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Abstract—Routers are often faced with a variety of users
throughout a day. These users make requests, of which the
most bandwidth consuming and least delay tolerant are requests
for internet content including videos. To save cost of uploading
all requested data, routers use content-aware caching schemes.
The efficiency of such schemes is dependent on router ability
to predict the use of the currently requested content. At the
same time, research on social networks indicates that users with
social ties have the correlated mobility patterns and the correlated
interests in requested content. In this paper, we demonstrate
that these correlations between mobility and between interests
can be used to improve efficiency of content-based caching
network caching by taking into account social ties between users
visiting a router. To this end, we built a model for router visits
and user demand based on social relations. We then used this
model to create a content-aware caching scheme called “SOcial
Content Caching Scheme (SOCCS)”. Our results demonstrate
that by using information about frequency of visit by members
of different social communities combined with topic tags on the
content requested by each community, the performance of routers
can be increased remarkably compared to their performance with
random caching. Moreover, such socially based caching is robust
to changes in many parameters of our model that affect visits
by mobile nodes, the tags of content that they request, and how
history is incorporated into caching decisions.

Keywords—cooperative caching; social networks; demand
model

I. INTRODUCTION

In recent years the number of portable devices that can
use content from the Internet, such as smartphones, laptops
and tablets, has increased tremendously such that they are part
of every day life for many individuals. As a result, hardware
that can pull information from the Internet, like WiFi routers,
are increasingly utilized. This happens not just in homes, but
at workplaces, hotspots at transit hubs, coffee shops, and many
other locations as well. Even mass transportation such as buses
and trains may have available WiFi connections.

Due to the increasing demand on limited resources, such
as bandwidth, and the need to have “reasonably fast” response
times to customer requests, it is important that routers do their
best to minimize bandwidth usage dedicated to Internet traffic.
By installing a hardware cache, a router can retain media
or other data that is requested repeatedly, and avoid having
to download it again on subsequent requests. Unfortunately,
space and budget constraints can significantly restrict cache
sizes, and even with a relatively large cache, it is impossible

to cache every request that will arrive at a router. For that
reason we believe that developing a caching algorithm that
can make informed decisions about what to cache can lead to
better router performance.

The applications that are bandwidth heavy and delay tol-
erant benefit the most from caching, hence in this paper we
focus on demand for video content. This is further justified by
the popularity of Netflix and YouTube sites [1]. According to
Cisco Visual Networking Index (VNI) [2] it is forecasted that
two-thirds of the world’s mobile data traffic will be video by
2017. In addition, many social networking platforms allow for
sharing of video from external sites, or provide video services
such as Vine [3] increasing the correlation between video
demand originating within the same community. Because of
our focus, we do not consider node-to-node communication,
e-mails, or many other types of traffic that a router may
see. Additionally, such focus allows us to concentrate on the
idea of using content-aware caching, where a small amount
of information about the data being requested can provide
performance increases.

Communities are the basic structures in sociology in gen-
eral and in social networks in particular. They have been
intensively researched for more than a half of the century [4].
In sociology, community usually refers to a social unit whose
members share common values and the identity of the mem-
bers as well as their degree of cohesiveness depend on individ-
uals’ social and cognitive factors such as beliefs, preferences,
or needs. In our approach we focus on the cohesiveness
of preferences or needs which naturally applies to internet
content, including videos. What is interesting in our approach
that we do not need to discover communities explicitly, it is
sufficient that routers observe the visiting nodes preferences. It
is however essential that the video demand model is built with
the assumption that the communities have correlated interests,
something that has been confirmed by traditional sociological
research [4], as well as by the observation of the followee-
follower networks in Twitter [5].

The rest of the paper is organized as follows. In Section II
we discuss related work. In Section III we describe the models
we use to build our system, SOcial Content Caching Scheme
(SOCCS). Section IV describes simulations done for validation
and the results that follow from them. Finally in Section V
we conclude by highlighting our findings and describing
opportunities for future work.
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II. RELATED WORK

Due to the importance of mobility in many systems, such
as participatory systems, delay-tolerant networking, and the
application discussed in this study, there is a large body of
work on modeling mobility and data access. Some approaches
are trace-based [6], with traces such as the MIT Reality Mining
set [7] and Haggle dataset [8]. Trace-based approaches are
beneficial because they are derived from real data with human
participants. They can be utilized for better prediction of node
relations in future and for better routing decisions in DTNs [9],
[10], [11]. However, they are often limited in both time span
and in scope, which can lead to a biased population and traces
that may not be suitable for general use.

Other approaches are strictly synthetic, and may be ran-
dom, probabilistic, or even involve multiple nodes [12]. Many
of these synthetic models can produce explicit locations, or
require knowledge about prior locations and about the nature
of mobile nodes to compute the next location of nodes.

In our approach, we focus on human mobility, as we
are interested in caching for members of social communities.
As established in [13], human mobility is highly predictable,
even without considering social ties. Regardless of whether
the radius of a node’s travels is small or large (i.e. for a
variety of travel distributions), regularity and subsequently
predictability of location remains high. Additionally, their
work shows that regularity of an individual’s mobility is not
affected by weekend vs weekday activity, meaning the home-
work-entertainment pattern does not affect predictability. We
use a concept of day workers and evening entertainment
communities in our modeling, but primarily use it for the
purpose of demand generation. In fact, there is no correlation
in our system between nodes or mobility history in the day and
evening communities - a node may actually be a member of
both, but the system has no memory of the identity across time
spans. The work by Song et al. suggests that the patterns in the
two periods can be examined separately without compromising
the validity of our mobility model.

However, the study done by Song et al. does not provide
insight about social communities. Using location based social
media, authors in [14] showed that mobility of members of the
same community is highly correlated. Nguyen et al. developed
a Markov model for each user based on their Gowalla check-
ins, which is used in their Friendship Mobility Model (FMM).
The FMM’s visiting space is limited to locations the node has
checked into using a location-based social service, Gowalla.
While we do not attach any semantic meaning to visiting a
particular router, it could be viewed that each router has a
particular significance, such as an office building, shopping
center, apartment complex, etc. The FMM is driven by real
data which inherently creates affinities to particular locations.
In contrast, in our work we still enforce an idea of affinities,
but they are developed non-deterministically based on previous
decisions of the node and its community. Nguyen et al. [14]
present the important finding that there is a relationship be-
tween friendship and distance. This is important to our work
because it means that given users in a community (i.e. friends),
we can expect that they must move in such a way that they
are likely to be close to each other.

Data access is also an important issue in Delay Tolerant

Networks (DTNs), and a common technique to improve the
performance of data access is cooperative caching. In [15],
the authors proposed DAC, a novel caching protocol adaptive
to the challenging environment of DTNs. In this protocol, they
relay on social community structure to overcome a challenge of
the dynamically changing network topology in DTNs. Using
a new centrality metric, the approach evaluates the caching
capability of each node within a community, to determine
where to cache. Another important factor considered is contact
duration limitation that is used to derive an adaptive caching
bound for each mobile node. Using extensive trace-driven
simulations, the authors show that their cooperative caching
protocol can significantly improve the performance of data
access in DTNs.

Moreover, in [16], the authors further showed that members
of the same community tend to stay in the same locations
together. This supports the assumption of our approach that
the visiting events at a router will have high correlation among
members of the same community. As a direct result, a router
that observes a node belonging to a particular community
can expect to see more nodes from the same community in
the near future. This expectation drives our decision to use a
correlated mobility model in our system design. By using a
location of interest based system, we avoid the need for the
routers to know exact positions of the nodes that interact with
them. Locations of interest in our cases are routers at notable
locations, this is similar to the idea of locations labeled with
a checkin name in the Gowalla system studied by Nguyen et
al [14].

The concept of caching data is not new. Store and forward
based approaches have long been a part of communications and
delay-tolerant networking research, and these require space to
store, or cache data. While our intended use of caches is for
repeated data instead of replication and connectivity, the ideas
of choosing which packets to cache and attempting to predict
demand are common to both uses. There are already some
studies done in literature regarding community estimation
and caching based on community-based metrics [17] and
the impact of the contact duration limitation on cooperative
caching [18]. However, our approach does not use user nodes
as part of the delivery system and does not utilize information
about contacts between user nodes.

Finally, an existing idea is considering content labels,
which has already been applied to studying the differences in
life cycles of videos on YouTube [19]. The idea has also been
applied to Twitter, with the result that an information-based
structure existed separate from the connectivity (follower-
followee) structure, and that furthermore, a genome of topics
and users can be constructed through analysis of a dataset [5].
The relationship between communities and content is of par-
ticular value to the work in this paper.

III. MODELS

To examine the effects of content-aware caching on net-
work performance, we designed SOCCS based on three com-
ponents: a correlated mobility model, a caching metric, and a
demand model. These three aspects are independent and any
one part can be altered without having to change the other two.
Within our system, the world is modeled as a number of agents



Fig. 1: The three components of our system. Each of the
models is designed independently, but they interact closely

during execution.

which travel and request data from stationary routers. The data
is tagged only with a topic, such as Politics or Business. Our
experiments are done to illustrate the effects of caching with
only low-resolution data, but we expect the benefit would be
greater given higher-resolution tags such as “music celebrities,”
“foreign policy,” or “basketball news.” In Figure 1, the basic
models in our system are shown along with a brief summary
of each one.

A. Correlated Mobility

One of our assumptions is that communities have corre-
lated mobility patterns (which is also verified by previous
work [20]). This means that given only a limited sample set of
visitors, a router can assume that a similar mix of communities
will be seen in the near future. As time changes, communities
may alter their behavior or frequency. For example, consider
a router in an office building that observes a community
representing day workers. The bulk of workers will arrive
between 8am and 9am, and leave between 4pm and 5pm. As a
result, the number of visitors from this community will climb
during the 8am-9am period, and likely have little change until
4pm-5pm. When the router begins to see the increase in the
morning, it can predict that the day worker community will
continue to have a presence in its range. Once the number of
visitors stabilizes, the router can predict that while there will
not be further significant growth in the near future, the number
of visits should continue to be similar to the current estimate.
As the day workers start to leave, the router can predict that
there will be a decrease in visits. While our model (discussed
in Section III-C) does not look at the current trend in changes
to predict how future visits will change, it does make use of
the assumption of community mobility to keep a smoothed
estimate of future arrivals.

Given an aging coefficient α, number of visits by node
j at router k at instant t vjkt, and initial seeds for
∀iǫN, kǫR,Mik0, N , where N is the set of all nodes and R is
the set of all routers, the probability of a node in community
c visiting router k at time t, Pkct is found by the following
equations:

Pkct =
Rkct

Rct

(1)

Rct =
∑

kǫR

Rkct (2)

Rkct =
∑

jǫc

Mjkt

Mkt

(3)

Mkt =
∑

iǫN

Mikt (4)

Mikt = α ∗Mik(t−1) + (1− α) ∗Aikt (5)

Aikt =
∑

lǫ(t−1,t]

vikl (6)

In the above equations, Aikt is simply the count of visits
by node i at router k in the current aging window. Mikt is an
estimate using α to smoothly incorporate visiting data from
prior windows. Rkct is the weighted frequency of visits from
nodes in community c at router k in the current aging window,
including information from the past. Finally Pkct is simply the
weighted frequency of visits from any node in community c
to router k normalized by the total of all weighted frequencies
across all routers for community c.

Due to the recursive nature of the above probabilities, as
a particular router is visited by members of a community, it
becomes more likely that it will be selected by other members
in the community. By altering α, the strength of this effect
can be adjusted. In addition, setting the initial Mik0 values
allows experiments to determine the initial router preference.
The values, and not just the proportions of values, matter.
Changing the length of the window, T , also alters behavior,
since the α-based aging is only applied at the end of every
window.

B. Demand Model

We assume that the interests of nodes in a community are
related, but not necessarily identical. This allows us to model
the tastes of individual nodes by drawing from a common
distribution in the community. Motivated by existing research
that uses the idea of genotyping [5] to categorize data and
users, we use the same 5 categories as in this reference: Sports,
Politics, Business, SciTech, and Celebrities. Each community
contains a distribution for each topic, and individual nodes
draw from the distribution and normalize the values to sum
to 1. These values then become the probabilities of a node
requesting data from a specific topic.

In our case, we consider video demand, and abstract a
particular request to always being the whole video (or part
of video), to keep things simple. In reality, videos may be
of varying sizes and nodes may only request a part of the
video, or even a single clip. These considerations could affect
the efficacy of caching, but our current approach is to illustrate
that content-aware caching has an effect even with a low-detail
scenario. We believe that some videos will be more popular
in a given category, thus, we use a Zipf distribution [21]
to indicate their relative probabilities. In our experiments,
we limit the number of videos to 5, since even with just
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Fig. 2: Effect of α on Cache Miss Rate

5 elements, the fifth number from a Zipf distribution has
low probability of being chosen. The least popular video or
two for a topic can be viewed as a meta-video that actually
represents many less popular videos. While we elect to use
a Zipf distribution for each topic, resulting in seemingly the
same probabilities if the number of videos are the same, other
research shows that videos can have different demand over a
life cycle based on content type [19]. However, this is also the
case in our model, because the final frequency of video demand
is the product of the probability defined by Zipf distribution
and the frequency of visits by the members of communities
demanding the corresponding topic.

C. Caching Model

SOCCS only requires collecting the demands of nodes that
are currently making requests from a router. Each router uses
the same equations as described in Section III-A, but instead
of vikl referring to node i on router k at time l, it instead
refers to topic i. Similarly, all other equations refer to topics
instead of nodes, but they require no updates since everything
ultimately uses the definition of vikl.

We also assume that the caching model has some estimate
of the relative popularity of videos in a topic. While in reality
such knowledge cannot be current and perfect, it is unlikely
that the vast majority of videos will experience a sudden and
drastic change in demand. By having time to build a history
of video requests, a router could have a good estimate of
demand for existing videos. In our experimentation we looked
at a daily cycle, so a window of 24 hours would likely be
sufficient to obtain an estimate. Using this method, a router
cannot anticipate demand for newly created videos or content
that suddenly becomes popular. These details are outside the
scope of our current work, and are factors that are not present
in our demand model described in Section III-B.

When a request is made for new data from a router, it
decides whether or not to cache a copy of the data. If there is
room in its cache, which is of limited size β, then the router
automatically caches the data. Otherwise, it computes the score
of the data in its cache and the new data, and replaces the
lowest scoring item with the new data only if the new data has
a higher score. The score Sdc(i) at time t for data d belonging
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Fig. 3: Effect of Demand Estimate Seed on Cache Miss Rate

to topic i, requested by a member of community c is calculated
as follows:

Sdc(i) = Pict ∗ Pdi (7)

Pict is the probability that a member of community c will
request data belonging to topic i on the current router. Pdi is
the probability that video d is requested, given that a video
of topic i is being requested. Note that while the probability
of selecting a particular topic depends on the community the
request came from, the probability of selecting a given video
is the same across communities.

IV. SIMULATION

We created a simple simulation to study the three models
described in Section III. Since the goal was to illustrate that our
caching model can help reduce the number of cache misses, we
compare our caching algorithm’s performance against random
selection. In random selection, if there is no room to cache
new data, a random element from the cache is replaced by the
new data.

The experiments were performed by placing three static
routers and then running a system of 1,800 nodes over the
course of a 17 hour period from 8 AM. to 1 AM. Since in the
real world it is unlikely that all the nodes from a community
would visit any given router, we introduced 300 nodes per
community with the expectation that these nodes represented
only a part of their respective communities. Communities 1-3
were day communities, while communities 4-6 were evening
communities.

Nodes belonging to day communities started visiting
routers randomly with their times drawn from a uniform
distribution between 8 AM. and 9 AM. They then stopped
visiting at time drawn from a uniform distribution between
4 PM and 5PM. At the same time, the evening communities
started randomly at a time drawn from the uniform distribution
from 4PM and 5PM, and ended at a time drawn from a uniform
distribution between 12 AM and 1 AM. This allowed for a
gradual introduction and departure of communities, as well as
a mixed composition between 4PM and 5PM.
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The time between each visit was done by using an exponen-
tial distribution with mean inter-arrival time ( 1

λ
) to introduce

randomness. Each node drew its demands from five Gaussian
distributions, one per topic, then normalized the demands so
the total demand summed to 1. The Gaussian parameters for
each community are listed in Table I.

TABLE I: Community Genotype Distributions

Community Sports SciTech Business Politics Celebrities

1 (µ,σ) 3,1 3,1 30,5 60,10 3,1

2 (µ,σ) 60,10 3,1 30,5 3,1 30,5

3 (µ,σ) 20,3 20,3 20,3 20,3 20,3

4 (µ,σ) 3,1 3,1 30,5 3,1 60,10

5 (µ,σ) 60,10 3,1 3,1 3,1 30,5

6 (µ,σ) 20,3 20,3 20,3 20,3 20,3

While we examined a variety of values for T , α, and the
values of Mik0 for both demand estimation and correlated
mobility, we found that none of these factors affected the
cache hit rate by more than 1-2%. These results are shown in
Figures 2- 5, which use a cache size of 8. As the plots in all
these four figures show, the proposed content-aware algorithm
(SOCCS) has cache misses around 60%-65% of the cache
misses in random algorithm (RANDOM). If we compare the
performances in terms of the cache hit ratios, we see that the
cache hit ratio with SOCCS algorithm is around 40% higher
than the cache hit ratio with RANDOM algorithm.

On the other hand, as expected, cache size has a significant
impact on the performance of both algorithms. In Figure 6,
we show the impact of cache size on the cache misses of both
algorithms while all other parameters are fixed. It is apparent
that the RANDOM algorithm always causes significantly more
bandwidth usage (since content is not available in cache)
than the SOCCS algorithm for a given cache size. This is
expected, since our model suggests that many members of the
same community will likely visit a router (due to correlated
mobility) and communities share similar demands. Cache size
still plays an important part, since with more cache slots,
a router can afford to select less popular items to cache
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and still have room for popular items. Cache misses can
never drop to 0%, since data cannot be pre-cached and must
be downloaded at least once. Moreover, the percentage of
saving in bandwidth usage with SOCCS algorithm compared to
RANDOM algorithm changes depending on the cache size. As
the cache size increases, the cache misses for both algorithms
decrease, thus, bandwidth usage decreases. As a result, with
increasing cache size, the relative bandwidth saving achieved
by SOCCS algorithm compared to bandwidth usage with
RANDOM algorithm increases.

V. CONCLUSION

Inspired by the problem of caching with limited space
while serving video content to users, we adopted a content-
based approach to generate a simple caching metric, SOCCS.
We then constructed a simulation based on the assumptions
that mobility was correlated among nodes in a community, and
that there was a correlation between genotypes of users in com-
munities. Under these conditions, our caching algorithm could
perform significantly better than random selection. Simulations
also showed that both algorithms were relatively insensitive to



a variety of parameters, but caching was significantly impacted
by changes in the router cache sizes.

An option for future work is to improve the models for
mobility and demand, such as by using a trace-based model
to provide a more realistic estimate. Using information from
social networks such as Foursquare could also provide us with
improved demand and mobility models. Another option is
expanding our approach to a mixed situation where routers
may also be nodes, and may be mobile. This would allow us
to then let routers cache content-tagged data, but also perform
more traditional DTN routing tasks. By having routers be user
nodes, they could benefit from additional information such
as knowing their communities and currently reachable nodes.
However, this might come with extra challenges of finding
communities in DTN environment for which we can benefit
from many studies [22], [23], [9] reported in the literature
on this subject. Additionally, while we have shown that our
approach works within a simulated environment, validating our
assumptions and our approach in the real world, even on a
small scale, is also a task that we may consider.
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