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Abstract—The emergence of large scale, distributed, sensor-
enabled, machine-to-machine pervasive applications necessitates
engaging with providers of information on demand to collect the
information, of varying quality levels, to be used to infer about the
state of the world and decide actions in response. In these highly
fluid operational environments, involving information providers
and consumers of various degrees of trust and intentions, obfus-
cation of information is used to protect providers from misuses
of the information they share, while still providing benefits to
their information consumers. In this paper, we develop the initial
principles for relating to trust and obfuscation within the context
of this emerging breed of applications. We start by extending the
definitions of trust and obfuscation into this emerging application
space. We, then, highlight their role as we move from tightly-
coupled to loosely-coupled sensory-inference systems. Finally, we
present the interplay between trust and obfuscation as well as
the implications for reasoning under obfuscation.

Index Terms—trust; obfuscation; Quality of Information;
Value of Information; QoI; VoI; reasoning

I. INTRODUCTION

Even though not always at the forefront, trust is a key un-
derlying element of any transactional activity. It characterizes
the “bond” and “comfort” that the transacting parties share
amongst themselves and impacts the utility of their mutual
activities. In pervasive applications, transactional activities
will typically involve the exchange of information between
the parties. For example, the (electronic) sharing of: medical
and health-care records from patients to health-care providers
and between health-care institutions; information between
city, state, and federal law enforcement agencies; informa-
tion about population status between governmental and non-
governmental organizations (NGOs) supporting emergency re-
sponse and disaster relief efforts; “where I am” information to
(seemingly) friends via social networking media; intelligence
information, e.g., reporting people and vehicle movement
patterns at cross-roads, boarders, public venues, etc.
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In all of the above, trust has primary and secondary impli-
cations. Naturally, transacting parties are primarily concerned
with whether the information and its quality are as desired
to satisfy the needs for which information was exchanged.
However, there is a secondary concern as to whether the
exchanged information, as a whole or in part, will be utilized
only for stated or implied purposes and not for unspecified,
possibly illicit, purposes. To this end, obfuscation serves as
the mechanism for protecting against inappropriate use of
shared information. It is the process by which information
providers deliberately alter the content of the information
they provide to protect sensitive information while allowing
information consumers to still derive (hopefully) value from
the information they receive [1].

With particular interest in protecting people’s private
information, past studies in pervasive computing had focused
on privacy-preserving obfuscation mechanisms. These
include anonymization by removing or abstracting a person’s
identifiers, and hiding, generalizing, or perturbing personal
context, such as location [2], [3]. Trust, on the other hand,
had been manifested through access policies to pertinent
information [4].

However, while humans are an essential part for a significant
portion of pervasive computing applications, we see the need
to broaden the scope of trust and obfuscation to commensu-
rate with the broader spectrum of sensor- and actuator-based
machine-to-machine (M2M) and Internet of Things (IoT) [5]
applications that emerge. These emerging areas are part of the
so called smarter planet solutions [6] and include areas such as
traffic and utility grid management, supply chain monitoring,
infrastructure (and habitat) monitoring, environmental control,
inter-city agency coordination, and so forth, that rely on fast-
paced manipulation and analysis (of large amounts) of stream-
ing data gathered from heterogenous collections of sensory
sources and possibly from across administrative domains. In
these settings, one may question, for example, the privacy
implications of air-temperature measurements.

This paper is an early work in the area, setting the stage
by identifying key components and establishing terminology
for the principles upon which systems in these areas could be
designed to deal with trust, obfuscation, and their interplay.
With applications such as remote patient monitoring and
social-networking-based (participatory) sensing lying at the



intersection of human-oriented and M2M pervasive applica-
tions, revisiting trust and obfuscation does not seek to obviate
past work but rather augment it to cover the emerging smarter
applications. To this end, we have drawn great inspiration
from [7], which considers privacy issues in social network
based applications, and, hence, serves as a bridge between past
work and ours. Due to space limitations, prior art is provided
as needed throughout the paper; we note though that there
was none found aligned to the particular scope of our work.

The contributions of this paper are: (a) defining trust for
consumers and providers and obfuscation within the context of
our broader application space; (b) highlighting their role while
migrating from tightly-coupled to loosely-coupled sensory-
inference (M2M) systems; and (c) presenting the interplay
between trust and obfuscation as well as the implications for
reasoning under obfuscation. These contributions are covered
in sections II, III, and IV, respectively.

II. TRUST AND OBFUSCATION DEFINITIONS

Sensor-enabled applications collect sensory information of
their “world” (i.e., surroundings) to support reasoning and
inferences about the world’s state and evolution alternatives.
The significance and effectiveness of the inferences made and
of the ensuing actions taken depend on the quality of infor-
mation received and the value it brings to the sensing tasks
at hand. These in turn are influenced by the relationships that
are developed between information providers and consumers.
With these relationships described by levels of trust and
instantiated (at least, in part) by obfuscation, in this section we
define these concepts for our purpose. We start, though, with
the definitions of quality and value of information from [8].

A. Quality and value of information (QoI and VoI)

To accommodate the many uses of information (and infor-
mation products), we have adopted a layered view of quality
and value. Quality captures usage-independent “facts” about
the information, and any usage dependencies are captured by
its value. Specifically:

QoI: Quality of information represents the body of tangible
evidences available (i.e., the innate information proper-
ties) that can be used to make judgments about the fitness-
of-use and utility of information products.

VoI: Value of information represents an outcome of such
judgement, which is an assessment of the utility of an in-
formation product when used in a specific usage context.

Both quality and value are described by collections of at-
tributes (e.g., information metadata) such as accuracy, latency,
and provenance for QoI, or relevance, timeliness, presenta-
tion/usability for VoI [8]. Trust relates to provenance while
obfuscation impacts accuracy.

B. The consumer’s view of trust

Trust can be broadly defined as the willingness of one party
(trustor) to rely on the actions of another party (trustee) [9].
Trust is critical in the large-scale, open distributed pervasive
systems considered here, enabling interactions between

parties in uncertain and constantly changing environments.
In our case, these parties are the information consumers and
providers. For a consumer, we define:

Trust (consumer’s view): Represents the information con-
sumer’s degree of belief that she can rely on the infor-
mation that a provider has provided her with.

Later we will define a provider’s view of trust as well. Note
that the term “belief” in the definition will allow us in the
future to exploit both probabilistic and logic-based techniques
for further investigating the pertinent systems [10].

If a consumer has a low level of trust in the information
it receives, ensuing inferences may be considered unreliable.
Trust in a body of available information, and hence the value
that it may bring to bear on a process, is influenced by many
factors. These include how this information has been collected,
i.e., its provenance, or even how different pieces of information
within this body relate and corroborate with each other,
i.e., consistency in the body of information. For example, if
information derived from a third-party provider conflicts with
established facts and knowledge, the level of trust, and subse-
quently the value ascribed to such information, would be low.

Naturally, trust in information providers affects the trust
in the information they produce. If a provider historically
behaved in an untrustworthy manner, e.g., due to the consistent
use of inappropriate, faulty, ill-calibrated, etc., sensory devices
to gather information, any subsequent information provided
may also be considered untrustworthy. Hence, the trust in
providers and the information they produce are both highly
correlated and build upon each other. However, this may not
always be true, as in the case where information is provided by
a third-party information aggregator and provenance linking it
to its true source is incomplete or even missing.

We also consider a refinement of the above trust definition
that focuses on the facts (or, meta-information) about the
provided information. Under this refinement, trust relates to
the confidence in the meta-information that is known about the
information. In this case, a provider and the information they
provide are trusted as long as its provider is forthcomingly
truthful in disclosing this meta-information. For example,
a provider may state that the accuracy of the information
provided about the location of an object has an error variance
σ2
e . Should this error be (statistically and verifiably) true, the

provider may be trusted in the sense that whatever he provides
is what he says he does. Whether the value of σ2

e is satisfactory
to the consumer should be secondary with regard to trust.

The above refined definition may lend to a seeming paradox
that all knowingly incompetent providers (e.g., these who
claim very high σ2

e ) can be fully trusted. Of course, in this
case, as long as such providers are indeed truthful, under
any reasonably well-designed provider selection mechanism,
the possibility that the consumer will engage with them,
and hence the impact the information they provide will have
in any inferences the consumers made, will diminish to 0.
The latter is similar to the reaction expected by a consumer
when dealing with highly untrusted providers as well. Hence,



one may draw parallels between trust and competence
and not necessarily distinguish the two. We do, however,
see benefits in this refined definition of trust, because it
semantically separates trust and competence, with the former
implying intention by the provider, and the latter capturing
his information gathering abilities.

C. Obfuscation and the provider’s view of trust
The dictionary definition of obfuscation is “to make so

confused or opaque as to be difficult to perceive or understand”
(http://www.thefreedictionary.com). Common examples of ob-
fuscation include GPS where, by adding noise and not sharing
certain data, only lower accuracy location and time informa-
tion is made available to civilian users, and satellite imagery
where resolution is reduced when sharing with specific users.

In computing, obfuscation refers to the process of hiding
certain data, while maintaining the usefulness of the data for
an intended purpose, i.e., allowing authorized inferences [1].
It has been typically used to prevent leakage of personal
information that would allow to, for example, identifying
a patient in medical records, or identifying a person and/or
creating permanent records of a person’s exact location
presences when a mobile or online services providers sell
location-based information to third parties, e.g., for marketing
purposes. Techniques like anonymization and location
abstraction are typically used for this purpose [1], [3].

However, when opportunities abound for collecting and
fusing information derived from multiple providers (including
physical sensors, knowledge bases, human observers, experts,
etc.), sufficient knowledge may be gained and inferences be
drawn that could go beyond the (seeming) intentions that
caused the gathering of information in the first place, such
as, when GPS tracking information or credit card purchase
patterns are correlated. Thus, for a provider, we define:
Trust (provider’s view): Represents the information

provider’s degree of belief that a consumer will use her
information only for expressed purposes.

Note that restricting the scope of this definition to personal
privacy leads to the inference violation problem in [7].

The above definition leads to a broader purpose for
obfuscation to protect not only the primary piece of
information provided, e.g., an object’s id or location,
but derivative meta-information such as the location and
capabilities of one’s sensor resources. For example, consider
the implication of the latter in military coalition operations
involving coalition members that develop ad hoc and transient
alliance relationships, where one partner, owning high-quality
sensory resources, shares localization information with
another partner that has a need for but it is reluctant to share
the location and nature of its sensors. This use scenario
illustrates situations of collaboration across administrative
domains involving parties of varying and evolving trust levels.
Therefore, we define obfuscation more broadly as follows:
Obfuscation: Is the process that an information provider uses

to influence consciously the set of inferences that could
be made involving the information she provides.
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Fig. 1. An illustrative example of influencing inferences that can be made
(red: original; green: after obfuscation).

This definition centers on the ultimate intention of a
provider to affect deliberately the range of uses that the
information it provides may have. Fig. 1 provides a conceptual
visual for this case. It depicts two probability mass function
assignments over a collection of (all) possible inferences;
the collection is shown to be ordered for convenience. The
(reddish) cylindrical-bar assignment represents the probability
Pr(I|X) that inference I could have been made if access
to the original information X were possible. On the other
hand, the (green) conical-bar assignment corresponds to the
probability Pr(I|Z) that inference I could be made when
using the obfuscated information Z. In this example, both
assignments exhibit a single peak at inference #5, which we
assume also coincides with the “permissible” inference for the
information provided based on the needs expressed by the con-
sumer. However the available information may give credence
to additional inferences as well. For the obfuscated information
Z in Fig. 1, these inferences oppose others that X would have
given credence to, which may represent an inference area that
relates to sensitive information that needs protection.

Obfuscation may occur in-situ where, for example, a
provider deliberately calibrates his sensor resources to collect
data in a particular way, introducing uncertainties, e.g., bias
and error, in addition to normal sensing errors that are beyond
the provider’s control. Obfuscation may also occur after-
the-fact by post-processing a piece of information prior to
delivering it to consumers. The boundaries between in-situ
and post-processing are not crisply defined. For example, GPS
systems for civil uses can be viewed either way depending
on where within the GPS hardware one may consider the
boundary between the military and civilian portions of it lie.

In the next section we consider sensor-enabled inference
systems that experience operational conditions where trust and
obfuscation plays a role.

III. TIGHTLY- AND LOOSELY-COUPLED
SENSORY-INFERENCE SYSTEMS

Sensing systems are deployed to enhance one’s capability
to observe the world and estimate its state in portions of it of
interest. Fusing the sensory observations collected produces
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Fig. 2. A traditional (tightly-coupled) sensor-enabled inference system.

information about the presence (detection), type (classifica-
tion), location, amplitude, motion (tracking), etc., of objects,
conditions, and events in the physical world. Processing and
correlating pertinent information builds situation awareness
about the world that aids effective decision making and
action taking. These simple steps of inference making are
applicable from the rudimentary on-off operation of an energy-
saving home thermostat to elaborate supply chain management
systems that track and schedule various inventories to attain
just-in-time delivery of goods at minimum cost.

Fig. 2 shows at a high-level the structure of a typical sensor-
driven “inference” system that makes inferences regarding
the world under observation. Specifically, suppose that a
decision maker (a software agent representing the consumer)
is interested in knowing the state X of certain objects in
the (observable) world, e.g., the number, type, and velocity
of vehicles crossing an intersection. The information about
X would allow the consumer to make inferences (and take
actions) about a potential situation of concern Y that may
occur, such as the possibility of congestion or accident in a
particular road segment, the potential presence of persons of
interests in a particular area, or estimate latent quantities.

To support the consumer’s information needs, sensing
resources are deployed (myOwnProvider(s)) trained on X .
Based on the sensing capabilities and operational conditions
of the deployed resources, the consumer experiences X
via the sensing transformation Z = h(X), e.g., Z could
be a noisy variant of X , where the noise relates to the
sensing process. With the sensory evidences Z at his
disposal, the consumer can make inferences regarding the
likelihood of various situations Y . In particular, the sensory
evidences will steer the consumer towards a set of inferences
Y = inf{Z} = inf{h(X)} ⊂ Y noted in the figure as
reachable inferences. The set Y represents the set of all
possible inferences that the entire range of information Z that
can be provided could influence. The (yellow) boxes with the
∆’s in them will be explained in the next subsection.

What the figure shows is typical of a well-planned deploy-
ment of what we refer to as tightly-coupled sensory system
where sensors and the applications that use their observations
are deployed in coordinated manner. In a sense, applications
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Fig. 3. A loosely-coupled, collaborative end-to-end inference system.

“own” the sensors feeding them with observations and, hence,
have reasonable knowledge of (or, access to) the capabilities
and deficiencies of deployed sensing resources. Thus, assess-
ing the QoI and VoI of the sensory information they receive
is, to a reasonable degree, within the applications’s control.

However the rigid structure of the tightly-coupled systems
in Fig. 2 is being challenged by the new sensing opportunities
and information collection paradigms that are emerging. These
are exemplified by trends in multi-agency, heterogenous
Internet of Things (IoT) deployments [5], crowd- and
participatory-sensing applications [11], the aforementioned
smarter planet applications [6], ad-hoc collaborative operations
in multi-domain environments such as emergency response or
coalition military operations, and so forth. In these cases, the
tight, single-administrative-domain association between the
information providers and consumers is challenged by more
open loosely-coupled and, hence, more unpredictable, col-
laborative multi-administrative (and even no-administrative)
domain associations. Knowledge about the capabilities of
the sensing resources may be unavailable and unknown, or
policy-constrained, and certainly of questionable reliance. In
addition, shared data may be deliberately manipulated for
various reasons. As a result, it becomes harder, in this case, for
consumers to assess the QoI received and, hence, the ensuing
VoI and risks associated when acting on any inferences made.

Undoubtedly, in such cases, the policies that affect the
sharing of information and the underlying trust between the
parties involved will play a key role in mediating effective
collaboration. Fig. 3 shows an example of a collaborative,
end-to-end inference system where information providers and
consumers associate only as necessary. Like in Fig. 2, we use
X to represent the state of the observable world, Z the way
the consumer experiences it, and Y the inferences that could
be made. In contrast to Fig. 2, the consumer may bind to third-
party providers (someProvider(s)) who could obfuscate their
information prior to releasing it, as noted by the transformation
Z = g(Ψ) in the figure.

As will be discussed further in section IV, information
obfuscation policies could be affected by the level of trust
that the provider has to different consumers. Likewise, the
inferences made by the consumer can too be effected by



the “reverse” level of trust that consumers have towards the
providers. Note that trust relationships between parties are
built based on both direct and indirect, context-dependent
associations between them. As a result, trust relationships
may not necessarily be symmetric. Direct associations apply
to “personal” experiences dealing with the provider, while
indirect associations apply to knowledge gained through third-
party opinions, recommendations, ratings, their direct associ-
ations, etc., typically associated with reputation.

A. Quality distortions
With regard to the (yellow) boxes in figures 2 and 3,

measuring the QoI and the ensuing VoI that results from using
the observations Z will relate to the “distance:”

∆mes = ‖X − Z‖ = ‖X − h(X)‖, (1)

where the ‖·‖ represents an applicable operator. For example,
if X and Z are n-dimensional vectors of real numbers, ‖·‖
could be the Euclidean distance between them, or, in the case
of random vectors, the trace of their covariance matrix, or
the information loss metric in estimating the distribution of a
parameter [2], etc. The subscript “mes” stands for “measure-
ment” to underscore that the measurement process is the key
contributor to any QoI degradation experienced at this stage.

In the simple case, where Z is a noise-additive version of
X , this distance may represent the error process, e.g., the
error variance. However, in the general case, this distance
needs to reflect not only, say, the accuracy but of the entire
mismatch (i.e., distortion) that exists between the world state
X and the collection of observations Z available about it, i.e.,
accommodate various QoI attributes, such as accuracy, latency,
and spatiotemporal context [8].

In the absence of any additional deliberate distortion, in
Fig. 2, we also equate ∆mes to the end-to-end (e2e) distortion
∆e2e, where, for simplicity, we ignore any impact that the
communication networks will have on QoI, be it due to QoS
degradation, e.g., increased latency, in-network information
processing, e.g., data aggregation, etc. However, in Fig. 3 the
information provider may further obfuscate the observations
it has collected prior to sending them to consumers. In this
case, the end-to-end distortion will need to account for the
obfuscation as:

∆e2e = ∆obf ◦∆mes = ‖X − Z‖ = ‖X − g(h(X))‖. (2)

Note that for ad-hoc information-exchanging collaborations,
the consumer may know neither the obfuscation g(·) nor
the measurement h(·) processes, which at best can only be
estimated from historical data including both direct (personal)
and indirect (third party, social network) experiences.

The impact of QoI degradation to inferences, i.e., the quality
of inference QoInf, made relates to the distance:

∆inf = ‖inf{X} − inf{Z}‖ = ‖inf{X} − inf{g(h(X))}‖,
(3)

which determines by how much the set of reachable inferences
has been affected from using the observations Z instead of the
original state X . We refer to this as the interference distortion.

Computing the QoInf is highly application specific and
depends on the type of inferences desired, whether they are
coarse-grained, e.g., categorical with few broad categories or
classes of interest such as a four-wheeled vs. two-wheeled
vehicle, or fine-grained, such as localization to within a few
meters or even centimeters. Considering QoInf in the determi-
nation of human activity (referred to as context) for a tightly-
coupled patient monitoring system (a categorical case), [12]
introduces a QoInf metric based on the probability of error in
estimating a context state.

QoInf is outside the scope of this paper, but we believe that
intuitively appealing inference metrics based on probability of
error [12] will not be sufficient and will need to be augmented
when broader sets of applications and inference classes over
loosely-coupled systems are considered. For example, [13]
looks into relevance metrics for comparing pieces of desired
and provided sensory information based on QoI and spatial
context. Such metrics could form the conceptual basis for
information distortion in the context of this research.

Next we highlight the interplay between trust and obfusca-
tion and discuss reasoning under obfuscation.

IV. TRUST AND OBFUSCATION

A. Relationship between obfuscation and trust

Effective information sharing policies need to accommodate
the dynamic nature of the relationships that consumers and
providers develop in the loosely-coupled, pervasive applica-
tions and systems in consideration. They need to be responsive
to the context underlying them and, in particular, obfuscation
must be customizable to the various consumer, consumer
classes and contexts a provider relates with. As a result, the
level of obfuscation will commensurate with the level of trust
that the provider has developed with each particular consumer.

Lowering the obfuscation level may allow a consumer a
spectrum of inferences that include sensitive ones, such as
those in the sensitive (red) area on the right-side of figure 1.
This will increase the risk from sharing the information if the
consumer uses it in a way not as (or, in addition to what) was
originally expressed. However, if the provider has a sufficient
level of trust that the consumer will not act with ill-intent,
he may be willing to forgo high levels of obfuscation. Of
course, the impact from breaching the provider’s trust could
be severe. Therefore, the provider needs to always assess the
risks from secondary uses of information prior to deciding the
levels of obfuscation it should apply. Should a breach in trust
be discovered by the provider, the consumer should expect
that, at a minimum, the trust to the consumer will decline.

On the other hand, excessive levels of obfuscation may sig-
nificantly impact the value that the consumer could derive from
using the information shared. This could then negatively effect
the level of trust the provider may enjoy with the consumer.
Furthermore, certain types of obfuscation, such as deliberately
adding bias or noise in the data to hinder certain inferences,
can blur the boundary between the obfuscation and deception.
Deception is defined as the act of misleading another through



intentionally false statements or fraudulent actions. If obfus-
cation done by a party is considered as a sort of deception
by the other, the trust of the consumer towards the provider
will be significantly damaged, leading to a cycle of decreasing
trust, increasing obfuscation, and, ultimately, decreased infor-
mation sharing. Avoiding this cycle is therefore an important
consideration for information providers and consumers who
depend on long-term interactions with others. An interesting
use study about personal deceptive practices, i.e., lying, driven
by a Bayesian-network model can be found in [14].

B. Reasoning under obfuscation

Obfuscation allows two parties to communicate and cooper-
ate by sharing information while still protecting their interests.
Hence, obfuscation is a key to establishing dynamic collabora-
tive relationships between parties in loosely-coupled settings.

Obfuscation in GPS systems for civilian uses is public
knowledge, as is the quality of localization attained; higher
accuracies are possible with costly specialized hardware that
the general public cannot (or is unwilling) to afford. In general,
we see the following levels of knowledge about obfuscation:
(a) complete knowledge, where both the type of obfuscation
and its extent are known; (b) partial knowledge, where only
the type of obfuscation is known; (c) awareness, where only
that information is obfuscated is known; and (d) ignorance,
where there is no knowledge regarding obfuscation.

Any knowledge about obfuscation could suggest remedial
actions when dealing with the obfuscated information.
Explicit information sharing “contracts” could be a source
of such knowledge. Specifically, providers and consumers
may establish QoI-level agreements (QLAs), expressing
QoI expectations for received information, as implied by the
discussion on the four viewpoints of QoI in [15]. These QLAs
may be further enriched by expressing the intended uses of
information, i.e., the inferences to be made with the informa-
tion provided. This, in turn, allows the provider to determine
appropriate levels of obfuscation a priori based on the stated
inferences and the trust the provider has toward the consumer.

At the same time, such agreements can form the basis for
consumers to hold providers accountable as well. For example,
if the agreement is to provide localization information, say, for
moving trucks to within 20 meters of their true location, then
the consumer may assess its trust to the provider based on
whether he honors the agreement or not, as discussed with
regard to the refined definition of trust in section II-B.

V. CONCLUSIONS

In the emerging world of multi-domain, M2M, smart
pervasive applications, the trust between information
producing and consuming parties with ephemeral associations
will play key role. In such environments, obfuscating
information will allow consumers to derive information of
usable value from providers that have secrets to protect.
The deployment and operational paradigms in these dynamic
environments deviate significantly from the deployment and
operational assumptions under which trust and obfuscation

has been traditionally considered, and, hence, need to be
reconsidered. In this initial work, we have sought to lay the
foundations for such a reconsideration.

We started by extending the definitions trust(s) and
obfuscation to these emerging areas, highlighted applicable
functional models of loosely-coupled systems, and discussed
the interplay between these in reasoning with obfuscated
information. Next we plan to enrich our foundations with
concrete examples, take a deeper look at the interplay
between trust and obfuscation and reasoning with obfuscated
information, and consider dynamic obfuscation policies and
the fusion of obfuscated information from various providers.
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