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Abstract—We present ZEL, the first net-zero-energy lifelogging
system that allows office workers to collect semi-permanent
records of when, where, and what activities they perform on
company premises. ZEL achieves high accuracy lifelogging by
using heterogeneous energy harvesters with different charac-
teristics. The system is based on a 192-gram nametag-shaped
wearable device worn by each employee that is equipped with
two comparators to enable seamless switching between system
states, thereby minimizing the battery usage and enabling net-
zero-energy, semi-permanent data collection. To demonstrate
the effectiveness of our system, we conducted data collection
experiments with 11 participants in a practical environment
and found that the person-dependent (PD) model achieves an 8-
place recognition accuracy level of 87.2% (weighted F-measure)
and a static/dynamic activities recognition accuracy level of
93.1% (weighted F-measure). Additional testing confirmed the
practical long-term operability of the system and showed it could
achieve a zero-energy operation rate of 99.6% i.e., net-zero-
energy operation.

Index Terms—Energy harvesting, Net-zero-energy system,
Lifelog, Place recognition, Activity recognition

I. INTRODUCTION

Reviewing lifestyle behaviors using lifelog data is one way
to help prevent lifestyle-related diseases. For example, the
amount of daily exercise or the number of times a person
visits a smoking area can be objectively monitored, potentially
leading that person to take the first steps towards improving
his or her lifestyle. However, to be effective, a lifelog requires
three types of information: when, where, and what activity.

Global Positioning System (GPS) data and accelerometers
are often used for lifelogging. These sensors can sense fine
positioning and human activity such as resting, walking, or
traveling upstairs/downstairs [1]–[4].

In the case of lifelogging, high-resolution positioning or
activity recognition is not important, but rough log such as
classrooms or restrooms. Therefore, the above high powered
sensors not only shorten the battery lifetime, but are also over-
performance for lifelogging.

Considering the above background, our research group
proposed Energy Harvesters As A Sensor(EHAAS) [12] and
showed the vision of zero-energy lifelogging using a energy
harvester. Energy harvesting is a technology that converts
ambient energy into electrical energy and various application
[16]–[19] using energy harvesting are proposed to extend the
battery lifetime or make devices battery-less.

In a recent study, Sandhu et al. [15] showed that energy
positive, i.e. zero-energy human activity recognition, including
wireless communication is possible using solar cells as sen-
sors. However, neither research has resolved the key challenges
of implementing an energy harvesting function on a small
wearable device that could then be used for achieving long-
term lifelogging.

In order to resolve this challenge, we propose a net-zero-
energy lifelogging system named ZEL, which records when,
where, and what activities office workers engage in on the
office premises. Net-zero-energy, which is a term used in
relation to net-zero-energy buildings (ZEBs) [20] and net-zero-
energy houses (ZEHs), etc., means that the energy consumed
by the overall system is covered by energy harvesting, thus
achieving net-zero-energy consumption.

Our ZEL device, which uses two types of solar cells
and a piezoelectric device as both power source and sen-
sors to improve context recognition, realizes net-zero-energy
data collection by using a capacitor to record intermittent
operations. In addition, seamless system state switching
is achieved using a dual power switching mechanism, and
the two comparators guarantee net-zero-energy and semi-
permanent battery lifetime. The data recorded in the device
is extracted via Universal Serial Bus (USB) cable and used to
build a lifelog with a trained machine learning model. In order
to evaluate our ZEL system, we conducted data collection
experiments in various environments. The evaluation results
show that an 8-place recognition accuracy level of 87.2%
(weighted F-measure) and a static/dynamic activity binary
classification accuracy of 93.1% level (weighted F-measure)
could be achieved. In addition, practical testing showed that
99.6% zero-energy operation, i.e., net-zero-energy operation,
is possible.

The contributions of this paper are summarized as follow:
• We designed and implemented the ZEL net-zero-energy

lifelogging system that uses heterogeneous energy har-
vesters to improve context recognition.

• In order to evaluate the proposed system, we conducted
data collection experiments in different weather condi-
tions (sunny, cloudy, and rainy) and on six different dates,
during which we collected a total of 11 hours of data
for 11 participants. The evaluation results show that the
PD model achieves an 8-place recognition accuracy level
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TABLE I: Summary of work related to using energy harvesters as context recognition sensors and our proposed ZEL system.

year References Energy harvesters Recognition target Net-zero-energy
Design

Net-zero-energy
ImplimentationPlace Activity

2015 [5] Piezoelectric - Walking/running 7 7
2017 [6] Piezoelectric - 5-activity 7 7
2017 [7], [8] Piezoelectric - 5-activity 7 7
2018 [9], [10] Piezoelectric - Walking detection 7 7
2019 [11] Radio frequency 3D position - 7 7
2019 [12] Solar cell, Piezoelectric 9-place - 7 7
2019 [13] Solar cell 8-place - 7 7
2020 [14] Piezoelectric 6-transport mode - 7 7
2021 [15] Solar cell - 5-activity 3 7
2021 ZEL Solar cell, Piezoelectric 8-place Static/dynamic 3 3

(weighted F-measure) of 87.2% and a static/dynamic
activities binary classification accuracy level (weighted
F-measure) of 93.1%.

• By scheduling the system state using a dual power
switching mechanism and two comparators, our proposed
system was confirmed to work semi-permanently and
achieve a 99.6% zero-energy operation level in practical
testing.

II. RELATED WORK

This section describes the energy harvesting process and
related work on context recognition using energy harvesters.

Energy harvesting materials are attracting attention in the
field of large-scale deployment of wearable Internet of Things
(IoT) devices due to issues such as battery life and main-
tenance. There are many studies of applications [16], [17],
[19], [21], [22] using energy harvesters as a power source. For
example, WiWear [23] harvests RF energy from Wi-Fi trans-
missions and transmits accelerometer sensor data. Apart from
the approach of driving sensors by harvesting energy, there are
efforts to use energy harvesters as context recognition sensors,
taking advantage of the characteristics that harvesting energy
is directly related to the ambient environment. This field
is particularly significant because using an energy harvester
simultaneously as a sensor and a power source eliminates the
need to install other sensors that would require power sources
for context recognition, thus reducing the overall cost and
power consumption of the device. The following paragraphs
describe some studies in which energy harvesters are used as
sensors.

Khalifa et al. [6] reported on a performance evaluation
of human activity recognition using kinetic energy harvest-
ing (KEH), which is a process that converts kinetic energy
into electric power, and showed that their proposed system
consumes less power than conventional sensor-based systems.
Separately, Ma et al. [9], [10] proposed a mechanism to
use KEH as a power source as well as a sensor, in which
they consider the distortion of the harvesting energy’s sensing
signal during the energy harvesting process and proposed
a filtering algorithm to compensate for it. Then, using a
device that implements their algorithm, they demonstrated that
it could detect walking with higher accuracy than previous
systems.

Meanwhile, Lan et al. [5] used KEH to classify walk-
ing/running and provided results that showed the classification
accuracy of their system was close to that of an accelerometer.
However, that system did not have a harvesting function
and thus required an external battery. In another study, Lan
et al. proposed CapSense [7], [8], which connects KEH to
a capacitor and recognizes human activities based on its
charging rate. Then, using a wearable device with CapSense
embedded in shoes, they demonstrated that their proposed
system could achieve a 95% accuracy level in recognizing
five human activities while consuming 57% less power than
conventional systems. However, during some static activities,
the system took a long time to charge the capacitor.

Aziz et al. [11] proposed a zero-energy three-dimensional
(3D) positioning system using the power of radiofrequency
(RF) signals in which 64 antennas received radio waves
generated by a lots of beacons, thereby enabling highly
accurate 3D positioning. However, their proposal could not be
considered a net-zero-energy system because it requires signif-
icant amounts of power on the environmental side. Meanwhile,
Umetsu et al. [12] proposed an EHAAS-based room-level
place recognition system for lifelogging in which they showed
that that solar cells are the best currently available harvesters
for room-level place recognition and could achieve highly
accurate place recognition with only two types of solar cells,
while Sugata et al. [13] implemented EHAAS on a nametag-
shaped device and achieved highly accurate place recognition
under limited conditions. Sandhu et al. [14] used KEH to
recognize transportation systems such as trains, ferries, etc.,
from the received vibrations. After large-scale data collection
experiments, they reported that some transportation systems
with large vibrations, in which the power generated by the
energy harvester exceeded the power used to record sensor
signals, had achieved zero-energy consumption. In a separate
study, Sandhu et al. [15] used solar energy harvesting (SEH),
which converts solar energy into electricity, to recognize five
human activities. That system incorporates a human activity
recognition pipeline, including everything from sensor signal
acquisition to wireless communication, in a wearable device,
and the authors showed that the pipeline could be executed
with net-zero-energy consumption. However, the prototype
used for the evaluation still required an external battery
because it did not have a harvesting function.



Fig. 1: Proposed ZEL model consisting of data collection and lifelog
generation blocks.

Each of the related works discussed above is summarized in
TABLE I. Here, it should be noted that although many of those
studies aimed at reducing the power consumption of context
recognition, they required the use of external power sources
and thus were not net-zero-energy systems. For example,
some studies reported systems that achieved zero-energy in
limited environments, such as while walking, but were not
net-zero-energy because they relied on battery power at other
times. Additionally, some studies have shown that net-zero-
energy can be achieved by measuring the power consumption
of the harvesting energy and the overall system, but none
have been implemented to date. To achieve high accuracy
and reliable operations in various environments, we employed
two harvesters with different—stable and unstable—power
generation capabilities. The stable harvester guarantees a wide
operational environment, while the unstable harvester enables
highly accurate context recognition. The latter is significantly
affected by the surrounding ambient. Note that wireless
transmission is not included in our study.

III. ZEL: NET-ZERO-ENERGY LIFELOGGING SYSTEM
USING HETEROGENEOUS ENERGY HARVESTERS

Our ZEL system consists of energy harvesting, data col-
lection, and lifelog generation blocks, as shown in Fig. 1. It
might be questionable that the system has a battery despite
net-zero-energy, but it is only used for time keeping. Hence,
no need for battery maintenance or recharging. In the data
collection block, the self-powered, nametag-based wearable
device records lifelogging data intermittently. In the lifelog
generation block, the data are manually extracted from the
device, and the location and activities of the wearer are
recognized. Next, the block builds a lifelog containing three
types of information: when, where, and what activities the
wearer engaged in. In this section, we describe the operations
of each block.

Fig. 2: Transition of solar cell’s voltage when visiting various
locations (average sampling rate: 2.15 Hz).

A. Data collection block

In the following subsections, we first explain the concept
behind achieving self-powered data collection operation that
works by recording the harvesting signal, beginning with a
description of the system state scheduling using two com-
parators.

1) Recording time-series data by using harvesting energy:
Inspired by the concepts presented by Sugata et al. [13] and
Capsense [7], [8], we explore the process of using energy har-
vesting data to record time-series information. By connecting
the energy harvester to a capacitor, the microcontroller is acti-
vated intermittently. In other words, when the microcontroller
is activated, it acquires the harvester’s voltage and the capaci-
tor is recharged when the microcontroller sleeps. To recognize
locations and activities, we employ the same heterogeneous
solar cells and piezoelectric elements that previous studies
have confirmed function effectively for place and activity
determinations [12]. We combined one dye-sensitized solar
cell, which has stable power generation characteristics even
indoors, and one amorphous solar cell, which has unstable
power generation characteristics, to enable the stable operation
and high accuracy context recognition.

The location and activity data are obtained by these har-
vesters, while time time-specific data are obtained by the real-
time clock (RTC). Since RTCs need to retain time even when
the system is down, the device needs a timekeeping battery. A
de-facto standard solution adopted by many mobile devices is
integrating a small timekeeping battery into the circuit board,
and we follow this approach for our system. By recording
time data together with harvester signals, time-series data are
created and then written to non-volatile memory. By integrat-
ing all of the above steps, we could design and implement a
wearable device that can semi-permanently operate at net-zero-
energy consumption levels using its own energy harvesting
system, thus eliminating the need for battery maintenance.

Fig. 2 shows the power generated when wearing the ZEL
system device and visiting various locations. As can be seen in
the figure, the voltage from the dye-sensitized solar cell (sc1)
is generated stably at all locations while the power generation
by the amorphous solar cell (sc2) fluctuates significantly.
These solar cells enable both a stable power supply and high
recognition accuracy. The average sampling rate in our real-



Fig. 3: System state scheduling by capacitor voltage using two comparators (when the user moves from bright to dark locations).

Fig. 4: Primary ZEL system components: (A) solar cells connectors,
(B) a 47 µ F capacitor, (C) a Renesas RY7011 BLE module
with built-in RL78/G1D and ultra-low power antenna, (D)
a STMicroelectronics M95256-WMN6P SPI bus EEPROM,
(E) a Ricoh RP118N221B-TR-FE low-dropout (LDO) voltage
regulator, (F) a Texas Instruments TPS22860DBVR ultra-
low leakage current load switch, (G) XC6134C21EMR-G
and XC6134C22CMR-G comparators, (H) a piezoelectricity
connector, (I) an LED, (J) a Micro-USB connector, and (K)
a CR2032 coin battery.

world operation tests was about 2.15 Hz.
2) System state scheduling using dual power switching

mechanism and two comparators: To guarantee semi-
permanent, net-zero-energy consumption, the device must:

• be able to recover after a visit to a dark location
• be able to minimize battery use

We satisfied these requirements by adopting system state
scheduling using a dual power switching mechanism and two
comparators.

Intermittent operation via energy harvesting is usually im-
plemented by comparators with hysteresis characteristics [24],
[25]. The comparator input is connected to a capacitor, and
the output switching occurs when the capacitor is charged by
energy harvesters or discharged by system power consumption.
The system becomes active when the comparator detects
that the capacitor has been charged with sufficient power to
operate the system and enters the sleep mode to recharge
the capacitor when the detector senses power consumption.
However, in situations where the ZEL system is unable to
generate sufficient power (such as when visiting a dark place),

the power switching circuit needs the ability to switch to
battery power consumption to keep operating. Since battery
consumption needs to be minimized to achieve net-zero-
energy, we added a state scheduling mechanism that uses an
additional comparator.

One of the two comparators is for switching the operation
mode (sleep or active) of the microcontroller, while the other is
for power switching (capacitor or battery). Both comparators
have hysteresis characteristics and each has two threshold
values. The detector thresholds for the operating mode are a
positive offset of the power switching thresholds. Fig. 3 shows
the system state transition with capacitor voltage. In Fig. 3,
states 1 to 4 show the operation in a bright location, and states
5 and 6 show the operation in a dark place. Details of each
state are shown below:

1© Power is supplied from the battery, and the microcon-
troller is in sleep mode.

2© The power source switches to the capacitor.
3© The microcontroller transits to the active mode and

starts the recording. After recording, power is quickly
consumed by the light-emitting diode (LED).

4© The microcontroller transits to the sleep mode, and the
capacitor is charged if sufficient power generation is
available.

5© The microcontroller transits to the sleep mode, and
the capacitor voltage decreases if power generation is
insufficient.

6© The power source switches to the battery.
As shown in the above state scheduling, the use of two

comparators enables power supply from the capacitor even
when the capacitor is being charged, thereby minimizing
battery use.

B. Lifelog generation block
Using the time-series data recorded in the data collection

block, the lifelog generation block generates lifelog data
from three information types: when, where, and what activity.
Where and what activities are predicted using machine learn-
ing (ML). In the following section, we describe each lifelog



generation block operation (prepossessing, feature extraction,
and ML) in greater detail.

1) Prepossessing: First, since the data collected immedi-
ately after power-on may contain outliers, the first 30 seconds
are removed. Next, the sampling rate is added to the data
calculated from the timestamp acquired by the RTC because it
has also been confirmed that the rate of intermittent operation
is important for context recognition [7], [8]. In order to
apply time-related features, each data type is divided by a
fixed-length window. In our system, we selected a window
size of 1.24 seconds [4], [26], which is commonly used in
accelerometer activity recognition. The window overlap rate
is 50%.

2) Feature extraction: Since time-series data are the target
of this study, we use the following 17 features that have been
validated in previous studies [4], [26] related to activity recog-
nition using accelerometers: mean, standard deviation, median
absolute deviation, maximum, minimum, sum of squares,
entropy, interquartile range, fourth-order Burg autoregressive
model coefficients, range of minimum and maximum values,
root mean square, frequency signal skewness, frequency signal
kurtosis, maximum frequency component, frequency signal
weighted average, frequency band spectral energy, and power
spectral density.

3) Machine learning: To construct an ML model that out-
puts place labels and activity labels, we examined nine popular
machine learning algorithms (support vector machine (SVM),
artificial neural network (ANN), random forest (RF), decision
tree (DT), Light Gradient Boosting Machine (LightGBM),
logistic regression (LR), K-nearest neighbor (KNN), Naive
Bayes (NB), and extra-trees (ET)) to determine the one most
suitable for classification and embedding in the final proposed
system. Since lifelogging does not require detailed position
information, we perform majority voting for a certain number
of samples in relation to each place and activity predicted
by the model. In the next section, we will show how the
accuracy of majority voting depends on the number of samples
(1 sample: 1.24 seconds).

IV. ZEL IMPLEMENTATION

We implemented the design described in Section III on a
printed circuit board and embedded it in a nametag-shaped
wearable device based on the expectation that it would be
used by office workers.

A. Circuits and wearable device

The ZEL circuit was implemented as shown in Fig. 4,
where it can be seen that the circuit is 50 × 61 mm in size,
weighs 15 grams, and contains three solar cell connectors and
one piezoelectric connector. The nametag-shaped device into
which the circuit is embedded is 123 mm square on each
side and weighs 192 grams, so it can be comfortably worn
around the user’s neck without interfering with desk work
. Renesas RY7011 is used as the microcontroller to achieve
ultra-low power consumption performance. We use a capacitor
connected to the harvester as the main power source and a

TABLE II: ZEL energy harvesters specifications: sc1, sc2, and
piezoelectric element.

Type Dye-sensitized (sc1) Amorphous (sc2) Piezoelectric

Image

Power 252 µW 332 µW 400 mV/g
Size 97 × 57 mm 96 × 47 mm 13 × 25 mm

Weight 20.0 g 16.2 g 2.5 g

coin battery as the supplementary power source. The proposed
scheduling mechanism described in Section III minimizes the
use of a coin battery to achieve net-zero-energy. The collected
data are first stored in EEPROM IC, and then passed to the
lifelog generation block via micro USB cable.

B. ZEL energy harvesters

As described in Section III, we employ one dye-sensitized
solar cell (sc1), one amorphous solar cell (sc2), and one
piezoelectric element as energy harvesters. The specifications
of each are shown in TABLE II. Different solar cells type were
used to ensure a wide operating range and high recognition
accuracy, as described in Section II. A weight consisting of a
screw and nut is attached to the tip of the piezoelectric element,
which detects the vibrations generated by user activity. Since
we did not consider the use of the piezoelectric element as a
power source when designing the circuit, this device only uses
the power obtained from the solar cells. The two solar cells are
connected in parallel to a capacitor, and the harvesting signal
is acquired by connecting those voltages to the microcontroller
Analog/Digital (A/D) port.

C. Implementation of system state scheduling

System state scheduling is implemented using two com-
parators, an LDO voltage regulator, and a load switch, as
shown in Fig. 5. The comparator output for power switching
is connected to the LDO ENABLE (EN) pin, and the inverted
output is connected to the ON pin of the load switch to which
the coin cell battery is connected, thus realizing the dual
power switching mechanism. The comparator output used for
operation mode switching is connected to the microcontroller
interrupt pin, which operates as a trigger to switch between
the microcontroller sleep and active states. This setup enables
system state scheduling, as shown in Fig. 3.

V. EVALUATING ZEL RECOGNITION ACCURACY

In this section, we describe the data collection method and
the experimental environment used for evaluating our proposed
system, after which we evaluate the following three items:

• Scaling the number of majority samples
• Comparing previous studies and sensor-based methods
• Evaluating person-independent (PI) model versatility

Weighted F-measures were used as the evaluation metrics.



Fig. 5: Schematic of the system state scheduling component (some
ceramic capacitors are omitted for simplicity).

Fig. 6: Scenes from data collection experiment.

A. Data collection and experimental environment

This subsection reports on data collection experiments con-
ducted to evaluate our ZEL system. Here, it is important
to note that since solar cells are used as energy harvesters,
the influence of external light should always be considered.
Therefore, we conducted data collection experiments with
the assistance of 11 participants during different weather
conditions (sunny, cloudy, and rainy) on six different dates.
In order to ensure practicality, we made a list of possible
activities and places to visit in a day at our university and
designed a scenario that covers 14 locations and five activities.
The participants stay and move from one place to another.

To facilitate comparison with the conventional method,
the participants wore a ZEL device, an accelerometer, and
an illumination sensor and were asked to go about their
activities according to the experimental scenario. In order to
facilitate data acquisition, there were some locations where we
specified participant activities. For example, in the laboratory,
the participants sit and work. In summary, we collected data on
14 locations and five activities: sitting, standing, walking, and
traveling upstairs/downstairs for the 11 participants, covering
a total of 11 hours under various lighting conditions. An
overview of the data collection experiment is shown in Fig. 6.
We then manually annotated the collected data to indicate the
places and activities. Since detailed position information is
not particularly important for lifelog compilation, the rough
locations, labs 1 to 5, and the hallways of each floor were
grouped together. As for activities, since it is important to
know how much exercise they performed during the day, activ-
ities were grouped into two categories: static (sitting, standing)
and dynamic (walking, traveling upstairs/downstairs). The

collected data is downloaded via USB and the ML model is
trained and applied offline.

B. Scaling labels via majority voting

As described in Section III, we apply majority voting to the
labels output by the model. Majority voting also plays a role in
removing noise, particularly in terms of location, because tran-
sitions are often slow. Accordingly, to determine the optimal
number of majority samples, we recognize multiple numbers
of majority samples and perform evaluations with the PD
model obtained by 10-fold cross-validation (CV) for each user.
The ML algorithms with the highest average accuracy, which
are LightGBM for place recognition and SVM for activity
recognition, were used in our evaluation. The average user
accuracy levels for place and activity recognition are shown in
Fig. ?? for each sample size. Our obtained results showed that
the best accuracy was acquired for a majority sample size of 20
(13.02 seconds), which proved an approximately 2% accuracy
improvement over cases without majority voting. Therefore,
we used a sample size of 20 in the following evaluation.

C. Comparison with previous studies and sensor-based meth-
ods

In order to compare previous studies and conventional
sensor-based methods using an accelerometer (acc) and an
illuminance sensor (ill), we performed 8-place recognition
summarizing the laboratory and hallway labels and classified
static/dynamic activities. As in the previous subsection, we
used the PD model for the evaluation. To ensure a fair com-
parison, the acc upsampling rate was set at 100 Hz and applied
to the data acquired by both the ZEL and the illuminance
sensor. We used linear interpolation for up-sampling. The
results obtained by choosing the most accurate model are
shown in Fig. 7.

The models with underscores represent the data used. For
example, sc1 refers to the amount of energy harvested by
the dye-sensitized solar cell, sc2 refers to the amount of
energy harvested by the amorphous solar cell, sr means the
sampling rate, acc means the accelerometer, and ill means
the illumination sensor. Taken further, ZEL sc1 refers to a
model created only from the dye-sensitized solar cell power
harvesting data and does not include data from the piezo-
electric element. In contrast, Sensor all is a model created
using both accelerometer and illumination sensor data. Since
the ML algorithm hyperparameters were not adjusted, their
default values were used in all cases.

Looking at the results obtained, we found that for place
recognition, ZEL achieved the second-highest accuracy af-
ter the model combining the accelerometer and illuminance
sensor. This accuracy level is comparable to that of previous
studies [12], [13], thereby indicating that the ZEL device is
capable of place recognition under practical usage conditions.
In most cases, the LightGBM accuracy was the highest. This
may be due to PD model overfitting. For activity recognition,
the model using only piezoelectric element data achieved the
highest accuracy rating of 93.2%, followed by the model



Fig. 7: Accuracy of 8-place and static/dynamic activity recognition
for each method.

using the accelerometer. It was also confirmed that the model
that combined multiple harvesters achieve better accuracy in
place recognition. This is due to the fact that the harvesting
signals changed as a result of shadows created during human
activities. These comparisons show that the ZEL system can
recognize places and activities with an accuracy level close
to conventional sensors that consume significant amounts of
power.

D. Versatility evaluation

Next, we compared the PD model results with those from
the PI model obtained via leave-one-user-out (LOUO) CV to
evaluate the versatility of ZEL regarding the participants. The
confusion matrix acquired by the PD and PI models is shown
in Fig. 8. While both models show high accuracy in classi-
fying activities, the PI model shows significantly lower place
recognition accuracy. In particular, the recognition accuracy
for restrooms was about 10%. This may be due to the fact
that the number of light sources in the restroom is small and
because the amount of energy harvested varies significantly
depending on the user’s position. Other factors, such as the
participant’s height and posture, are also considered.

VI. INVESTIGATION OF PERFORMANCE LIMITS AND
ZERO-ENERGY RATE

In this section, we describe the performance limits and the
zero-energy rate of our ZEL system in practical use.

A. Performance limits

To investigate the ZEL system performance limits, we
performed 14-place and 5-activity recognition with subdivided
labels. The result of each CV is summarized in TABLE III.
The accuracy of the 14-place recognition in the PI model
was reduced by about 32% compared to 8-place recognition.
Fig. ?? shows the confusion matrix of the 14-place recognition
acquired by the PI model. The significantly lower accuracy
levels between labs and hallways indicate that ZEL is un-
suitable for recognizing fine place details within the same
room or in a similar lighting environment. As for 5-activity
recognition, there were many misrecognitions for walking and

(a) 8-place (PD) (b) static/dynamic (PD)

(c) 8-place (PI) (d) static/dynamic (PI)

Fig. 8: Confusion matrix for each recognition obtained by PD (10-
fold CV) and PI (LOUO CV) models.

TABLE III: Results of recognition accuracy for each classification
target and each PD and PI model.

Target PD PI
8-place 0.873 (LightGBM) 0.728 (LR)
static/dynamic 0.932 (LightGBM) 0.943 (LightGBM)
14-place 0.832 (LightGBM) 0.497 (LR)
5-activity 0.821 (LightGBM) 0.728 (SVM)

traveling upstairs/downstairs. This indicates that it is necessary
to reconsider the position of the piezoelectric element to obtain
more detailed activity recognition because numerous previous
studies, such as [9], report achieving high action recognition
level levels using piezoelectricity.

B. Zero-energy rate

As shown in Fig. 3, the ZEL device cannot operate and
record lifelog information in dark places because it cannot
generate sufficient power. Therefore, we investigated how
much of the system activity (i.e., zero-energy rate) occurs
when the ZEL device is used in a real environment. For
this investigation, we connect the load switch output voltage
(VOUT) of the TPS22860DBVR in Fig. 5 to the data logger
(Adafruit Feather M0 Adalogger). This pin output becomes
HIGH when the system is inoperable, i.e., not zero-energy.
Hence, by recording this output to the SD card in the data
logger, the zero-energy rate can be determined.

Next, we conducted an experiment in which one participant
wore the ZEL device with a data logger to work from
10:00 to 19:00 without any place or activity restrictions. The
experiment was conducted for a total of four days, and a total
of 36 hours of data were acquired.

To show that the proposed method minimizes the battery
usage, we compare the ZEL device output with the zero-energy
rate of a circuit version containing only one comparator
that did not minimize battery usage. In the results shown in



TABLE IV: Zero-energy rate of the system in practical use (average
of four days). The baseline method is using only one
comparator and the proposed method is using two
comparators to minimize battery usages.

Condition Zero energy Not zero-energy
time[s] rate time[s] rate

Baseline method 1500 4.63% 30899 95.37%
Proposed method (Aug 28th) 32021 98.88% 380 1.17%
Proposed method (Aug 30th) 32354 99.85% 47 0.15%
Proposed method (Sep 1st) 32342 99.77% 74 0.23%
Proposed method (Sep 6th) 32261 99.82% 59 0.18%
Proposed method (Avg) 32261 99.57% 140 0.43%

TABLE IV, it can be seen that the proposed method improved
the zero-energy rate and the average not zero-energy rate was
less than 1%. However, about 1% of the time when the battery
is in use is state 6 in Fig. 3, and the microcontroller is in sleep
mode, so the power consumption is very low. From this, it can
be said that the ZEL device achieved net-zero-energy.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed ZEL, which is a net-zero-
energy lifelogging system for office workers that employs
heterogeneous harvesters and uses their harvested energy to
record lifelogging information at zero-energy consumption
levels. To evaluate the ZEL, we conducted a large-scale
data collection experiment with 11 participants. The obtained
results show we achieved an 87.2% accuracy level for 8-
place recognition and 93.1% accuracy level for static/dynamic
recognition using the PD model. We also showed that hetero-
geneous harvesters improve recognition accuracy. In addition,
we demonstrated that ZEL could function as a net-zero-energy
system by achieving an approximate 99% zero-energy rates in
a real environment through the use of a battery minimization
mechanism.

The ZEL system has some challenges. Especially, there is
the issue of data acquisition. In this ZEL system prototype,
users need to connect a cable to the device and extract the data.
In the future, we will simplify this data acquisition process by
wireless communication.
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