
UC Davis
IDAV Publications

Title
A PC Cluster System for Simultaneous Interactive Volumetric Modeling and Visualization

Permalink
https://escholarship.org/uc/item/4p48n2w4

Authors
Murakin, Shigeru
Lum, Eric
Ma, Kwan-Liu
et al.

Publication Date
2003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4p48n2w4
https://escholarship.org/uc/item/4p48n2w4#author
https://escholarship.org
http://www.cdlib.org/

A PC Cluster System for
Simultaneous Interactive Volumetric Modeling and Visualization

Shigeru Muraki* Eric. B. Lum† Kwan-Liu Ma† Masato Ogata‡ Xuezhen Liu‡
*AIST, Japan †University of California, Davis, U. S. A. ‡Mitsubishi Precision, Co., Ltd., Japan

Abstract

A number of problems are well suited for volumetric
representation for both simulation and storage, however, the large
amount of data that needs to be processed and rendered with these
volumes makes interactive manipulation extremely challenging.

In this paper, we present a scalable PC cluster system (VG
cluster) designed specifically to enable simultaneous volumetric
computation and visualization, using compositing hardware
devices and the latest PC graphics accelerators. We demonstrate
the flexibility and performance of this system with several
different applications that include reaction-diffusion simulation,
volumetric image processing, and vector field visualization. We
also discuss how to improve the visual computing performance of
this system with some load balancing techniques.

CR Categories: I.3.2 [COMPUTER GRAPHICS] Graphics
Systems - Distributed/network graphics; I.3.6 [COMPUTER
GRAPHICS] Methodology and Techniques - Interaction
techniques; I.6.8 [SIMULATION AND MODELING] Types of
Simulation - Visual;

Keywords: Graphics hardware, PC clusters, parallel volume
rendering, reaction-diffusion patterns, visual computing, volume
graphics, volume modeling

1. Introduction

A wide variety of phenomena lend themselves naturally to
volumetric representations such as tomographic imaging or the
results of the simulation of fluids and gasses. These volumes are
typically stored as a regular 3D grid of data that can contain
hundreds of millions of voxels making the interactive processing
and rendering of these volumes a tremendous challenge.
Interactivity, however, is often required when dealing with such
problems, where it is essential to give the user the ability to run a
simulation and receive immediate visual feedback for the tuning of
simulation parameters.

e-mail: s-muraki@aist.go.jp
e-mail: {ma, lume}@cs.ucdavis.edu
e-mail: {ogata, liu}@mpcnet.co.jp

In this paper, we present a PC cluster system (VG cluster.

Fig. 1) that is capable of performing interactive, simultaneous
modeling and visualization of large-scale volumetric
problems. All calculations and communication for volume
rendering are mapped to hardware subsystems so that the main
CPU and network resources can be devoted exclusively to
volumetric processing or simulation. We will explain how this
system efficiently solves large-scale problems, and will also
discuss what new problems particular to this system occur and
how they can be avoided.

2. Previous Work

Parallel supercomputers have been widely used for large-scale
simulations, while high-end graphics workstations are well suited
for small-scale visualization [1]. In recent years there has also
been increasing use of PC clusters for graphics and visualization
calculations, where each node is equipped with graphics hardware
[2]. Most of these systems can be classified as having either
image-space (sort-first) or object-space (sort-last) parallelism [3].

Sort-last volume rendering is suitable in regular 3D grid
applications. For volume rendering, there is a commercially
available accelerator for PCs, i.e. Volume Pro 1000 [4]. More
recently there has been a trend toward the use of the less expensive
texture hardware found in commodity PC graphics cards for
volume rendering [5,6,7]. Sort-last volume rendering requires
image compositing, which blends the output image from each PC
in depth order using opacity values. Although a few efficient
image compositing algorithms have been proposed [8,9], these
techniques are not suited for simultaneous simulation and
visualization of volume data since network and/or CPU resources
are used for image compositing.

Because of the remarkable advances in PC graphics hardware,
image compositing is increasingly becoming the bottleneck of
parallel renderings, and there have been efforts in building
hardware image compositing devices [10,11,12,13,14]. The
systems of [10,11] send image data from the DVI digital output of
a graphics accelerator and do not require either frame buffer read
backs or specialized PCI interface cards. However, the
compositing order of [10,11] is fixed for Z value comparison of
polygons, and is not suitable for volume rendering in which the
compositing order changes according to the view angle. In
addition, DVI output does not include depth and alpha values, thus
requiring auxiliary RGB images to encode this information. The
systems of [12,13,14] are for volume rendering and have
functionality to handle compositing order change, though they
need frame buffer read backs and custom PCI interface cards. The
system of [13], which is the successor of [12], combined
VIA-based network interfaces and a single-stage, eight-port,
crossbar switch (ServerNet-2) to change the compositing order at
will. The latency, however, increases linearly with the number of

PCs (n), as well as requiring more complex switching as the size
of a cluster increases. The device of [14] employed a binary
compositing tree to simplify the compositing order change and
reduced the latency to the order of log (n).

3. System Design

In our system, all rendering and compositing operations have been
mapped to hardware subsystems so that traditional CPU and
network resources can be devoted exclusively to volumetric
processing or simulation. Fig. 1 illustrates our VG cluster system,
using PCs for volume processing (Render-node) and a single PC
for the display (Display-node). This system consists of two 9-PC
clusters using image-compositing hardware manufactured by
Mitsubishi Precision, Co. Ltd. [14], and another
image-compositing device connects them together. Each PC node
is a dual processor Intel Xeon 1.7 GHz system with one gigabyte
of memory and has a graphics accelerator supporting hardware 3D
texture mapping (nVIDIA GeForce 4 Ti 4600). Three different
network systems (100Base-TX, Gigabit Ethernet and Myrinet

2000) are employed for the inter PC communications, with
RedHat Linux 7.3 based SCore 5.2 [15] as the operating system.
With this configuration, we can evaluate the performance of the
system by changing the number of Render-nodes from 1 to 16.

We implemented a volume renderer for each Render-node by
using the multi-texture functionality of the GeForce 4 Ti4600. Two
3D textures, a single 32-bit texture for three normal vector
components and an attribute value and a single 8-bit texture for
indexed RGBA are employed [20]. Since the memory capacity of
the graphics card is 128 megabytes and our volume renderer uses
5 bytes for each voxel, the maximum subvolume size for each PC
is 2563 voxels.

4. Load Balancing

Our system was designed to meet the challenge of interactive
volume computation and visualization. For simplicity, we deal
with only structured grid data in this paper. The types of volume
computation we deal with in this paper are local operation, e.g.
differential operations like the Laplacian or mathematical

Figure 2 Boundary-data exchange between four 23 sub-volumes (u0, u1, u2, u3) for Laplacian approximation.

Figure 1 VG cluster system (17 nodes)

morphology operations, which are performed over a finite 3D
extent around each voxel.

For these operations we use the divide and conquer strategy. A
regular grid computation space is divided into subvolumes and
dispatched to the nodes of a PC cluster for both computation and
sort-last volume rendering. Since the volume computations have a
finite 3D extent, this strategy causes several problems. For
example, in computational fluid dynamics (CFD), the Laplacian is
often approximated by the six neighboring central differences, as
depicted in Fig. 2. In this case, the voxels along the sub-volume
boundaries need to obtain the necessary voxel values by
communicating with neighboring PCs. This procedure is referred
to as boundary-data exchange (or ghost-point exchange) and can
consume a considerable amount of time depending on the
performance of the available network.

There are several space subdivision methods for balancing

computational loads, but many are not suitable for visualization.
For simplicity we demonstrate these methods using the 2D
diagrams shown in Fig 3. Fig. 3(a) represents an object in 8×6
volume with foreground (black) voxels. Suppose that the volume
computations are performed only on the foreground voxels, we
can then fit the bounding box (orange square) by removing
unnecessary background (white) voxels. To perform the volume
computations with two CPUs, the subdivision that equalizes the
numbers of foreground voxels efficiently balances the
computational loads. If we allow only subdivisions along the
coordinate axes, there are two possible methods as shown in Figs.
3(b) and 3(c). If we use texture-base volume rendering method,
rendering performance is often fill-rate limited leading to a strong
correlation between the projected size of a volume and frame rate.
Therefore, the method shown in Fig. 3(b) yields better load
balancing for visualization applications, since the left subvolume

(a) Monitored simulation mode

(b) Pipelined visualization mode
Figure 4 Interactive visual simulation modes

(a) Original volume (b) Vertical division (c) Horisontal division

Figure 3 Adaptive subdivision method concerning on the number of foreground (black) voxels.

of Fig. 3(c) is larger than the others. However, because of the costs
of exchanging boundary data points (blue voxels), the method
shown in Fig. 3(c) gives better overall superior.

As observed in these examples, load balancing is problematic
when the volume computation and visualization are performed
simultaneously. Fig. 4(a) presents a flow diagram for
simultaneous processing and rendering, with the simulation results
shown every three iterations. The procedure is divided into seven
subprocesses: i) simulation computation at each voxel (Voxel), ii)
boundary-data exchange (Boundary), iii) quantization of voxel
values for the graphics accelerator (Quant.), iv) 3D texture
generation (3D Tex.), v) rendering (Rend.), vi) image compositing
(Compo.), and vii) drawing (Draw). Since independent threads are
used for simulation, rendering, and image compositing, the
visualization proceeds without stopping the simulation process.
Our system utilizes image compositing devices, to improve the
rendering performance by overlapping image compositing and
rendering processes as shown in Fig. 4(b). This pipelined
visualization mode reduces the display interval Tp to less than Ts
as shown Fig. 4(a). This type of pipelining is not possible with
compositing methods that make use of the graphics accelerator [7].

5. Applications

A number of applications containing large amount of data that
require simultaneous computation and visualization were mapped
to our system in order to evaluate its effectiveness.

5.1. Reaction-Diffusion simulation
Fig. 5 illustrates two 3D Turing patterns [16] generated on the
body surface of a dog model based on reaction-diffusion
equations:

2 2

2 2

,

,

u u v a u

d v b u v

u t
v t

= ∇ + + −

= ∇ + −

∂ ∂

∂ ∂




 (1)

The reaction-diffusion equations can generate a variety of patterns
with slight parameter changes and have been used by computer
graphics researchers as a 2D texture generation technique [17].
However, when this technique is extended to 3D, the amount of
computation increases significantly.The dog model is represented
as a binary volume of resolution 512×348×143, and is generated
as the body surface voxels of some thickness based on Euclidian
distance transformation. Solving Equation (1) on the body surface,
whose thickness is five voxels (1,105,026 voxels), generates the
patterns of Fig. 5. To solve Equation (1), we compute the right
hand side of the equation for every body surface voxel and
iteratively update u,v as

()
(){ 1

1
,

,
T T T

T T T

u u T

v v T

u t

v t
+

+

= + ∆

= + ∆

∂ ∂

∂ ∂
 (2)

with an appropriate ∆T until their convergence. As we mentioned
before, the system needs to perform the boundary-data exchanges
for each time-step because of the Laplacian in Eqs. (1). The
patterns of Figs. 5(a) and 5(b) appear after 10,000 and 150,000
iterations respectively at ∆T=0.005.

5.2. Volumetric Image Processing
The effective visualization of the 3D data produced by
tomographic imaging systems often requires post-processing to
remove noise and enhance features of interest. Since the type of
post-processing that must be performed is entirely dependent on
the nature of data being viewed and the visualization goals of the

user, interactivity in this type of processing is essential, since it
allows the tuning of this processing to properly bring out the
features of interest to that user.

We therefore mapped a suite of image-processing operations to
our system in a tool that allows for their interactive application.
The user can apply different operations to a volume and
immediately see how it affects the resulting visualization.

Fig. 6 illustrates an example of the result of recursively
applying grayscale morphology for the “CT-Head” data set
(256×256×113) to extract brain area. Using 16 Render-nodes, this
process was completely interactive. Since a 3×3×3 kernel is used
for this operation, the same boundary-data exchanges as in the
previous example were required after each operation. Filtering
using a kernel larger than 3×3×3 would require considerably more
time for boundary-data exchange.

5.3. Vector Field Visualization
Vector field visualization is a particularly challenging problem
since the volumes dealt with are not only large, but it is necessary
to illustrate fine changes in vector direction across these voxels.
Line integral convolution (LIC) [18] is a common technique used
in vector-field visualization and consists of blurring a noise
function along a vector field to illustrate direction. By applying
phase-shifted filter kernels, we can generate time-varying 3D LIC
volumes of 3D vector field data as an animation. Although the 3D
LIC computation itself is not fully interactive, once a time series
of 3D LIC volumes is generated, our system can visualize the
animated volumes very efficiently.

Since our system uses object space subdivision, each graphics
accelerator needs to store a small subset of this 4D data. Fig 7(a)
shows a single time step of a “4D LIC” volume (120×120×120 for
16 different time steps). In this case it is possible to store all time
steps of the 120×120×120 animated LIC volume in the aggregated
texture memory of the system for the display of interactive
animations that allow for changes in viewpoint and transfer
function.

6. Performance Analysis

To evaluate our volume graphics PC cluster system, four different
volume data sets were used (“Dog,” “CT-Head,” “4D-LIC,” and
the Visible Human Male (VHM) dataset (Fig. 7(b)). Frame rates
for rendering these volumes to various sized windows with
differing number of rendering nodes is shown in Fig. 8. Because of
the limited amount of graphics memory capacity, we only
evaluated the performances of “Dog” and “VHM” using 8 and 16
nodes. We used the standard Cartesian volume subdivision
method because of its simplicity. Changing the number of
Render-nodes from 2 to 16 linearly increased frame-rates, however,
all data set exhibited a sudden frame-rate change when the number
of nodes was small. This shows that the volume rendering
performance of the graphics accelerator severely decreases when
the size of the subvolume is large. Our divide and conquer
approach avoids this problem and efficiently brings out the
maximum performances of latest graphics accelerators. By
increasing the number of Render-nodes, our system can achieved
over 45 frames per second for a 512×512 image size by hiding the
compositing time behind the volume rendering time as shown in
Fig. 8. Although this performance is more than three times faster
than a software implementation[7] of the binary-swap compositing
[8] using Myrinet, Fig. 8 also reveals that our compositing
hardware does not always take full advantage of the full
performance of the graphics accelerators. Notice that the frame
rates of “4D LIC” with more than four nodes are almost identical

(a) a=0.1, b=1.1, d=20 (b) a=0.1, b=1.45, d=20

Figure 5 Examples of the 3D Reaction-Diffusion simulation.

(a) Before filtering (b) After filtering

Figure 6 Volumetric image processing reveals the brain region

(a) 4D_ LIC (120×120×120×16) (b) VHM (430×240×939)

Figure 7 Test Volume Data

because the small volume size at each time step makes rendering
time extremely short. There are two reasons for this loss of
performance. One is the amount of time required to read each
rendered image from the frame buffer, while the other is the time
needed to send each image across the PCI bus to the compositing
hardware. Frame buffer reads could be accelerated by using the
faster 8x AGP graphics bus, while in the future we plan to develop
a new compositing system that employs a faster bus like PCI
Express.

Next, we evaluated the visual simulation performances of our
system by using the reaction-diffusion example. Dividing the body
surface voxels of the dog model into subvolumes as in Fig. 9 and
dispatching them into the Render-nodes of our PC cluster system,
simultaneous simulation and visualization are possible. Fig. 9(a)
presents the Cartesian subdivision., and Figs. 9(b) and 9(c)
demonstrate adaptive subdivisions. There are three possible axes
for division to occur in adaptive subdivision. Fig. 9(b) (Adaptive
1) uses subdivision along the axis that minimizes the size of the
largest sub-volume to balance the size of the rendering task for
each node. The subdivision scheme also affects the performance of
boundary-data exchange. Fig. 9(c) (Adaptive 2) illustrates the use
of the axis that minimizes the number of boundary points.
Asymmetric voxel distributions, illustrated in Figs. 9(b) and 9(c),
improve computational load balancing between nodes. However,
these irregular subdivisions can simultaneously degrade volume-
rendering performance since the rendering task can become less
balanced and in some cases a node might no longer have sufficient
texture memory to fit its subvolume. For example, we were not
able to subdivide the VHM data set into 16 nodes by using these
adaptive methods.

Fig. 10(a) illustrates the computation time (seconds) of 10,000

iterations to obtain the polka-dot pattern of Fig. 5(a). When the
number of Render-nodes is less than 8, the simulation cannot be
displayed because the aggregated texture memory storage across
the system is insufficient to store the volume. During the
simulation, the value u in Eqs. (1) is visualized every 50 iterations
using a schedule similar to that shown in Fig. 4(a), permitting the
user to see the simulation as it progresses at interactive rates.
Although the visualization rate of every 50 iterations corresponds
to only 0.4 Hz (using 16 nodes), the user still can interact with the
latest volume date. Most of the simulation time was spent for
“Voxel” operation, and the subdivision method of Fig. 9(c) yielded
the best results. Changing the number of Render-nodes from 8 to
16 reduces the computation time nearly in half.

Fig. 10(b) compares the “Boundary” operation times for
different network systems. It is clear that the Adaptive 2
efficiently reduced the cost of boundary exchange. Since
this operation includes processes other than communication (e.g.
data reorganization), Gigabit Ethernet exhibited less than twice the
performance of 100Base-TX, and the difference between Myrinet
2000 and Gigabit Ethernet was even less.

Fig. 11 displays the average frame rates for the pipeline mode in
Fig. 4(b) with the volume displayed to a 512×512 window as
shown in Fig. 5(a). We compared the frame rates for differing
number of nodes (Render-nodes) using the three subdivision
methods of Fig. 9. It was our expectation that Adaptive 1 would
yield the best results since it was designed to improve the
visualization performance. Contrary to our expectations, Adaptive
2 yielded better results when used with eight Render-nodes. Since
our subdivision method is greedily adaptive, and not guaranteed
optimal, the simple decision rule may have resulted in inadequate

(a) Cartesian (b) Adaptive subdivision 1 (c) Adaptive subdivision 2

Figure 9 Space subdivision methods

0

25

50

75

100

125

150

2 4 6 8 10 12 14 16

F
ra

m
e
 R

at
e
s

0

10

20

30

40

50

2 4 6 8 10 12 14 16
0

5

10

15

20

25

2 4 6 8 10 12 14 16

CT Head

VHM

4D LIC

Dog

Number of Rend_nodes

(a) 256×256 (b) 512×512 (c) 768×768
Figure 8 Frame rates (Hz) at pipelined visualization mode (Cartesian subdivision)

subdivision. Finding the optimal solution, however, would require
checking all possible subdivisions which would be too
computationally expensive, since there are 315 (14,348,907)
combinations for 16 Render-nodes.

As shown in Fig. 11, frame rate differences between
subdivision methods were very small when we used 16
Render-nodes. Since the visualization occurs less frequently than
the simulation update, the subdivision technique to reduce the
amount of boundary-data exchange is crucial to achieve the high
performance visual simulation. The latest graphics accelerators
support floating-point computation and can perform most of the
simulation computations inside them [21]. In this situation it
would not be necessary to load the computed result from main
memory to texture memory for visualization, but it would still be
necessary to copy texture data into main memory for
boundary-data exchange. Thus, efficient boundary-data exchange
will continue to be important in future visual simulations.

7. Conclusions

The increasing performance and decreasing price of commodity

PC systems as well as graphics and communication subsystems
enable the construction of low-cost, high-performance systems to
study problems in science and engineering with computational
requirements that were previously prohibitively expensive. The
cluster system we have built takes full advantage of commodity
PC hardware to deliver high-performance computing and graphics,
and is the first one that demonstrates tightly coupled modeling and
visualization for a suite of application problems.

Most real-world simulation problems demand a large cluster
system to achieve the required accuracy or turnaround time. Our
system permits scalable, real-time volume-rendering performance
(45 frames per second for a 512×512 image size), which makes
possible interactive visualization-based modeling of large-scale
problems. For example, in addition to using the reaction-diffusion
equations for texture generation, our system can be employed to
simulate brain nerve excitement using the Hodgkin-Huxley
equations [19], and observe a visual presentation during the whole
course of the simulation. We believe that the simulation of regions
of the brain of lower animals will be possible by scaling our
system to thousands of nodes. For such a large system, one
relevant problem that remains to be investigated is optimal
object-space decomposition to facilitate both simulation and
visualization calculations.

References

[1] Kniss, J., McCormick, P., McPherson, A., Ahrens, J., Painter, J.,
Keahey, A., Hansen, C., T-Rex: Interactive Texture-Based Volume
Rendering for Large Data Sets, IEEE Computer Graphics &
Applications, Vol. 21, No. 4, 2001.

[2] Wylie, B., Pavlakos, C., Lewis, V., Moreland, K., Scalable
Rendering on PC Clusters, IEEE CG&A, Vol. 21, No. 4, pp.62-70,
2001.

[3] Molnar, S., Cox, M., Ellsworth, D., Fuchs, H., A Sorting
Classification of Parallel Rendering, IEEE CG&A, Vol.14, No.4,
pp.23-32, 1994.

[4] http://www.terarecon.com/products/volumepro_prod.html
[5] Cabral, B., Cam, N., Foran, J., Accelerated Volume Rendering and

Tomographic Reconstruction Using Texture Mapping Hardware,
Proc. ACM Symp. on Volume Visualization, 1994.

[6] Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.,
Interactive Volume Rendering on Standard PC Graphics Hardware

0

200

400

600

800

8 16 8 16 8 16

Cartecian Adaptive 1 Adaptive 2

etc.

Boundary-data
(100Base-TX)

Voxel

0

50

100

150

8 16 8 16 8 16

Caretsian Adaptive 1 Adaptive 2

100Base-TX

Gigabit Ether

Myrinet 2000

(a) Consumption times of the visual simulations (seconds) (b) Boundary-data exchange times (seconds)

Figure 10 Reaction-diffusion simulation performances for 10000 iterations.

0
5

10
15
20
25
30
35
40
45
50

2 4 6 8 10 12 14 16

Fr
am

e
R

at
es

Cartesian

Adaptive 1

Adaptive 2

Number of Rend_nodes

Figure 11 Frame rates (Hz) at pipelined visualization mode

Using Multi-Textures and Multi-Stage Rasterization, Proc. ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware 2000,
pp. 109-118, 2000.

[7] Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner,
P. D., Chromium: A Stream-Processing Framework for Interactive
Rendering on Clusters, ACM Trans. Graphics (Proc. SIGGRAPH
2002), Vol. 21, No. 3, pp.693-702, 2002.

[8] Ma, K.-L., Painter, J.S., Hansen, C.D., Krog, M.F., Parallel Volume
Rendering Using Binary-Swap Compositing, IEEE CG&A, Vol.14,
No.4, pp.59-68, 1994.

[9] Lee, T-Y, Image Composition Schemes for Sort-Last Polygon
Rendering on 2D Mesh Multicomputers, IEEE TVCG, Vol. 2, No. 3,
pp.202-217, 1996.

[10] Stoll, G., Eldrige, M., Buck, I., Patterson, D., Webb, Art., Berman, S.,
Levy, R., Caywood, C., Taveira, M., Hunt, S., Hanrahan, P.,
Lightning-2: A High-Performance Display Subsystem for PC Cluster,
Proc. SIGGRAPH 2001, pp.141-148, 2001.

[11] Zhang, X., Bajaj, C., Blanke, W., Scalable Isosurface Visualization
of Massive Datasets on COTS Clusters, Proc. IEEE 2001 Symp.
Parallel and Large-Data Visualization and Graphics, pp.51-58,
2001.

[12] Moll, L., Heirich, A., Shand, M., Sepia: scalable 3D compositing
using PCI Pamette, Proc. IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 246-155, 1999.

[13] Lombeyda, S.,Moll, L., Shand, M., Breen, D., Heirich, A., Scalable
Interactive Volume Rendering Using Off-the-Shelf Component,
Proc. IEEE Sympo. Parallel and Large-Data Visualization and
Graphics, October 2001.

[14] Muraki, S., Ogata, M., Kajihara, K., Ma, K.-L., Koshizuka, K., Liu,
X., Nagano, Y., Shimokawa, K., Next-Generation Visual
Supercomputing using PC Clusters with Volume Graphics Hardware
Devices, Proc. IEEE SC2001, 2001.

[15] http://www.pccluster.org/index.html.en
[16] Turing, A. M., The chemical basis of morphogenesis, Phil. Trans.

Roy. Soc., B237, pp. 37-72, 1952.
[17] Turk, G., Generating Textures on Arbitrary Surfaces Using

Reaction-Diffusion, Computer Graphics (Proc. SIGGRAPH 91), Vol.
25, No. 4, pp. 289-298, July 1991.

[18] Cabral, B., Leedom, L.: Imaging vector field using line integral
convolution, Computer Graphics (Proc. SIGGRAPH 93),
pp.263-270, August 1993.

[19] Beeman, B., The Book of GENESIS, 2nd Ed., Splinger- Verlag, 1997.
[20] M. Tokunaga, S. Ando, Y. Suzuki, S. Muraki, Y. Takeshima, N.

Takahashi, I. Fujishiro, Realtime Rendering of 3D Attributed LIC
Textures Using Programmable GPU, Proc. Visual Computing 2003,
pp. 213-218, June 2003. (in Japanese)

[21] W. R. Mark, R. S. Glanville, K. Akeley, M. Kilgard, Cg: A system
for programming graphics hardware in C-like language, acm Trans.
on Graphics (Proc. SIGGRAPH 2003), vol. 22, no. 3, pp. 896-907,
July 2003.

