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Composite Visual Mapping for Time Series Visualization
Ali Jabbari* Renaud Blanch† Sophie Dupuy-Chessa‡
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Figure 1: A systematic overview of possible combination of visual channels (here, using modulo transformation: v = a×M+b). Each
sub-attribute a and b is mapped onto a separate corresponding visual channel. In case of combination of the same visual channels,
those have been shown in two separate spaces.

ABSTRACT

In the information visualization reference model, visual mapping is
the most crucial step in producing a visualization from a data set.
The conventional visual mapping maps each data attribute onto a sin-
gle visual channel (e.g., the year of production of a car to the position
on the horizontal axis). In this work, we investigate composite visual
mapping: mapping single data attributes onto several visual chan-
nels, each one representing one aspect of the data attribute (e.g., its
order of magnitude, or its trend component). We first propose a table
which allows us to explore the design space of composite mappings
by offering a systematic overview of channel combinations. We
expect that using more than one visual channel for communicating a
data attribute increases the bandwidth of information presentation
by displaying separable information on different aspects of data. In
order to evaluate this point, we compare horizon graph, an existing
technique which successfully adopts a composite visual mapping,
with a selection of alternative composite mappings. We show that
some of those mappings perform as well as –and in some cases even
better than– horizon graph in terms of accuracy and speed. Our
results confirm that the benefits of composite visual mapping are not
limited to horizon graph. We thus recommend the use of composite
visual mapping when users are simultaneously interested in several
aspects of data attributes.

Index Terms: Information visualization, time series.

1 INTRODUCTION

Time series consist in data attributes changing through time, or
events occurred along with the temporal axis. This association of
data attributes’ values and states and the temporal information make
time series one of the most common forms of recorded data in
scientific (e.g., temperature variations), industrial (e.g., sensor data),
financial (e.g., currency exchange rates) and many other applications.
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Understanding temporal relationships in data allows us to learn
from the past to predict and plan for the future [2]. Our excellent
visual perception and reasoning combined with computers’ power
and human-computer interactions make visualization of time series
a valuable tool for understanding those relationships and patterns
and eventually for problem solving and decision making [1].

It has always been a challenge to view all data and information
in a limited screen space and this challenge becomes more present
with the ever increasing volumes of datasets. Often, displaying every
data variable and data record result in overplotting and visual clutter
issues. In such situations, it becomes overwhelmingly impossible to
obtain a clear view of the behaviour of data by applying the usual
visualization techniques [3]. There are basically two options for
addressing the such visual problems: (1) to artificially reduce the
number of data points by means of sampling or aggregation, and (2)
to enhance the drawing method to make it more space efficient than
standard techniques [14]. The first option introduces involuntary
information loss due to omission of data records, while the second
may lead to complex visualizations that are not familiar to users.

Introducing a new visualization paradigm is not an easy endeavor,
since it is very difficult to consider all data, visual, and task aspects
for visualizing temporal data [2]. Time itself, for example, has many
theoretical and practical aspects. For instance, it matters wether
the user interprets time as a linearly ordered set of events or as a
circularly recurring set of events. The number of data attributes to
be analyzed at once, perceptual questions, and many more data and
task related questions have to be considered as well.

In this work, we introduce a visual design space which aims to re-
duce information loss or increase the information communicated on
different aspect of data by means of improving the visual mapping.
We investigate an alternative method to visual mapping namely com-
posite visual mapping while respecting common constraints (e.g.,
visual clutter and limited number of pixels). We carry out a system-
atic overview of the entire design space of composite mappings by
means of an interactive table (Figure 1) and we highlight the existing
techniques which adopt this approach to visual mapping. We com-
pare a selection of our composite mappings with the state of the art
in order to evaluate the general effectiveness of this approach. Based
on our findings, we suggest the use of composite visual mapping for
improving space-efficient visualizations of time series.



The structure of this paper is as follows: Section 2 explains com-
posite visual mapping and its theoretical basis; Section 3 highlights
existing visualization techniques that benefit from composite visual
mapping; Section 4 presents our systematical overview of composite
visual mapping’s design space; Section 5 describes our evaluation of
a selection of the new mappings and the results; and finally Section 6
puts forward the limitations and potentials of the current work.

2 BACKGROUND

The background of this work lies in the notion of visual channels as
defined by Bertin [4]. The original channels as defined by Bertin
in Graphical Semiology consist of: position (changes in the x, y
location), size (change in length or area), shape (infinite number of
forms), value (changes from light to dark), color (changes in hue
at a fixed value), orientation (changes in alignment, angles), and
texture (variation in grain or pattern). This list was later expanded by
several publications and most notably by Mackinley [16] and Chen
et al. [13] to include more than 30 visual channels. Most of the added
channels are groupings or components of Bertin’s channels (e.g.,
size is divided into area, length and volume), while a few distinct
channels such as motion (with the introduction of animation) and
color saturation have also been added. Furthermore, Bertin defines
characteristics for visual channels which help to determine if a visual
channel is suitable for representing a given aspect of data. The five
visual channel characteristics, according to Bertin [8], are:

• Selective: If a mark change in this channel can be perceived
selectively in presence of other marks and channels,

• Associative: If marks can be grouped as a whole according to
this channel,

• Quantitative: If a numerical reading of the channel is possi-
ble,

• Order: If changes in channel are perceived as ordered,

• Length: How many separate values can be perceived using
this channel.

The choice of a proper visual channels for each data attribute is
made based on these criteria with regards to the characteristics of
the data and the tasks and goals of visual analysis.

The visualization pipeline (Figure 2) formalized by Card et al. [7]
describes how a visualization is produced from raw data. After
deriving focus data attributes in the data transformation step, they
are linked to visual structures in the visual mapping step. This step
bridges the gap between abstract data and forms perceivable by hu-
mans. Visual mapping is therefore the most critical step for ensuring
expressiveness and effectiveness of the resulting visualization.

In conventional visual mapping, each data attribute is associated
to a separate visual channel (e.g., car production of each year mapped
on the height of bars in bar charts). However, dedicating a single

Figure 2: Visualization pipeline as formalized by Card et al. [7]. The
step of visual mapping is the focus of this work.

visual channel to a data attribute may have some shortcomings. For
instance, varying order of data magnitude can impact the efficiency
of the visualization as some ranges of value for the visual channel
remains unused and smaller magnitudes can be neglected in face
of magnitudes several times larger. Other example of such limits
is the visual clutter introduced in the visualization in presence of
considerable noise in data. In this case, noisy variations of data that
are not in the main interest of the user can obscure information and
harm the accuracy of the user in reading the visual channel.

Selective attention theory asserts our ability to attend to one vi-
sual stimulus in an image (e.g., size of a symbol), while ignoring
all other stimuli (e.g., color of the symbol) [19]. Evidence from
psychological studies suggests that various combinations of visual
channels may facilitate or inhibit selective attention [18]. These
studies have further divided visual channels into separable (those
that can be concentrated on independently) and configural (those
that are highly interdependent). Although Bertin presented some
ideas about combinations of visual channels, he did little research
to empirically verify his hypotheses. Meanwhile, studies in car-
tography have shown that in dealing with map symbols composed
of two separable visual channels, people can effectively perceive
the information mapped on one visual channel while successfully
filtering the information mapped on the other channel [20].

Based on these findings in psychology and cartography, in this
work we support the idea of a form of redundant visual mapping for
time-series. We think that using several separable visual channels for
a single data attribute, namely a composite visual mapping, can im-
prove the visualization pipeline for multiple reasons. Using several
visual channels simultaneously, allows to distribute the information
load to several channels, separate different facets of data (e.g., or-
der of magnitude, high frequencies) and dedicate a full bandwidth
visual channel to each of them. We think the main advantage of this
approach is that users can focus more easily on the desired property
of data without losing the rest of information. This approach allows
user to separately analyze two or more aspects of data and perform
different analytical tasks using each channel (e.g., trend detection
by using the channel dedicated to low frequencies, and uncertainty
assessment by using the channel dedicated to the noise component).
Also, by distributing the information load on several visual channels,
each channel becomes less congested and thus, more readable.

The importance of visual mapping and choice of visual channels
has convinced us to concentrate our efforts on this step of the visual-
ization pipeline. The potentials of combinations of visual channels
promise improved visual forms that better represent data. However,
depending on the nature of data and the analytical objectives of the
user, various combinations of visual channels are imaginable. While
some combinations have already been implemented and evaluated
in visualization techniques, many others remain unexplored. This is
the reason we think composite visual mapping is an approach worth
a systematic study.

3 EXISTING COMPOSITE VISUAL MAPPINGS

Despite the large number of techniques for visualization of time
series, only few of them use composite visual mapping as their
approach to visual mapping.

3.1 Horizon Graph

Horizon graph [21] is one of the best known visualization techniques
that implements a composite visual mapping. Horizon graph reduces
space by dividing the chart into several bands and superposing them
onto each other to create a layered form. Horizon graph uses the
modulo transformation v = sgn(v) · (a×M+b) to divide each data
attribute to sign of the data attribute’s value (negative or positive),
quotient a and reminder b. Each resulting components is then re-
spectively mapped onto hue, saturation, and Y axis (Figure 3).



Figure 3: In horizon graph, the resulting quotients and reminders are
mapped onto saturation and the vertical position, respectively. The
sign of data attribute’s value is mapped on hue (red for negative, blue
for positive). Adapted from [15].

Figure 4: In Order of Magnitude Markers each data attribute is divided
into a coefficient and a exponent of the logarithmic expression. Expo-
nents are represented by colored bars and coefficients by grey ones.
The sign of each data value is mapped onto hue (red/blue). Adapted
from [5].

Figure 5: Slick Graph applies a frequency separation transformation
on each data attribute. The low frequencies are mapped onto the verti-
cal position (the smoothed line) and the high frequencies are encoded
on the brightness of the area under the line. Adapted from [11].

The increase in data density enables the visualization system to
display more data in a limited space. However, the deformations
may obscure some patterns in data and the mental unstacking of
layered charts may involve cognitive overload in some cases.

3.2 Order of Magnitude Markers

Order of Magnitude Markers (OOMM) [5] is a technique for rep-
resenting numeral data that have varying orders of magnitude. The
technique is aimed to allow the viewing of an entire data set, regard-
less of its varying order of magnitude in a limited space.

OOMM uses logarithmic transformation v = sgn(v) · (b× 10a)
to divide each data attribute into sign of the data attribute’s value
(negative or positive), coefficient b, and exponent a. Each of these
components are then respectively mapped onto hue, height of the
coefficient bar, and height of the exponent bar. The two bars are
distinguished by their color saturation (Figure 4).

Although Order of Magnitude Markers facilitates representation
of discrete numerical data in the form of bar charts, it is not suit-
able for visualization larger temporal data due to its modest space
management.

3.3 Slick Graph

Slick Graphs is a smoothing technique which aims to make time se-
ries visualizations more readable without losing information [11]. In
other smoothing techniques [6], high frequencies’ information is lost
in the process of smoothing. Slick graphs on the other hand, present
the whole information to the user while preserving the benefits of the

smoothing process. Compared to traditional smoothing techniques,
Slick Graph has shown its superiority in various comparison tasks.

Slick graphs uses a frequency separation function to divide data
attributes into high frequency and low frequency components. Low
frequency components are mapped onto the vertical position (the
line) and high frequency components are mapped onto the brightness
(color value) of the area under the line (Figure 5).

4 COMPOSITE VISUAL MAPPING TABLE

In order to obtain a systematic overview of possible composite map-
pings, we created an interactive table which allows for exploration
of different possible combinations of visual channels (Figure 1). In
all charts of this table, the horizontal axis is reserved to time. We
opted for linear representations of time because of the general famil-
iarity of visualizations that use a 2D design with the horizontal axis
corresponding to the temporal axis. However, we can integrate the
same visual mappings into circular [12] or helix [22] representations
of time series.

Viewer of the table can modify data parameters (e.g., data trans-
formation function) and visual parameters (e.g., baseline saturation
levels) in order to generate visualizations with composite mappings
for a test data set. We use this table as a tool to present and ex-
plore the whole design space of composite visual mapping and its
evaluation.

Our selection of visual channels is based upon the original list
of primary channels as defined by Bertin with some modifications
that follows. Our study focuses exclusively on abstract visualization
of time series, and thus, we abandoned glyph related channels (e.g.,
shape). We included color saturation to this list as an independent
channel missing in the original list. Dynamic visualization is not
in the scope of this study, therefore we did not include motion
(animation) in our channels. We use the following visual channels
in the rest of this study:

• Position is defined as a mark’s position along the Y axis. We
reserved the X axis for time dimension to keep visualizations
familiar to existing techniques;

• Hue is the degree to which a stimulus can be described as
similar to or different from stimuli that are described as red,
green, blue, and yellow;

• Saturation is the attribute related to chromatic intensity, rang-
ing from black and white to fully colourful;

• Value, also known as lightness, is a representation of variation
in perceived brightness of a color;

• Texture is the grain or pattern used in filling an area; and

• Size is the 2D (size) or 1D (length, thickness) of a mark (line
or point).

Visual combination of two given channels is not unique. For
instance, the texture channel used in Table 1 consists of vertical
lines with varying thicknesses and yet other textures (e.g., dots or
glyphs) can be used and affect the outcomes of the visual analysis.
Also, the visual channels can be combined in different ways [9].
Most of the combinations in Table 1 use a shared space design
for space-efficiency reasons. However, other forms (e.g., spatially
separated) can also be applied. Spatial separation is however used
when combining the same visual channels for both components (the
diagonal of the table). Two bands are then placed side by side.



(a) Line chart (b) Horizon Graph (Saturation–Position)

(c) Saturation–Texture (d) Hue–Saturation

(e) Saturation–Size (f) Size–Hue

Figure 6: Complete selection of visual mappings examined in this study displaying a dummy data set. Except line chart which was included as the
reference point, all other techniques use composite visual mapping with modulo division as the transformation function.

In the present version of the Table, we have studied two data
transformations which are related to the order of magnitude of data
attributes:

• Modulo transformation: Using modulo transformation,
v = a×M + b , each data attribute v is divided to two sub-
attributes, quotient a and remainder b. In each cell of the table,
the component a is mapped on the row’s attributed visual chan-
nel and component b is mapped on the column’s visual channel.
Horizon graph uses modulo transformation as its transforma-
tion function where the quotient and remainder issued from the
modulo transformation are mapped on saturation and position
on Y-axis, respectively; and

• Logarithmic transformation: In logarithmic transformation,
v = b×Ka (K being a constant calculated for each data set),
each data attribute v is broken down to two sub-attributes, expo-
nent a and coefficient b. The composite mapping table is thus
constructed in the same way as with modulo transformation.
In both transformations, component a communicates order of
magnitude of the data attribute and component b communi-
cates small variations of data attributes. Order of Magnitude
Markers uses logarithmic transformation as its transformation
function and is a redundant mapping of the resulting a and b
onto Y-axis position.

The range of data values and the selected M or K determine
the number possible discrete values for the sub-attribute a. When
modulo transformation is used, the number of possible quotients
of the division corresponds to number of layers or bands (as in
horizon graphs). The list of transformations can be further extended
to include other transformations (e.g., frequency separation).

From this table, we can systematically view the whole design
space of composite visual mappings that can be constructed by com-
bination of visual channels. As mentioned earlier, the presented
designs are not the only possible forms of combined visual channels
and can be modified and further enhanced. among the combinations
introduced in this table, only few have been implemented in the lit-
erature. Horizon graph is the best known design which adopts com-
posite visual mapping by means of modulo transformation. Since

earlier studies [15] have shown the effectiveness of horizon graphs
in discrimination and value estimation tasks, we have decided to
compare it with a selection of new composite mappings from our
table to evaluate the effect of such visual mappings on those tasks.

5 APPROACH AND METHODS

Our goal in the following empirical study was to report the overall
effectiveness of composite mappings before more rigorous evalua-
tions of refined selected designs. We conducted an experiment to
answer these questions:

1. How accurate are the other new visual mappings? How
accurate and fast do participants perform in a discrimination
and estimation task comparing to horizon graph?

2. How does the choice of data transformation function affect
users’ performance in those tasks? Does logarithmic trans-
formation help evaluation? What is its impact on estimation
speed?

3. What is the impact of the number of layers? We already
know that increasing the number of layers will affect accuracy
and estimation speed in horizon graphs. Is it the case with
other composite visual mappings?

We were obligated to limit the number of mappings that we test to
five (horizon graph and 4 new mappings) otherwise evaluation of all
conditions would become practically impossible. We considered two
groups of visual channels in selecting our test combinations: geo-
metric channels (i.e. position and size), and retinal channels (i.e. hue,
saturation, texture). The visual channels in the first group depend
mostly on the physical properties of the marks (i.e. their physical size
and position on the screen) and those in the second group mostly rely
on perceptual capacities of human eye (e.g., perceived color). We
tried to have a fair selection of combinations with channels from each
of these groups for each sub-attributes. Our selection consisted of the
following five composite visual mappings: Saturation-Position (hori-
zon graph), Saturation-Texture, Hue-Saturation, Saturation-Size, and
Size-Hue (Figure 6). Here and in the rest of this paper, the com-
pound name of [Visual Channel 1]-[Visual Channel 2] points to the



combination at row [Visual Channel 1] and column [Visual Channel
2] of the composite visual mapping table with sub-attributes a and b,
respectively.

Since we aimed to compare new mapping alternatives with the
existing horizon graph, we decided to reproduce its experimental
protocol [15]. Hence, participants of the experiment performed a dis-
crimination and estimation task. We explain the task in Section 5.2.

In order to evaluate the effect of transformation function, one
block of the trials (half of the total trials) had modulo transformation
as their transformation function, while the other block had logarith-
mic transformation. We divided the subjects into two groups and we
permuted the order of the blocks for the two groups to reduce the
learning effect.

In order to observe the impacts of layering, we tested 2 and 3
layers variations of each mapping. We used the same configuration
for 2 different data transformations: Modulo transformation and log-
arithmic transformation. This resulted in 5(mapping)×2(layers)×
2(trans f ormation) conditions. We generated 5 trials for each con-
dition, and thus, our experimental design consisted of a total of
5×2×2×5 = 100 trials per participant.

5.1 Chart Generation
For each chart, we generated a time series using a moving average
smoothing over a random walk. Time series’ minima and maxima
were then translated onto 0 and 100 respectively. This resulted in
having the same value range for all charts. The charts were made
on HTML 5 Canvas elements using JavaScript. All charts had a
width of 2000 pixels and a height of 160 pixels. All charts measured
233 × 19 mm on our screen. In an attempt to preserve perceptual
uniformity, we used CIELUV color space.

5.2 Experimental Procedure
We recruited 12 participants among people working at our laboratory.
The participants, 10 male and 2 female, aged between 22 and 28
and were all computer science students or degree-holders. For each
participant, the experiment begins with a tutorial on each of the
selected mappings and the global procedure of the experiment. Par-
ticipant, then, takes control of the experimental interface and starts
with filling a form with information on her age, vision and education.
After this step, the first trial appears and the main experiment begins.

Our experimental interface was entirely created with JavaScript.
In each trial, the participant is presented with a pair of two separate
charts, one positioned below the other one. The two charts of each
pair had identical visual configurations, while conveying two distinct
time series. Each chart of a pair was marked either T or B in a fixed
position through all trials (Figure 7). At each trail, the participant
was asked to report whether position T or B represents a greater
value via radio buttons marked T and B. Participants were then
asked to estimate the absolute value difference between the two
positions. They responded by using a slider without tick marks in
order to avoid anchoring effects [17]. The value selected via the
slider was shown as numerals next to the slider. Upon clicking on
“Next” button, the participant’s responses, as well as the completion
time for the trial was recorded and a new pair of charts replaced the
former ones. The correct answer for the trial was not communicated
to the participant to avoid learning effects. Once an answer was
submitted, participants could not go back to review their answers.

The experiment consisted in 100 trials divided into 10 blocks of
10 trials. The trials in each of the 10 blocks had the same mapping
and data transformation. Participants could voluntarily take breaks
between blocks and resume when they were ready. The experiment
was run in Google Chrome web browser version 59.0 on a 27-inch
Apple iMac with Retina 5K display in full brightness in a room with
constant ceiling lighting and no sunlight. During an interview at
the end of the experiment, participants shared their views on the
expriment and different visualizations with the experimenter.

Figure 7: Interface of the experiment, presenting a pair of charts
with Size-Hue mapping with three-layers modulo transformation. (top)
global view, (bottom) detail on the questions and answers.

5.3 Results

For the analysis, we removed an outlier trial which received wrong
answer from all of the participants. This should be due to the ex-
tremely small value difference between the two markers (0.05 in
a scale of 0 to 100). However, it can be a basis for further study
of equality cases in order to evaluate users’ estimation behavior.
Otherwise, none of the participants demonstrated wildly inaccurate
performance in any block of the experiment. The participants were
divided into two groups: the first group started the experiment with
modulo transformations and the second group began with logarith-
mic transformations. The two groups demonstrated very similar
accuracy levels (closely in the same intervals of confidence) which
rejects the possibility of a significant learning effect. In accordance
with other studies [10], we reported logarithmic absolute error as a
measure of estimation error.

5.3.1 Performance by Data Transformation

For both modulo and logarithmic transformations, discrimination
accuracy averaged above 90%. However, participants performed
slightly better with logarithmic transformation in the discrimination
task (Figure 8a). On the other hand, the estimation error does
not differ between the two transformations. Figure 8b shows the
distribution of logarithmic absolute error for the two transformations.

In generating the visualization pairs with logarithmic transfor-
mation, we calculated the base depending on the minimum and
maximum of each data set in order to ensure having the chosen num-
ber of “layers”. This varying base of logarithm results in varying
value ranges on those charts’ legends which may require extra men-
tal calculation to estimate value differences. Participants reported
this point in the follow up interviews: they needed more mental
calculations to deduce the value difference. Indeed, our results show
longer completion times for logarithmic transformation (Figure 8c).



(a) Average discrimination accuracy for modulo

and logarithmic transformations. Black brackets

show the 95% confidence intervals.

(b) The distribution of logarithmic absolute er-

ror for modulo and logarithmic transformations.

They share similar distribution of error. The

dashed lines represent the median, the first, and

the third quartiles.

(c) Completion time for modulo and logarithmic

transformations. Logarithmic transformation ex-

tends the completion time due to the irregular

values it introduces in chart legends.

Figure 8: Effect of data transformation function: modulo vs. logarithmic transformation.

(a) Discrimination rates for different mappings.

Sat-Tex with modulo transformation performed

the worst. The effect was not observed with loga-

rithmic transformation. Black brackets show the

95% confidence intervals

(b) Lower absolute errors for Horizon Graph,

while the difference (in units) is not significant in

this scale.

(c) Completion time for the five visual mappings:

Horizon Graph performed the slowest, while oth-

ers had the same levels of completion time.

Figure 9: Effect of visual mapping: Horizon Graph (saturation-position) vs. our selection of composite mappings.

5.3.2 Performance by Visual Mapping

Figure 9a shows discrimination accuracy rates for the five selected
visual mappings and respective rates for the two data transformations.
Sat-Tex and Hue-Sat mappings with modulo transformations had
the lowest average discrimination accuracy, while other conditions
had similar rates all above 90%. Interestingly, in the former two
mappings, charts with logarithmic transformation had much higher
discrimination accuracy rates above 90%.

Absolute estimation errors (Figure 9b) were lower for Horizon
Graph and Sat-Size mapping (at around 5 units) comparing to the
others (at around 8 units). The difference, however, does not seem
significant in a scale of 100 units.

The results show longer completion times for Horizon Graph
(Figure 9c). The other mappings exhibit lower levels that are simliar.

5.3.3 Performance by Number of Layers

The design of the experiment allowed for either two or three discrete
values for the sub attribute related to the order of magnitude (i.e.
quotient for modulo transformation, power coefficient for logarith-
mic transformation). This range of values results in two or three
levels (layers or bands) of the attributed visual channels. We limited
the number of layers to three because earlier studies [15] have shown
that higher number of layers significantly increase the error.

The results show that a three-layers design compared to a two-
layers design leads to higher discrimination accuracy rates, lower
estimation errors and similar completion times (Figure 10).

5.3.4 Performance by Real Value Differences
Figure 11 shows the effect on discrimination accuracy for the two
transformations. Modulo transformation has lower scores in very
small and very large actual differences. On the other hand, logarith-
mic transformation score retains the same levels of scores across
ranges of actual difference.

Figure 12 reports the effect on estimation error for the five map-
pings. Overall, larger actual differences between the values result in
higher estimations errors. However, horizon graph and Saturation–
Size demonstrate similar behavior and are less prone to the actual
value difference.

Figure 13 shows that the estimation time increases across the
board. Horizon Graph is the mapping the most affected by this,
while Size-Hue is the least susceptible.

5.4 Discussion
Our results confirm our first hypothesis that the accuracy and speed
of other alternative composite mappings can attain levels similar
to horizon graphs for the same discrimination and estimation task.
The discrimination accuracy rates averaged above 90% for all of
the mappings. Mean estimation errors were similar across different
mappings, while they were slightly lower for horizon graphs and
Sat-Size. This can be explained by the fact that size, and similarly
position which in case of horizon graph results in larger areas, are the
most easily perceived visual channels for most users [10]. In matters
of speed, horizon graphs showed to be the slowest mapping. During
the interviews with the participants following the experiment, some



(a) Discrimination accuracy: better correct dis-

crimination with three-layers design

(b) Logarithmic error: lower estimation error

with three-layers design

(c) Completion time: no meaningful difference

between the two- and three-layers design

Figure 10: Effect of layering: two-layers vs. three-layers design. Higher layering was excluded due to the proven lower accuracy according to
earlier studies

noted that they found the mental unfolding of the horizon graphs
to be a cognitively demanding task. Although this can partially
explain the slower performance for horizon graphs, more training
may reduce the effect. In addition, higher familiarity and confidence
of users in geometric visualizations including horizon graphs might
drive them to spend more time in hope of achieving more accurate
estimations. With current evaluation, we cannot identify the cause
of longer estimation times in horizon graphs.

Based on the interested aspects of data, many transformation
functions can be imagined for dividing data attributes. In our study
we focused on modulo and logarithmic transformations, two func-
tions that are more related to the magnitude of data and that have
already been used in the existing horizon graphs and order of magni-
tude markers. Discrimination accuracy averaged slightly higher for
logarithmic transformation. This is explained by the higher discrimi-
nation accuracy averages for very small and very large differences
(Figure 11). This effect may be explained by the fact that with
logarithmic transformation, two points both with small values are
more probable to fall into the different regions of the visual chan-
nel representing the magnitude component. The use of logarithmic
transformation did not impact the estimation error, but decreased the
speed of users. Overall, the effect of transformation function was
limited.

Consistant with previous studies [15], using more “layers” which
translates to more discrete values for the magnitude component
helps users by increasing their discrimination accuracy and lowering
estimation error without sacrificing the speed. However, as the
previous studies have shown, more than three layers can harm the
performance of the user in estimation task and thus, should be
avoided.

We found that the real difference of values between the two points
has an impact on participants’ estimation accuracy (Figure 12).

Figure 11: Effect of the real value difference on discrimination accu-
racy: Modulo vs. logarithmic transformation.

All five mappings show bigger errors with larger real value dif-
ferences, but the effect is less prominent for horizon graphs and
Size–Saturation. We observe that while in small real value differ-
ences all mappings show similar error levels, those two mappings
show lower errors at large real value differences.

Also, the increase in real value difference has negative impact
on participants’ speed, with horizon graph being more prone to this
effect in this regard (Figure 13).

Figure 12: Effect of the real value difference on logarithmic error:
comparing the five mappings.



Figure 13: Effect of the real value difference on completion time: linear
regression lines with 95% confidence intervals. Horizon graph (HG) is
the most vulnerable to the real value difference.

6 LIMITATIONS AND FUTURE WORK

In this work, we examined a selection of composite mappings among
the possible mappings that we presented in our design space table.
Our aim was to show the general benefits of our approach to visual
mapping in discrimination and estimation tasks. The empirical study
allowed us to report some observed trends, yet more comprehensive
evaluations are clearly needed for statistically significant results.
Further studies may discover advantages of particular mappings in
the appropriate context with improved configuration.

One limitation of the present study is that we only measured
the performance of users in a narrow task of discrimination and
estimation. While this is a common task in visual analysis of time
series, the effects of composite mapping on other tasks such as trend
perception and graphical perception of rates of change remain to
be investigated. Another limitation of this work is that for each
combination of visual channels, several visual designs are imagin-
able, and we only tested one particular design. Therefore, design
improvements may enhance the performance of the technique.

In our evaluation, we only tested one type of data. While
smoothed random walks are relevant data sets for discrimination
and estimation tasks, other types of data sets (e.g., noisy data) are
suitable for other analytical tasks (e.g., trend detection). Such cases
require future evaluations.

Although horizon graphs were conceived as a means to reduce
the space, earlier experiments [15] have discovered that estimation
error is higher for smaller charts. We suspect that this effect is due
to the dependence of horizon graphs on position channel and hence,
the size of the chart. As a future step of our study, we are interested
in looking at the effect of the size of the chart in estimation accuracy
with different composite mappings. We suspect that the composite
mappings which do not use position are less vulnerable to the effect
of chart size.

7 CONCLUSION

In this work we have presented new visual designs for visualization
of time series with the goal of increasing information presentation
bandwidth. Our approach to the visual mapping results in a large
design space of mappings, from which, only few have been exam-
ined in the literature. We introduced one visual design for each

combination, only to illustrate the possible design space for time
series visualization. Our experiment has shown the state-of-the-art
accuracy of a selection of these mappings in a discrimination and es-
timation task. During interviews with participants of our evaluation,
they found the new mappings straightforward to learn.

We found composite visual mapping an interesting basis for new
time series visualizations. Future refined visual designs can be
created based on this approach to visual mapping. Compactness and
vast visual variability of composite mappings make them promising
for many contexts and analytical tasks. It is of our great interest to
further the investigation of composite visual mappings in terms of
sensibility to chart size, learnability, and measures other than value
estimation accuracy.
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