displays im-
ages from the image database (shown in green). It sends
requests for images via the work queue (shown in cyan)
to the render engines (shown in blue). Upon complet-
ing an image, the render engines sends the image to the
image database, and sends an acknowledgment via the
done queue (also shown in cyan). The purple lines show
image movement, and the black lines show movement of
requests and acknowledgments.

3.1. Foundations

Understanding the design of the MLIC requires under-
standing the method and reason for decomposing the
space about the view-point. We draw a distinction be-
tween images and k-D nodes, how the image database
and the k-D tree decomposition of space are traversed,
and the operations required to maintain both.

3.1.1. View Dependent Space Decomposition

One issue with prior techniques is that densely placed
images that move with respect to the view-point com-
monly experience occlusion artifacts. Images that are
supposed to be adjacent to each other can appear to
move apart, allowing a hole to form where structures
that are supposed to be hidden are exposed, or adjacent
images move over and occlude each other, as shown in
Figure 2. While these problems have been addressed
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(a)

(b) (c) (d)
View (A) View (B)

Figure 2. Occlusion artifacts occur when images generated
to be correct from view-point A are viewed from view-point
B. In (a), view-points are red, images are green, the hole is
blue, and the occlusion is magenta. (b)-(d) shows (a) from
the view-point; the two left images have opacities of 50%
(which composite to opacity of 75%), and the right image
has an opacity of 75%.

in a very basic way for opaque structures, there are no
prior techniques to handle transparent structures.

Our solution is to decompose the space around the
view-point into a set of convex, non-occluding (with re-
spect to the view-point) polyhedra, which are then re-
fined by a k-D tree (see Samet31) to allow for adaptivity.
The k-D tree based refinement of the polyhedra is con-
strained to avoid these occlusion artifacts. Images are
placed at the nodes of the k-D tree and move with the
view-point.

The implementations discussed in this paper uses a
cube, centered about the view-point, decomposed with
six pyramids, where the tops meet at the view-point
and the bases form the six faces of the cube. Other
configurations are possible. Figure 3 shows a cube, cen-
tered around the view-point (shown as a red disk) de-
composed into six polyhedra. One polyhedra (shown in
purple) is then refined twice by a k-D tree. The tree on
the right shows the parent-child relationships between
the nodes.

0 Refinements 1 Refinement 2 Refinements

0

1

2

Refinements

(a) Spatial (b) k-D Tree

Figure 3. Example of the decomposition of a cube about
the view-point (the red circle) into six polyhedra (pyramids).
(a) shows the spatial decomposition, while (b) shows the k-D
tree representation of the decomposition. The gray pyramid
is refined twice.

The images are placed at fixed positions with respect
to the view-point, so must be re-rendered when the
view-point translates; they don’t need to be re-rendered
if the view-point’s orientation or view-frustum change.

Figure 4 shows a 2D and 3D example of a Multi-
Level Image Cache implemented using a square/cube
basis. For figure 4(a), the red disk at the center is the
view-point. The red lines show the view frustum. Black
lines show the base pyramid decomposing of the space;
blue lines show the k-D tree refinement of each pyramid;
and green lines show individual images. The images
are shown slightly smaller than their physical extent
(delimited by blue and black lines) to emphasize that
they are independent entities. Note that the different
pyramids have different levels of refinement. Figure 4(b)
shows the pyramids in different colors, and scaled down
by 10% to show the individual nodes. All pyramids have
been refined twice.

(a) 2D (b) 3D

Figure 4. Example of a MLIC implemented (a) on a square
in 2D and (b) on a cube in 3D. In both, the view-point
and view-frustum is illustrated with red pyramid. Figure
(a) shows that the different polyhedra can have different
degrees of refinement by a k-D tree. Figure (b) shows all six
polyhedra with one front/back refinement.

The distance to the outer face of a pyramid corre-
sponds to the far-clipping plane of a viewing-frustum.
Increasing and decreasing the distance to the far-
clipping plane increases and decreases the spatial extent
covered by the cache.

(b) (c)(a)

Figure 5. A k-D tree node can be refined along two orien-
tations in 2D (three in 3D). (b) is the parent; (a) shows a
left/right or top/bottom split, while (c) shows a front/back
split.

The k-D tree refinement planes are either parallel to
the cube face or pass though the origin of the cube, so
there are no occlusion artifacts (compared to Figure 2);
i.e., images abut the boundaries of a k-D node and their
end-points do not move with respect to the view-point.
This is shown in Figure 5. Figure 5(b) shows the parent
image to be refined; Figure 5(a) shows the refinement
of the parent image parent image into left and right
images. This can also be see in Figure 3(a) with the gray
to red/purple split or the red to gray/green split. Figure



5(c) shows the refinement of the into front and back
images (with respect to the view-point), also shown in
Figure 3(a) with the red to cyan/yellow split.

Images vs. k-D Nodes. One distinction that we
need to make between images and k-D nodes. While
there is a one-to-one correspondence of images in the
image database to nodes in the k-D tree decomposition
of the polyhedra about the view-point, they are concep-
tual different entities.

The k-D tree decomposes space into a set of sub-
regions; in our system, all of these regions are hexa-
hedral trapezoids. The image associated with a node
of the k-D trees contains the rendered view of the data
enclosed by that k-D node. If the view-point translates,
the k-D node is not changed, but the image may change.
Also, if data viewing parameters are changed, e.g. the
transfer function or iso-contour value, the image will
change but the k-D node will remain unchanged.

Secondly, the display engine may only display a small
portion of the images in the image database. While
there might be a higher-resolution decomposition of
some region, the display engine, for reasons of rendering
budget, or some other, may choose not to show all of
the images in the image database. At the same time,
there is a difference between the refinement that the
display engine performs to display some portion of the
image database, and the refinement of the images in the
image database itself: the former modifies what is dis-
played from, and the latter modifies what is contained
in, the image database.

Image Reuse. Figure 6 shows where images would be
reused after rotating the view-frustum. In Figure 6(a)
the first frame, a set of images in rendered. The blue
and green images are rendered for the first frame. In the
second frame (Figure (b)), as the view-frustum turns
right, an additional set of images in now visible. Those
shown in green are rendered in both frames. Images
shown in blue are not visible in the second frame, and
may be deleted (if running out of cache space). The
purple images in the second frame are now visible; they
will be placed in a work queue to be rendered if the
images are invalid. The middle row shows a rendering
of a iso-surface rendering of a Trabecular bone dataset;
the initial view-point position is shown in the left image
(c) and the view-frustum has turned to the right in the
right image (d). The bottom row shows a side view
of the MLIC refinement, with the view-point and view-
frustum pyramid shown in red. Image boundary color
corresponds to the faces of the cube. Notice that the
images outlined in cyan no longer appear in the right
image, and new images appear on the right side of the
image.

(a) (b)
2D Example

(c) (d)
From the view-point

(e) (f)
Outside, looking at view-point (red pyramid)

Figure 6. Reusing images as the view-frustum turns to the
right.

All images have the same resolution. A k-D tree node
is refined by replacing it with a left/right, top/bottom,
or front/back child, where each child node’s images con-
tains a copy of the corresponding region of the parent
node’s image. The new images are marked for future re-
rendering. Images are coarsened by removing the child
nodes and replacing the parent’s imagery by a filtered
version of the child node’s images.

Rotating the view-frustum direction does not invali-
date any of the images, but newly exposed images may
require rendering, and possibly refinement.

Figures 7 and 8 shows examples of refining the image
database and k-D tree. Figure 7 shows three levels of
refinement of the image database and k-D tree, demon-
stration left/right and top/bottom splits. The first col-
umn (Figures 7(a,d,g)) shows a single image with no re-
finement. The second column (Figures 7(b,e,h)) shows
a left/right split, and the third column (Figures 7(c,g,i))
shows a further top/bottom split. The first row (images
7(a)-(c)) show the scene from the view-point. The sec-
ond row (images 7(d)-(f)) show the scene from outside
the view-point; the red lines show the borders of the
k-D nodes and the images. The third row (images 7(g)-
(i)) show the individual images in the image database.
Notice that the sub-images of image 7(h) are stretched;
this is because they cover less space left-to-right than
top-to-bottom.

Figure 8 shows two levels of refinement of the im-
age database and k-D tree, demonstration front/back
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Figure 7. Three levels of refinement, showing left/right and
top/bottom splits of the image database and k-D nodes.
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Figure 8. Two levels of refinement, showing a top/bottom
split of the image database and k-D nodes.

split. The first column (Figures 8(a,c,e)) shows a single
image with no refinement. The second column (Fig-
ures 8(b,d,f)) shows the front/back split. The first row
(images 8(a)-(b)) show the scene from the view-point.
The second row (images 8(c)-(d)) show the scene from
outside the view-point; the red lines show the borders
of the k-D nodes and the images. The third row (im-
ages 8(e)-(f)) show the individual images in the image
database.

3.1.2. Displaying the Image Database.

The space about the view-point is decomposed by poly-
hedra, then refined by k-D trees. Displaying the image
database involves visited all the polyhedra, and travers-
ing the accompanying k-D trees, in an top-down manner
(with respect to the k-D trees) and back-to-front (with
respect to the view-point). At each k-D tree node, the
image is examined; If the image is current, and it is too
coarse, and it has children, then its children are visited.
If the image is invalid, then the refinement stops. The
image is displayed, and it is tagged to be rendered. If
the imagery is invalid, and has children, and the chil-
dren have current imagery, the image is drawn, and the
image is tagged to be merged. If the imagery is current,
and it is too coarse, it is drawn and it is tagged to be re-
fined. If the imagery is current, and it is not too coarse,
it is simply displayed.

As we noted earlier, the set of images displayed is
potentially a much smaller set than exists in the image
database. For example, if user is exploring a dataset
and examining many small features without moving the
view-point, once an image is rendered and cached, it
does not need to be re-rendered. Thus, it is possible to
display significantly more detail. However, if the user
moves quickly to another, distant view-point, all of the
images will become invalid, and it is better to use a
smaller number of images, updated more frequently, to
provide the user with proper feedback on their move-
ment through the dataset.

3.1.3. Image Database Operations.

Three kinds of operations can be applied to images in
the image database and nodes in the k-D tree: refine,
render, and merge. The image-level operations are to
create new images, either by re-rendering the data, or
by reusing some previously computed images. The k-D
tree level operations are to add or prune nodes from the
tree.

The refine operation refines a region: it adds child
nodes to the k-D tree node which represents that region,
allocates images the image database, and computes im-
ages for the child nodes by using just the image of the
parent node. Figure 3 shows this for the k-D tree: the
initial gray pyramid is refined into red and purple nodes.
A image can be split (with respect to the view-point)



into a left/right pair (Figure 3, red into cyan and yel-
low nodes), top/below pair (Figure 3, the gray into red
and purple nodes), or front/back pair (Figure 3, purple
node into light gray and green nodes). Since all images
have the same number of pixels, when a left/right or
top/bottom pair is refined, the effect is to double to
number of pixels in the direction of the split.

Images are displayed in back to front order with
blending to affect an composite operation (see,32 the
OVER operator). To break a image into a front/back
image pair, we need to set the values in the front/back
pairs such that when they are composited together, they
produce the same result as displaying the parent image.
Hence, to refine a image, we must compute an inverse to
the compositing operation. The compositing operation
is defined as follows:

K = C0 + C1(1− α0)
γ = α0 + α1(1− α0)

Where C1,2 and α1,2 are the input opacity-weighted
color and opacity values, respectively, and K and γ are
the output opacity-weighted color and opacity values,
respectively. Note that the compositing operation per-
forms the same calculation on each of the red, green,
and blue channels. K and γ correspond to the color
and opacity of the parent image, and C1,2 and α1,2 cor-
respond to the color and opacity of the child images.
We also simplify by assuming the front/back imagery is
the same, e.g., C = C1 = C2 and α = α0 = α1.

Solving for C, given K:

K = C + (1− α)C = C(2− a)

thus

C =
K

(2− α)

And solving for α, given γ:

γ = α+ α(1− α) = 1− (1− α)2

thus
α = 1−

√

1− γ

The merge operation coarsens a region by collapsing
a left/right, top/bottom, or front/back pair into their
parent node, and to create a lower-resolution image for
their parent node. This is used when the view-point has
not changed, but the region is less important (e.g., the
user has turned the view frustum away). The left/right
and top/bottom pairs are produced by low-pass filter-
ing or sub-sampling, depending on which filtering mode
used in the original rendering. Merging a front/back
pair is simply compositing the front and back pairs to-
gether.

The render operation generates an image from the
data contained within the spatial extent of a k-D node.
The render engine is given a dataset at startup, and
receives requests to render specific nodes. At the end of
rendering, the image is sent to the image database.

4. SYSTEM IMPLEMENTATION

We have implemented two versions of our MLIC sys-
tem. The first is designed to run on a SMP (Symmet-
ric Multi-processor) machine using shared memory for
all communication and the image database. The sec-
ond version is designed to run on a large distributed-
memory parallel machine using MPI (Message Passing
Interface)33 for communication.

There are several engines in these two systems, most
of which are used in both versions. The fundamental
difference between the distributed, message passing ver-
sion and the shared memory version, is the “dispatch
engine”, a module for interfacing with MPI.

All of the engines are written to be independent mod-
ules, and are not aware of running on shared or dis-
tributed memory machines. We will briefly discuss the
individual engines before discussing the shared memory
and message passing versions of MLIC.

4.1. Shared Memory

Shared memory is implemented through the Unixmmap
function call. On 32-bit machines, the maximum size of
a shared memory segment available through this mech-
anism is 2GB. We have not found this limitation to be
a problem.

4.2. Image Database

enum { TileSize = 128 };
struct Pixel { unsigned char r, g, b, a; };
typedef Pixel PxImg[TileSize][TileSize];
class KdNode
{

public:
BOOL iscopy; // TRUE when refine or merge, FALSE when generate
BOOL inqueue; // TRUE when placed in done queue until remove work
int nodeid; // Identity of this node
int parentiid; // Identity of this node’s parent node
int leftid; // Identity of this node’s left child node
int rightid; // Identity of this node’s right child node
int kd dir; // The X/Y/Z direction of the split
int depth; // The depth of this node in the tree
float pos[3]; // The view-point where the image was rendered
PxImg image; // The Image

};
KdNode ImageDb[];

Figure 9. The Image Database is a large array of KdNode
structures.

The image database is shown in figure 9, and is stored
in the shared memory segment. The first N positions
of the database are the root nodes of the N polyhedra
that decompose the space about the view-point. Since
the current implementation uses a cube, the first six po-
sition are the root nodes for the six faces of the cube. If
we were to use another basis, say an octohedron (which
would be decomposed into eight tetrahedron), the first
eight positions would correspond to the eight tetrahe-
dron.

The inqueue flag is set to true when a image is first
added to the work queue, and set to false when it is



removed from the done queue. This flag used is to pre-
vent a image from being added more than once to the
queue, but can be used to monitor progress of the sys-
tems. For example, the images can be outlined with
different colors to reflect this flag.

The iscopy flag is set to true if the image was gen-
erated through a refine or merge operation, and false
if the image was generated by a render operation. If
the display engine encounters an image with the iscopy
flag set to true, the image is displayed, but the render
engine adds the image to the work queue, requesting a
render operation on the image.

The nodeid, parentid, leftid, and rightid fields are the
identifiers (array subscripts) of the current node, it’s
parent node, and it’s child nodes. The parentid field is
zero for a root node, and leftid and rightid fields are
both zero for leaf nodes.

The pos field records the location of the view-point
when the image was rendered. This field is currently
used to test if the image is current, i.e., pos == current-
view-point, or old, i.e., pos != current-view-point. A
mechanism to prioritize updating images could use the
difference between this field and the current view-point
to weight the priority.

4.3. Work and Done Queues

The work and done queues are implemented as fixed-
sized circular queues, and are stored in the shared mem-
ory segment. Images that are tagged for one of the
maintenance operations are placed (rather, a pointer to
the image) in the work queue. When the operation is
complete, the image(s) are placed in to done queue. En-
gines that access these structures attach to this shared
memory segment.

4.4. Engines

There are three basic engines in the MLIC system: dis-
play, render, and dispatch. The first two are found in
both implementations, while the latter is only found in
the distributed, MPI version.

4.4.1. Display Engine

The display engine displays images, and maintains all
fields, except for image, in the image database. Image
operations are requested by the display engine by plac-
ing the requests into the work queue (and setting the
image’s inqueue flag). When the acknowledgments are
received, i.e., read from the done queue, the display
engine updates the iscopy and inqueue fields.

We have not separated the image database mainte-
nance functionality into a separate process, as the work
is very limited. When implementing the shared memory
version, we moved this functionality to the display en-
gine because is significantly eased the contention on the
image database structures. The display engine never

modifies images, and the render engines never modify
any but the images.

4.4.2. Render Engine

The render engine performs the image operations and
does not modify (in the SMP version) any other fields
in the image database. It reads requests from the work
queue, performs the operation, writes the image(s) to
the image database, and send an acknowledgment via
then done queue.

4.4.3. Dispatch Engine

The dispatch engine communicates via the shared mem-
ory queues with the display engine and via MPI mes-
sages with the render engines. It maintains a queue
of currently available render engines. It reads requests
from the work queue, selects and removes the first entry
in the available render engines queue, and sends the ren-
der request to that engine. When the acknowledgment
comes back, it writes the acknowledgment to the done
queue, and the image(s) to the image database, and add
the render engine back to the available render engines
queue. All of the MPI messages sent and received are
done asynchronously since the render engines can ser-
vice the requests at different rates.

4.5. Shared Memory Implementation

Render Engine
Render Engine
Render Engine

Work Queue

Done Queue

Render Engine

Display Engine

Image Database

Shared Memory

Figure 10. Shared memory architecture.

The shared memory version of MLIC uses a large,
shared memory segment that include the image
database and the work and done queues. The display
engine and render engines all attach directly to this
shared memory segment; see figure 10.

The engines are written to be processes, not threads.
There is no explicit notion of assignment of engine pro-
cesses to particular processors; it is up to the OS load-
balancing mechanism to spread the processes out as ap-
propriated.

4.6. MPI Implementation

MPI/network

Render Engine
Render Engine
Render Engine

Work Queue

Done Queue

Render Engine
Image Database

Shared Memory

Dispatch EngineDisplay Engine

Figure 11. MPI architecture.



The MPI version of MLIC also uses a large, shared
memory segment for the image database and work and
done queues. However, there is a third, “dispatch”
engine, that moves the requests and acknowledgments
from the work and done queues and the MPI message
queues; see figure 11. The display engine is the same
code for the shared memory and MPI versions of MLIC.

5. MLIC SYSTEM PERFORMANCE

We have tested the shared memory and MPI versions
of our MLIC on two different kinds of machines.

5.1. Test Platforms

5.1.1. Origin3000.

The Origin3000 is a SMP (symmetric multi-processor)
machine from SGI, with NUMA (non-uniform memory
access) shared memory. The system we used has 48
250MHz MIPS R10K processors and 40GB of memory.
The image database and communications mechanisms
reside in a large shared memory segment (implemented
via mmap), with direct access by the viewer and ren-
derer processes. The images are rendered, then copied
directly to the image database. We use the software-
based ray-casting iso-surfacing and volume visualization
engines on this platform, as there are too few graph-
ics pipes to perform a realistic scalability study using
them. We report only basic scalability studies for this
machine. This simpler implementation allowed us study
the behavior of the MLIC system and interaction of
the components without the complexity and overhead
of message-passing and synchronizing distributed pro-
cesses. We have tested only the shared memory version
of MLIC on this system.

5.1.2. Linux Cluster.

Our cluster is a set of 64 Linux boxes running the
LLNL CHAOS Linux kernel.34 Each box has two
2.5GHz Pentium Xeon processors, 2GB of memory,
a nVidia GeForce ti4600 graphics card, and a single
Quadrics35 Network Card. The interconnect fabric is
a two-level Quadrics network. The bidirectional band-
width claimed by the manufacturer is 340MB/sec. We
have tested only the MPI version of MLIC on this ma-
chine.

5.2. Dataset

5.2.1. Trabecular Bone Dataset.

We use a Trabecular bone dataset for our scalability
studies. It has the nice property of being fairly “open,”
in that uniformly covers the full extent of the volume.
Also, we can visually confirm that (1) the decomposition
of data space is correct, and (2) the current status of
individual images. The dataset is an extremely high-
resolution scan of the spongy material inside of bones;
the original 5403 dataset is 1 cm3. We use 2563 and
5123 versions of this larger volume.

5.3. Scalability Study.

We study the absolute performance and speed-up char-
acters of the MLIC system on the Origin3000 and Linux
cluster, and we show the effect of image size vs. the
number of images displayed on display performance.
We measure the sustained communications bandwidth
of the Linux cluster. We show brief results for the Ori-
gin3000 and compare some of these results against the
Linux cluster. We show the effect of image size and the
number of processors on image rendering performance
on the Linux cluster.

5.3.1. Display Rates
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Image Size

162 322 642 1282 2562

Frame Fill Frame Fill Frame Fill Frame Fill Frame Fill
Images Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate

8 1282 3 1177 9 980 31 535 67 158 79
16 1266 5 1042 16 769 48 343 86 90.9 91
32 917 7 714 22 483 60 191 96 47.2 94
64 763 12 526 33 310 77 104 104 25.0 100
128 510 16 302 38 174 87 54.0 108 12.7 101
256 251 16 154 38 90.9 91 27.2 109 6.4 102
512 124 15 76.3 38 46.5 93 13.7 109 3.2 102
1024 63.0 16 39.1 39 23.5 94 6.9 110 1.6 101

(c)

Figure 12. Display Rates as a function of total number
images displayed and image size. The window size is 5002

pixels. The limiting factor is fill-rate, at about 110 mega-
pixels per a second.

Figure 12 compares the rates for rendering 8 to 1024
images for images of size 162 to 2562 pixels on a win-
dow of 5002 pixels. The images are downloaded as tex-
tures, then mapped to a polygon for rendering. Nearest-
neighbor filter was used, and mip-mapping was turned
off. The “Frame Rate” column reports the number of
complete frames rendered per a second. The “Fill Rate”
column reports the pixel fill rate in mega-pixels per a
second, which is the number of images per a second
times the number of pixels per an image. The pixel-fill
rates is the best measure of the render capability of the
display engine. The numbers reported here, however,
reflect both download and fill rates because we want
measure the worst-case performance.

The fill rate tops out at about 110 mega-pixels per
a second. The optimum size tile seems to be 1282 pix-
els, and not 2562. The decrease at 2562 has to do with



the ratio of pixel to texel size: on contemporary graph-
ics cards pixel-fill performance decreases quickly as the
texel size becomes smaller than the pixel size. The im-
ages cover fairly small portions of the window, so a 2562

image has very poor cache locality.

Our current implementation of the display engine
does not cache the textures on the graphics card (e.g.,
it does not use OpenGL’s texture-object functionality).
They are downloaded each time that they are displayed.

5.3.2. Total Communications Bandwidth on the
Linux Cluster.
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Figure 13. Total Communications Bandwidth on the

Linux Cluster as a function of image size and number of
processors. The numbers shown are Megabytes per second.

This test measures the total effective bandwidth of
the Linux cluster for different image sizes and num-
bers of processors, given the communications behav-
ior of the MLIC system. The observed peak rate of
285MB/second, shown in figure 13, and is very close to
the manufacturer’s claimed peak rate of 340MB/second.

The test is set up to have the display engine request
the rendering of 10, 000 images. The rendering engines
receive the requests, and immediately send back an
empty image. On average, each rendering engine will
receive 10, 000/N requests, where N is the number of
processors. Each image contains 16 bytes of header and
a RGBA image, for a total size of (imagesize)2×4+16
bytes. The Megabytes per second was computed by
dividing the total number of bytes sent (total size
×10, 000), by the elapsed time from the first request
sent by the display engine to the last image received by
the display engine. This factors in all of the overhead of
MPI, and the sending of the request messages. We do
not, however, count the number of bytes in the render

request structures because the number of images per
second that could be sent back to the image database is
the only figure of interest.

P P P P P P P P
(A) (B) (E)(C) (D) (F) (G) (H)

(I) (J)

(K) (L)

Figure 14. A possible Quadrics network configuration, with
eight processors and two levels of switches.

The reason that the total capacity decreases from
32 to 50 processors is congestion. However, under-
standing this congestion requires understanding the net-
work topology of the Linux cluster. The cluster uses a
two-level Quadrics switch network (see35), with eight
switches at the highest-level, connected to eight low-
level switches (with 8 links to processors and 8 links to
high-level switches), for a total of 64 nodes (and 128
processors).

Figure 14 shows a simplified network with eight pro-
cessors (A-H, in red), two low-level switches (I & J, in
blue) and two high-level switches (K & L, in green).
Links are shown as black lines. The low-level switches
have six ports, four to processors, and two to high-level
switches. Any packet send between nodes on differ-
ent low-level switches must pass through the high-level
switches. For example, if (A) sends a packet to node
(E), it must pass through both low-level switches (I &
J) and one of the two high-level switches (K or L). How-
ever, if node (A) sends a packet to node (B), the packet
must only pass through the (low-level) switch (I).

Processors are allocated sequentially to a job. Re-
questing five processors (see Figure 14) will result in
four allocated processors, (A) to (D) on the low-level
switch (I), and the fifth, (E), on the second switch (J).
If processor (A) is running the display engine (and the
others are running render engines), then only images
from the fifth processor (E) must travel through a high-
level switch (K or L) back to the display engine on (A).
Images sent from rendering engines on processors (B)
to (D) must only pass through the low-level switch (I).
If the display engine is running on the fifth processor,
(E), and processors (A) to (D) are running render en-
gines, then all of the images sent from processors (A) to
(D) must all travel through the two high-level switches
(K) or (L). However, since there are only two high-level
switches, only two render engines can send images at a
time.

5.3.3. Comparing the Origin3000 vs. the Linux
Cluster.

This study compares the absolute render rates and
speed-ups on the Origin3000 and Linux cluster. We con-
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Figure 15. Comparing the Origin3000 vs. the Linux

cluster showing images generated per a second and speed-
ups using two Trabecular bone datasets. Image Size is 1282.

ducted only basic scalability studies on the Origin3000.

Figure 15, columns (A) and (B), shows results us-
ing software, iso-surface, ray-casting on the Origin3000,
for the 2563 and 5123 Trabecular bone datasets, re-
spectively. Figure 15, column (C), shows results of
hardware texture volume visualization using the 2563

dataset, while column (D) shows the results of software,
iso-surface ray-casting using the 5123 dataset, on the
Linux cluster. The image size for all of these runs is
1282 pixels.

Notice that for both runs with dataset size of 2563

exhibit linear scalability, while both with dataset size
of 5123 exhibit super-linear up to four processors, and
linear thereafter. We are not sure why the super-linear
behavior occurs. Since each processor in both imple-
mentations have their own, local copies of the dataset,
there should be no super-linear scaling due a distributed
dataset fitting into memory caches.

Notice that the two MPI studies use more than 32
processors, but different in the number. This variation
is due to the stability and availability of the Linux clus-
ter.

5.3.4. Scalability as a function of Image Size vs.
Number of Processors.

This test examines the sustained rate of image genera-
tion and transmission on the distributed version of the
MLIC implementation, see figure 16. The numbers re-
ported are the sustained rates over the last minute of a
four-minute run. The reason that we only measure the
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Figure 16. Scalability as a function of Image Size vs.

Number of Processors collected over the last minute of
a four-minute run. (a) shows the rate at which images are
processed per a second. (b) shows the speed-up. (c) shows
the raw numbers.

last minute is to let the system settle into normal oper-
ation. The system takes a minute or two to refine the
images to a point where we can reasonably measure of
a one-processor run versus a fifty-processor run. Under
normal operations, a user would not immediately ask
for extremely high-resolution imagery, but only ask for
a few images, which can be rendered very quickly. No-
tice that all the runs follow the same basic linear curve.
Several of the runs are super-linear up to 4 or 8 proces-
sors (rendering engines), and are linear there after. We
do not have a good explanation for this apparent super-
linear speed-up; however, it seems to be a consistent
trend here and in experiments discussed above.

Notice that the capacity of the system does not scale
with respect to the image size. This shows that the over-
head of the other operations (image read-back, commu-
nication, etc.) are large, and are the dominate cost for
small image sizes.

Also notice that the speed-up from 32 to 50 proces-
sors, while linear, has a smaller slope than the speed-up
from 4 to 32 processors. This can be explained by ob-
serving that there is a general reduction in bandwidth,
starting at 32 processors, as discussed in section 5.3.2.

5.3.5. Data Scalability

Our second test (see section 5.3.3) shows that there is
basic scalability on the size of the data. However, both
datasets are too small, in general, and our tests not
comprehensive to make any strong statements about
the scalability with respect to dataset size. These two



datasets are simply ordered by X, Y, then Z, so ex-
tremely large datasets will start to show sub-linear per-
formance due to poor memory locality.

5.4. Rendering Requirements vs. Capacity

How many processors and what network bandwidth is
necessary? Rather than just discuss the performance
of the system from the back-end forward, what are the
requirements at the front-end and does the back-end
meet them?

If we assume a window of 10242 pixels, driven by a
display engine, how many images it is reasonable to dis-
play? If we use a image size of 1282 pixels, the window
could be tiled by a 8 × 8 array of images. If, however,
we wish to avoid aliasing artifacts, we should use a 4×4
array of images, where each pixel in an image projects
to (at least) a 2 × 2 array on pixels on the window.
This means that the largest dataset that should be dis-
played on a 10242 window is 5123. Notice that we do
not say 5122 × X, where X is very large. If a dataset
can be viewed from any arbitrary direction, then the
largest dimension of the dataset must be 512 or less to
satisfy the sampling requirements. This is also not to
say that a larger dataset cannot be handled – only that
the currently displayed region of the dataset cannot be
over 5123 voxels.

If we assume that an image is generated from a cubic
subregion of the dataset, then a 5123 dataset is covered
by a 43 = 64 array of images.

If we want each image to be refreshed 30 times a
second, then the system must be able to process 30 ×
64 = 1920 images per a second. From section 5.3.4, this
can be met by only 16 processors.

If we allow aliasing artifacts, we then use 83 = 512
images, or 512× 30 = 15360 images per a second. This
cannot be met by any configuration, but if we reduce
the frame rate to 10 fps, or 5120 images a second, this
can just be met.

(a) (b)

Figure 17. Rendering slabs instead of cubes to reduce the
number of images rendered.

Another way to reduce the image requirements and
keep the higher display frame rate is to render slab in-
stead of cubes – render very deep regions, with respect
to the view-point. For example, see figure 17: instead
of rendering a 5123 dataset with sixteen 1282 pixels im-
ages that represent the sixteen 1283 blocks of the larger
dataset (Figure 17(a), simply render the same 1282 im-
age, but covering the full depth of 512 (Figure 17(b)).

5.5. Bottlenecks

There are two points of limited bandwidth. With a net-
work bandwidth capacity of 285MB/second, the max-
imum number of pixels received a second at the dis-
play engine is 72.12 megapixels/second. The render-
ing speed tops out a 110 megapixels/second, which is
significantly more than the network’s 71 Mpx/second
(= 285MB/s/RGBA). This is a fairly simplistic distil-
lation of the system bottlenecks, but it is clear from our
studies that there are aspects of the system performance
that we do not fully understand.

5.6. Observations and Synthesis

The core set of tests show that the system is scalable.
However, it is clear that there is a limit to the scalability
due to the configuration and capacity of the Quadrics
network on our Linux cluster.

For the distributed, MPI, implementation, the pri-
mary limitation is the bandwidth to the image database
from the rendering engines. The image database is
stored in the same machine as the display engine, so all
image traffic arrives over a single network connection.
There are many possible solutions; the two at the top of
our list are compressing the image stream, and using a
distributed image cache. Our first solution is compress-
ing the image stream. While compression is not scalable
in the strict sense of the word, it should reduce the traf-
fic by a reasonable percentage. The question is how keep
the extra computational effort from taking more time
than transmitting the uncompressed image itself. Care-
ful consideration will be necessary to make this efficient.
Our second solution is to use a distributed image cache.
That is, use multiple meta-display engines, each with
its own image database. Render engines send images
to one (possibly, more) of these meta-display engines.
These meta-display engines when send a partially com-
posited result to the final render engine. Several issues
arise: (1) How does one decompose the image space to
limit the number of different display engines that an im-
age must be sent to? (2) How does one decompose the
space about the viewpoint to balance the load on the
display engines. (3) How efficiently can the output of
these separate display engines be sent to a meta-display
engine; that is, how does one minimize the latency to
the final display.

The rendering engine will be reworked to allow ex-
ploring larger datasets, at which point we will conduct
a set of tests to measure scalability of MLIC with re-
spect to data. However, as discussed above, we do not
believe that there will be any problems or surprises in
accomplishing this.

6. CONCLUSIONS AND FUTURE
DIRECTIONS.

Conclusions. We have introduced our Multi-Level
Image Caching system as an approach for scaling generic



rendering on a parallel, distributed computing system.
The MLIC system maintains a set of images for inter-
active display while a set of parallel engines render new
images. Our system has successfully decoupled render-
ing rates from display rates, allowing for fairly slow im-
age generation, while providing interactive display of
imagery. The system experiences linear scaling on an
Origin3000 SMP using 32 processors and on a Linux-
cluster using 50 nodes.

Future Directions. We plan to incorporate multi-
resolution render of multi-resolution data sources into
the rendering engine, extending the work by Pascucci
etal..36 Their tests show good render rates for for
datasets up to 20483 voxels. Their system, in theory,
should allow rendering of datasets much larger than
20483.

We plan to implement a priority-based scheduler that
incorporates error- and view-driven criteria, and tem-
poral prediction and approximation for time-varying
data, extending work by Nuber etal..37, 38 We plan
to augment the system to handle multi-resolution, time-
varying datasets, and to explore the use of a distributed
image cache on distributed memory machines to ease
the bandwidth requirements to the image database
node. We plan to explore the use of compression and
distributing the image database in situations where the
system is communications-bound.

Acknowledgments

This document was prepared as an account of work spon-
sored by an agency of the United States Government. Nei-
ther the United States Government nor the University of
California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or respon-
sibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or the University of California.
The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Govern-
ment or the University of California, and shall not be used
for advertising or product endorsement purposes. This work
was performed under the auspices of the U.S. Department
of Energy by University of California, Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.

REFERENCES

1. K. Ma, J. Painter, C. Hansen, and M. Krogh, “Par-
allel volume rendering using binary-swap composit-
ing,” IEEE Computer Graphics and Applications 14(4),
pp. 59–68, 1994.

2. S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen,
and P. Shirley, “Interactive ray tracing for volume vi-
sualization,” IEEE TVCG 5, pp. 238–250, /1999.

3. J. Ahrens, C. Law, W. Schroeder, K. Martin, and
M. Papka, “A parallel approach for efficiently visual-
izing extremely large, Time-Varying Datasets,” tech.
rep., LANL, 2000.

4. Kitware. Kitware, Inc. VTK, the Visualization Toolkit,
http://www.kitware.com.

5. I. Wald, C. Benthin, P. Slusallek, T. Kollig, and
A. Keller, “Interactive Global Illumination using
Fast Ray Tracing,” in Proceedings of the 13th Eu-
rographics Workshop on Rendering (RENDERING
TECHNIQUES-02), pp. 15–24, Eurographics Associa-
tion, June 26–28 2002.

6. S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen,
“The Lumigraph,” in Siggraph 1996, pp. 43–54, Aug.
4–9 1996.

7. M. Levoy and P. Hanraham, “Light Field Rendering,”
in Siggraph 1996, pp. 31–42, Aug. 4–9 1996.

8. K. Mueller, N. Shareef, J. Huang, and R. Crawfis,
“IBR-Assisted Volume Rendering,” in Hot Topics, Vis
1999, pp. 1–4, Oct. 1999.

9. G. Schaufler, “Per-Object Image Warping with Layered
Impostors,” in Rendering Techniques 1998, pp. 145–
156, 1998.

10. J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered
depth images,” in Siggraph 1998, pp. 231–242, July
1998.

11. M. Carrozzino, F. Tecchia, C. Falcioni, and M. Berga-
masco, “Image caching algorithms and strategies for
real time rendering of complex virtual environments,”
in Afrigraph 2001, pp. 65–74, Nov. 5–7 2001.

12. B. Chen, J. Swan, II., E. Kuo, and A. Kaufman, “LOD-
Sprite Technique for Accelerated Terrain Rendering,”
in IEEE Visualization 1999, pp. 291–298, Oct. 1999.

13. G. Schaufler and W. Stürzlinger, “A three-dimensional
image cache for virtual reality,” in Eurographics 1996,
1996.

14. J. Shade, D. Lischinski, D. Salesin, T. DeRose, and
J. Snyder, “Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments,” in Siggraph
1996, pp. 75–82, Aug. 4-9 1996.

15. X. Decoret, F. Sillion, G. Schaufler, and J. Dorsey,
“Multi-layered impostors for accelerated rendering,”
Computer Graphics Forum 18, pp. 61–73, Sept. 1999.

16. R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill,
“Octree-Based Decimation of Marching Cubes Sur-
faces,” in Visualization 1996, R. Yagel and G. M. Niel-
son, eds., pp. 335–344, IEEE, (Los Alamitos), Oct. 27–
Nov. 1 1996.

17. E. LaMar, K. Joy, and B. Hamann, “Multi-Resolution
Techniques for Interactive Hardware Texturing-based
Volume Visualization,” in IEEE Visualization ’99,
pp. 355–361, 25-29 Oct. 1999.

18. E. LaMar, M. Duchaineau, B. Hamann, and K. Joy,
“Multiresolution Techniques for Interactive Texturing-
based Rendering of Arbitrarily Oriented Cutting-
Planes,” in Data Visualization 2000, pp. 105–114, 29–
30 May 2000.

19. G. Bryan, “Fluids in the Universe: Adaptive Mesh Re-
finement in Cosmology,” Computing in Science and En-
gineering 1, pp. 46–53, Mar./Apr. 1999.



20. W. Bethel, J. Shalf, S. Lau, D. Gunter, J. Lee, B. Tier-
ney, V. Beckner, J. Brandt, D. Evensky, H. Chen,
G. Pavel, J. Olsen, and B. Bodtker, “Visapult - Using
High-speed WANs and Network Data Caches to Enable
Remote and Distributed Visualization,” in Super Com-
puting 2000, pp. 118–119, Nov. 4-10 2000.

21. G. Weber, O. Kreylos, T. Ligocki, J. Shalf, H. Hagen,
B. Hamann, and K. Joy, “Extraction of Crack-free Iso-
surfaces from Adaptive Mesh Refinement Data,” in Vis-
Sym, pp. 25–34, May 28–31 2000.

22. G. Weber, O. Kreylos, T. Ligocki, J. Shalf, H. Hagen,
B. Hamann, K. Joy, and K. Ma, “High-quality Vol-
ume Rendering of Adaptive Mesh Refinement Data,”
in Proceedings of 6th International Fall Workshop Vi-
sion, Modeling, and Visualization, pp. 121–128, 522,
Nov. 21–23 2001.

23. W. Blanke, C. Bajaj, D. Fussell, and X. Zhang, “The
Metabuffer: A Scalable Multiresolution Multidisplay
3D Graphics System Using Commodity Rendering En-
gines,” Technical Report TR2000-16, University of
Texas at Austin, 2000.

24. G. Stoll, M. Eldridge, D. Patterson, A. Webb,
S. Berman, R. Levy, C. Caywood, M. Taveira, S. Hunt,
and P. Hanrahan, “Lightning-2: A High-Performance
Display Subsystem for PC Clusters,” in Siggraph 2001,
pp. 141–148, Aug. 12–17 2001.

25. S. Lombeyda, L. Moll, M. Shand, D. Breen, and
A. Heirich, “Scalable Interactive Volume Rendering Us-
ing Off-the-Shelf Components,” in IEEE PVG 2001,
pp. 115–121, 158, Oct. 2001.

26. J. Montrym, D. Baum, D. Dignam, and C. Migdal, “In-
finiteReality: A Real-Time Graphics System,” in Sig-
graph 1997, pp. 293–302, Aug. 3–8 1997.

27. J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra,
N. England, and L. Westover, “PixelFlow: The Real-
ization,” in Graphics Hardware Symposium, pp. 57–68,
1997.

28. I. SGI. InfinitePerfomance, http://www.sgi.com.
29. HP. Visualization Center SV6, http://www.hp.com.
30. M. Simmons and C. Séquin, “Tapestry: A Dynamic

Mesh-based Display Representation for Interactive
Rendering,” in Rendering Techniques 2000, pp. 329–
340, June 2000.

31. H. Samet, Applications of Spatial Data Structures,
Addison-Wesley, 1990.

32. T. Porter and T. Duff, “Compositing Digital Images,”
in Siggraph 1984, pp. 253–259, July 1984.

33. MPI. The Message Passing Interface (MPI) standard.
http://www-unix.mcs.anl.gov/mpi/.

34. LLNL. Lawrence Livermore National Laboratory,
http://www.llnl.gov/linux/chaos.

35. Quadrics. Quadrics, Inc. http://www.quadrics.com.
36. V. Pascucci and R. Frank, “Global Static Indexing for

Real-time Exploration of Very Large Regular Grids,” in
Proceedings of Super Computing CD, Nov. 10–16 2001.

37. C. Nuber, E. LaMar, K. Joy, and B. Hamann, “Error-
Based Temporal Cache and Reuse,” in Geometrical
Methods for Scientific Visualization, to appear, ?, ed.,
pp. ?–?, Springer-Verlag, 2003.

38. C. Nuber, E. LaMar, V. Pascucci, B. Hamann, and
K. Joy, “Using Graphs for Fast Error Term Approxi-
mation of Time-varying Datasets,” in Data Visualiza-
tion 2003, pp. ?–?, EUROGRAPHICS/IEEE, Springer-
Verlag, ?–? May 2003.




