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Abstract—The research on the efforts of combining human and 
machine intelligence has a long history. With the development 
of mobile sensing and mobile Internet techniques, a new 
sensing paradigm called Mobile Crowd Sensing (MCS), which 
leverages the power of citizens for large-scale sensing has 
become popular in recent years. As an evolution of 
participatory sensing, MCS has two unique features: (1) it 
involves both implicit and explicit participation; (2) MCS 
collects data from two user-participant data sources: mobile 
social networks and mobile sensing. This paper presents the 
literary history of MCS and its unique issues. A reference 
framework for MCS systems is also proposed. We further 
clarify the potential fusion of human and machine intelligence 
in MCS. Finally, we discuss the future research trends as well 
as our efforts to MCS.  

Keywords- Hybrid human-machine intelligence, mobile crowd 
sensing, participatory sensing, heterogeneous/cross-space data.  

I.  INTRODUCTION 
Successful society and city management relies on urban 

and community dynamics monitoring to provide essential 
information for decision making. In traditional sensing 
techniques such as wireless sensor networks (WSNs), 
distributed sensors are leveraged to acquire real-world 
conditions. There has been a growing body of studies on 
WSNs, however, commercial sensor network techniques 
have never been successfully deployed in the real world due 
to several reasons, such as insufficient node coverage, high 
installation/maintenance cost, and lack of scalability. 

Mobile Crowd Sensing (MCS) presents a new sensing 
paradigm based on the power of mobile devices. The sheer 
number of user-companioned devices, including mobile 
phones, wearable devices, and smart vehicles, and their 
inherent mobility enables a new and fast-growing sensing 
paradigm: the ability to acquire local knowledge through 
sensor-enhanced mobile devices – e.g., location, personal 
and surrounding context, noise level, traffic conditions, and 
in the future more specialized information such as pollution 
– and the possibility to share this knowledge within the 
social sphere, healthcare providers, and utility providers. 
The information collected on the ground combined with the 
support of the cloud where data fusion takes place, make 
MCS a versatile platform that can often replace static sensing 
infrastructures, and enabling a broad range of applications 
including urban dynamics mining, public safety, traffic 
planning, environment monitoring, just to name a few. 

A formal definition of MCS is: a new sensing paradigm 
that empowers ordinary citizens to contribute data sensed or 

generated from their mobile devices, aggregates and fuses 
the data in the cloud for crowd intelligence extraction and 
people-centric service delivery. Similar to participatory 
sensing [1], MCS has sensed data from mobile devices as 
inputs. Nevertheless, it additionally “reuses” the user-
contributed data from mobile Internet services (mostly 
mobile social network services), which is often termed as the 
participatory media [2]. In other words, the user-contributed 
data are used for a second purpose.  MCS further explores 
the integration and fusion of the data from heterogeneous, 
cross-space data sources. We use the following example to 
showcase its characters. 

The Urban Sensing Scenario. Route planning [3] is a 
common type of application of MCS. With participatory 
sensing, we can collect GPS trajectory data from vehicles 
and compute the optimal route when answering a query with 
departure and destination points. However, for a more 
complex query, that is, to generate an itinerary for a visitor to 
a city given the time budget (start time, end time). It is not 
possible to leverage the single trajectory dataset. Further 
information such as POIs in the city, categories of each POI, 
the best time to visit the POIs, user preferences to different 
types of POIs, are further needed. These information can be 
obtained by reusing the user-contributed data from a mobile 
social network service (e.g., FourSquare). A similar example 
is noise mapping [4], which is also a popular type of MCS 
application. With participatory sensing, we can get the noise 
map using mobile audio sensing. But people may wonder the 
causes of noise in a specific place, which often correlates 
with the category (e.g., market, school, street) of that place. 
This, however, can be obtained from a LBSN check-in 
dataset. Therefore, with MCS, we can leverage both online 
and offline data contributed by participants and explore 
cross-space data fusion to nurture novel applications. 

Numerous and unique research challenges arise from the 
mobile crowd sensing paradigm, ranging from styles of data 
collection, proper incentive mechanisms, quality of user-
contributed data, cross-space data fusion, and so on. Further, 
MCS essentially represents a hybrid of human and machine 
intelligence, which has been little explored before. The key 
contribution of this paper can be summarized as follows: 
 Give a literature history and the definition of MCS, and 

explain the evolution from participatory sensing to 
MCS; 

 Clarify the technical foundation of MCS—the optimal 
fusion of human and machine intelligence, and present 
the key research issues of MCS; 

 Propose a reference framework of MCS and discuss the 
future research trends. 



 

 

 
Figure 1.  A comparison of MCS and related concepts. 

II. FROM PARTICIPATORY SENSING TO MOBILE CROWD 
SENSING 

From the AI perspective, MCS is founded on a 
distributed problem-solving model where a crowd is engaged 
in solving a complex problem through an open call [5]. In the 
literature history, the concept of crowd-powered problem-
solving has been explored in several research areas. One 
decade ago, Surowiecki has written a book titled “The 
Wisdom of Crowds” (or crowd wisdom) [6], where a general 
phenomena — the aggregation of information in groups, 
resulting in decisions that are often better than could have 
been made by any single member of the group—is revealed. 
It identifies four key qualities that make a crowd smart: 
diversity in opinion, independence of thinking, 
decentralization, and opinion aggregation. A similar 
concept to crowd wisdom is “collective intelligence” [7]. 
Different from the two concepts that focus on the advantages 
of group decision making, MCS is mainly about the crowd-
powered data collection and analyzing process.  

In 2005, two senior editors from Wired Magazine, Jeff 
Howeand and Mark Robinson, coined the term 
“crowdsourcing”. According to the Merriam-Webster 
Dictionary 1

The most close concept to MCS is participatory sensing, 
proposed by Burke et al. in 2006 [1]. It tasks everyday 
mobile devices to form interactive, participatory sensor 
networks that enable public and professional users to gather, 
analyze and share local knowledge. The definition of 
participatory sensing emphasizes explicit user participation 

, crowdsourcing is defined as the practice of 
obtaining needed services or content by soliciting 
contributions from a large group of people, and especially 
from an online community. A typical example is Wikipedia, 
where thousands of contributors from across the world have 
collectively created the world’s largest encyclopedia. 
Compared to MCS, crowdsourcing focuses on the 
participation of online crowds.  

                                                           
1 http://www.merriam-webster.com/dictionary/crowdsourcing 

when it was proposed. In recent years, with the development 
of mobile sensing and mobile Internet techniques, the scope 
of crowd problem-solving systems using mobile devices has 
been broadened. To this end, we extend the definition of 
participatory sensing from two aspects and term the new 
concept mobile crowd sensing (MCS). First, MCS leverages 
both sensed data from mobile devices (from physical 
community) and user-contributed data from mobile social 
network services (from online community). Second, MCS 
counts both explicit and implicit user participation (details 
will be clarified in the next section).  

A comparison of MCS and related areas is given in Fig. 1. 
We can find that both crowd wisdom and crowdsourcing rely 
on human intelligence; while participatory sensing and MCS 
explore a fusion of human and machine intelligence (we 
discuss this later in Section V). Compared to participatory 
sensing, MCS can have both explicit (primary purpose) and 
implicit (second purpose) user participation and allow cross-
space (online& offline) data fusion.  

III. KEY FEATURES OF MCS 
Mobile crowd sensing opens a new sensing paradigm for 

crowd-powered sensing. This section characterizes its key 
features. 

A. Citizen Participation: Explicit or Implicit 
The involvement of citizens in the sensing loop is the 

chief feature of participatory sensing. The same is true for 
MCS, but it moves a step further than participatory sensing.   

Two data generation modes. Varied human-companioned 
devices can act as mobile sensor nodes in MCS, including 
mobile phones, wearable devices, smart vehicles, smart cards, 
and so on. There are two different data generation modes in 
MCS: mobile sensing and user-generated data in mobile 
social network services (e.g., LBSNs).  
 Mobile sensing. It typically functions at a context-based 

and individual manner, leveraging the rich sensing 
capabilities from individual devices. It is the data 
collection method used by participatory sensing. 



 

 

 Mobile social networks. With the rapid development of 
mobile Internet, mobile social network services that 
bridge the gap between online interactions and physical 
elements (e.g., check-in places, activities [8], objects 
[9]) are fast growing. The large-scale user-contributed 
data opens a new window to understand the dynamics 
of the city and society, which is counted as the other 
data source for mobile crowd sensing. 

In summary, the combination of participatory mobile 
sensing and participatory mobile social network data is a 
unique feature of MCS. 

The sensing style. Previous studies often discuss about 
user-participated sensing at one dimension: the degree of 
user involvement in the sensing process. As presented by 
Ganti et al. [10], crowd-powered sensing can span a wide 
spectrum in terms of user involvement, with participatory 
and opportunistic sensing at the two ends. The proportion of 
human involvement will depend on application requirements 
and device capabilities. With the two data generation modes 
in MCS, we intend to category the sensing style from a new 
dimension: the awareness of participants to the sensing task. 
For both participatory and opportunistic sensing, data 
collection is the primary-purpose of the application. The 
sensing task is therefore explicit to the user (as she is 
informed). For user-contributed data from MSN services, 
however, the data is used for a second purpose (the primary 
purpose is online social interaction), and thus it is performed 
in an implicit manner. We thus characterize the sensing style 
of MCS at two levels: explicit and implicit. 

The involvement of human participation in the 
computing process will lead to a mixture of human and 
machine intelligence in MCS. How to optimize the 
combination of human and machine intelligence, becomes a 
significant design issue for MCS systems.  

B. User Motivation 
In data sharing among peers, the development of a solid 

economic model is highly important. This issue is even more 
critical when the devices (e.g., mobile phones, wearable 
sensors) have very limited resources (e.g., energy and 
storage capacity) or the information revealed is highly 
sensitive. Deploying a mobile crowd sensing system on a 
wide scale requires a large number of participants. 
Participants may drop out of the collecting loop unless return 
on investment is greater than their expectations. Questions 
about human motivation have been central in philosophy and 
economics. The promise of financial or monetary gain is an 
important incentive method for most actors in markets and 
traditional organizations. Interest and entertainment are also 
important motivators in many situations, even when there is 
no prospect of monetary gain [7]. People can also be 
motivated to participate an activity by social and ethical 
reasons, such as socializing with others, glory, or recognition 
by others.  

The sharing of personal data in MCS applications (e.g., 
citywide pollution monitoring) can raise significant privacy 
concerns, with information (e.g., location, point of interests) 

being sensitive and vulnerable to privacy attacks. To 
motivate user participation, it should explore new techniques 
to protect user privacy while allowing their devices to 
reliably contribute data. 

C. Dealing with Low-Quality Data 
The involvement of human participation in community 

sensing brings forth certain uncertainties to MCS systems. 
For example, anonymous participants may send incorrect, 
low-quality or even fake data to a data center. Data 
contributed by different people may be redundant or 
inconsistent. The same sensor may sense the same event 
under different conditions (for example, sensing ambient 
noise when placing the mobile phone in a pocket or at hand). 
Therefore, data selection is often needed to improve data 
quality, and we should explore methods on fault filtering, 
quality estimation, expert contributor encouragement, etc.  

The aim of MCS is to extract high-level intelligence from 
a large volume of user inputs. Regarding to the value of 
intelligence and its beneficiary, we can classify it into three 
distinct dimensions [11], namely, user awareness, ambient 
awareness, and social awareness.  
 User awareness refers to the ability to understand 

personal contexts and behavioral patterns. Examples 
include human location, human activity, and daily 
routine patterns. 

 Ambient awareness concerns status information on a 
particular space, which ranges from a small space to a 
citywide area. Examples include space semantics (i.e., 
the logical type of a place, such as a restaurant), 
ambient contexts, and traffic dynamics (e.g., traffic 
jams, hotspots).  

 Social awareness goes beyond personal contexts and 
extends to group and community levels. The objective 
includes social interaction analysis (e.g., group 
detection, friendship prediction), social event detection, 
and so on. 

D. Heterogeneous, Cross-Space Data Mining 
The mobile crowd data are collected from both offline 

and online communities. Different communities have distinct 
features in terms of geographical coverage, infrastructure 
support, function time, and so on. This also leads to distinct 
human interaction patterns (e.g., comment/like in online 
communities, co-location in ad hoc communities) and 
implicit social knowledge (e.g., friendship/trustworthy in 
online communities, social popularity/movement patterns in 
offline communities) that can be extracted from them. Study 
of the association and fusion of cross-space data (e.g., how 
does online social network data mirror physical events), as 
well as merging their complementary features and fully 
combining their merits (e.g., connecting the two forms of 
communities to enhance data transmission), however, 
become an important yet challenging research issue for MCS. 

IV. A REFERENCE FRAMEWORK 
Based on the elaboration of MCS characters and 

applications, we propose a reference architecture to illustrate 
the key functional blocks and explain the key techniques of 



 

 

MCS. It is intended to be the starting point that advances this 
new research area. Figure 2 shows the proposed architecture, 
which consists of five layers: crowd sensing, data 
transmission, data collection, crowd data processing, and 
applications. 

(1) Crowd sensing. The first layer is a physical layer. 
Various everyday devices connect themselves to large 
networks. There are two data types generated from these 
devices: mobile sensing data and mobile social network data. 
The large-scale, raw data sensed should be shipped to the 
backend server for high-level intelligence extraction. Access 
control is another important function at the local side, where 
users can decide to whom her data can be shared. 

 
Figure 2.  A reference framework for MCS. 

(2) Data transmission. There are several mobile 
networking and communication techniques that can be 
leveraged by MCS, including ad hoc or opportunistic 
networks [12] (e.g., Bluetooth, Wi-Fi) and infrastructure-
based networks (e.g., 3G, cellular). MCS applications should 
make data uploading transparent to the participant and 
tolerant of inevitable network interruptions.  

(3) Data collection infrastructure. This layer gathers data 
from selected sensor nodes and provides privacy-preserving 
mechanisms for data contributors. 

(4) Crowd data processing. This layer applies diverse 
machine learning and logic-based inference techniques to 
transform the collected low-level, single-modality sensing 
data into the expected intelligence. The focus is to mine the 
frequent data patterns to derive the three dimensions of 
crowd intelligence at an integrated level. 

(5) Applications. This layer includes a variety of potential 
applications and services enabled by MCS. Associated 
functions include data visualization and user interface. 

V. THE HYBRID HUMAN-MACHINE INTELLIGENCE 
DESIGN IN MCS 

The study of the combination of human and machine 
intelligence has a long history. Alan Turing wrote in 1950: 
“The idea behind digital computers may be explained by 
saying that these machines are intended to carry out any 
operations which could be done by a human computer” [13]. 
He also proposed a general procedure to test the intelligence 
of an agent now known as the Turing test. It represents that 
human intelligence and machine intelligence have been 
interlinked since the birth of AI research. Licklider’s “man-
computer symbiosis” [14] in 1960 also presents the idea that 
humans and computers can work together in complementary 
roles. MCS tries to solve the large-scale sensing/computing 
problems by having human in the loop. The reason is that 
human and machine intelligence show different strengths and 
weaknesses in MCS systems. 
 Human intelligence. Knowledge, cognition, perception, 

and social interaction are general abilities of human 
beings. With these, human can have deep context and 
understanding of the sensing tasks. However, they are 
limited in memory and speed. Also, people vary in 
quality, and they often introduce errors or low quality 
data in MCS. 

 Machine intelligence. Machines are powerful in large-
scale storage and computing. Advanced data mining 
and machine learning algorithms also enable automatic 
knowledge discovery and event/society understanding. 
However, till now there are still numerous problems 
that cannot be addressed well by machines.  

By combining computing with the intelligence of crowds 
(large groups of people participate in the sensing process), 
MCS allows the creation of hybrid human-machine systems. 
These hybrid systems enable applications and experiences 
that neither crowds nor computation could support alone. As 
far back as Ivan Sutherland’s Sketchpad [15], human-
computer interaction has been structured around a tradeoff 
between user control and system automation. The same is 
true for MCS, where we should investigate how to design the 
MCS system by mixing human and machine intelligence—a 
question that has not yet been solved by existing studies.  

Figure 3 gives a description of our vision on the potential 
combination of human and machine intelligence in MCS 
systems. Over the three layers of MCS, human and machine 
intelligence can take complementary roles in terms of their 
distinct abilities. For example, in the data collection layer, 
people can understand and execute the tasks using their 
knowledge and cognition abilities. Machines, nevertheless, 
can decompose complex tasks and allocate them to proper 
human nodes; it further provides platforms for information 
sharing (e.g., user-contributed data in LBSNs). 

There have been recently a few studies that try to 
combine the efforts of human and machine intelligence in 
MCS. DietSense [16] is a system that uses both automatic 
image processing techniques and manual image review, due 
to the complexity or ambiguity of recognition tasks. Kamar 
et al. showed how learned probabilistic models can be used 
to fuse human and machine contributions and to predict the 
behaviors of workers in online crowdsourcing [17]. 



 

 

 
Figure 3.  Complementary human-machine intelligence in MCS. 

In addition to our vision in Fig. 3 and the above studies. 
We have two more suggestions on MCS design. First, the 
combination of human and machine intelligence should be 
application-centric. That is, we should create systems that 
dynamically trade-off human and machine intelligence in 
terms of application needs. Second, investigation of formal 
models and design patterns for crowd computing systems 
should be studied, which may make use of multi-disciplinary 
knowledge, including social science, management, computer 
science, and so on. 

VI. FUTURE RESEARCH TRENDS AND OUR EFFORTS 
The study of MCS is still at its early stage and there are 

numerous challenges and research opportunities in the 
coming years. 

(1) A Generic Framework for Data Collection. In MCS, 
mobile sensors from a highly volatile swarm of sensing 
nodes can potentially provide coverage where no static 
sensing infrastructure is available. Nevertheless, because of a 
potentially large population of mobile nodes, a sensing task 
must identify which node(s) may accept a task. A set of 
criteria should be considered in filtering irrelevant nodes: the 
specification of a required region (e.g., a particular street) 
and time window, acceptance conditions (for a traffic-
condition capture task, only the phones out of user pockets 
and with good illumination conditions can satisfy 
requirements), and termination conditions (e.g., sampling 
period). Some preliminary studies on these issues have 
already been initiated. For example, in [18], a task 
description language called AnonyTL was proposed to 
specify the sample context for a sensing task. In [19], Reddy 
et al. developed a recruitment framework to enable 
organizers to identify well-suited participants for data 
collections based on geographic and temporal availability as 
well as participation habits. However, improving the 
efficiency of the decision making process in task assignment 
and data sampling necessitates further efforts.  

(2) Hybrid Mobile Networking. As presented earlier, 
there are varied communication modules in mobile phones. 
The infrastructure-based connection uses pre-existing 
infrastructure (e.g., base stations, routers, access points) and 
manages the data in a centralized manner. The ad hoc or 
opportunistic connection, however, is founded on the 

development of opportunistic networks [12], which uses 
infrastructure-free, short-range radio techniques (Bluetooth, 
Wi-Fi, etc.) to build decentralized, ad hoc networks.  

The two forms of networks have distinct merits and work 
environments.  Infrastructure-based networks (e.g., cellular, 
3G) can be accessed to people in the environments with 
Internet connection (e.g., at home, in the office, hot spots 
with wireless access points). Opportunistic networks are 
human-centric because they inherently follow the way that 
people opportunistically get into contact. For instance, 
customer A can connect with other customers that 
opportunistically meet in a coffee shop to build an ad-hoc 
mobile phone network. They have advantages on connecting 
and providing collaboration services to traveling users, who 
have difficulty in connecting the network infrastructure.  

In the past years, significant research efforts have been 
made on facilitating data transmission/sharing in both 
infrastructure-based and opportunistic networks. However, 
they follow separate research lines, and the interlinking of 
the two forms of communities has little been explored. To 
address the transient network issue in MCS, it is important to 
explore the advantages of different networks and develop 
hybrid networking techniques. We have explored the hybrid 
networking protocol in our prior work — Hybrid Social 
Networking [20], which addresses the interlinking of online 
and opportunistic networking techniques to enhance data 
dissemination/transmission in MCS. 

(3) Varied Human Grouping. Interaction among the 
volunteers is necessary, at least should be an option, but 
absent in most of current MCS systems. Researchers also 
advocated the need to facilitate interaction. Vukovic [21] 
claimed that one of the research challenges in crowd sensing 
is “designing a mechanism for virtual team formation, 
incorporating not only skill-set, but also discovered social 
networks”. Lane [22] also believed that crowdsourcing 
misses automated methods to identify and characterize user 
communities. The interaction among users can also enhance 
the data quality in MCS. Therefore, grouping users and 
facilitate the interaction among them should be a challenge 
of MCS. Key techniques to address this include community 
creation approaches, dynamic group formation metrics, 
social networking methods, and so on. For example, to 
identify the people who are involved in the same social event, 
MoVi proposes a multi-dimensional sensing approach, where 
a combination of visual and acoustic ambience of phones are 
used [23]. In GroupMe [24], we also tackled how to extract 
and suggest groups using mobile phone sensing techniques. 

(4) Cross-Community Sensing and Mining. Data from 
different communities often present different attributes and 
strengths, and moreover, they are often complementary. 
MCS explores the integration of data from both online (e.g., 
mobile social networks) and offline (e.g., mobile sensing)  
communities to demonstrate their aggregated power in 
various purposes, such as the enrichment of trip planning 
mentioned in the introduction. Here, we describe two more 
examples to showcase the effects of data integration from 
distinct communities.  



 

 

 Sensor-based activity recognition enhanced by Web-
mined knowledge. Knowledge obtained from the Web 
can be used to assist activity recognition in the physical 
world. For instance, Philipose et al. extracted the 
activity-relevant objects from the Web (Wikis, 
HowtoDos), which is then used in RFID-based human 
activity recognition [25]. 

 Merging the data from heterogeneous communities to 
develop new social apps. Data from different spaces 
often characterizes one facet of a situation, thus the 
fusion of data sources often draws a better picture of the 
situation. For example, by integrating the mined theme 
from user posts and the revealed location information 
from GPS-equipped mobile phones, Twitter has been 
exploited to support near real-time report of 
earthquakes in Japan [26].  

We have also organized a special issue titled “cross-
community mining” [27] on the Personal and Ubiquitous 
Computing journal, where more examples to leverage data 
from distinct communities can be found. 

VII. CONCLUSION 
In this paper we have presented Mobile Crowd Sensing 

(MCS). Similar to participatory sensing, MCS also leverages 
the power of citizens for large-scale sensing. However, it 
goes beyond participatory sensing by having implicit and 
explicit participation, and the collection of crowdsourced 
data from both mobile sensing and mobile social network 
services. We have characterized the key features of MCS, 
including crowd-powered data collection, cross-space data 
mining, and low quality data analysis. To facilitate the 
development of MCS apps, we propose a reference 
framework and discuss the efforts of balancing human and 
machine intelligence in MCS system design. As an emerging 
research area, MCS brings numerous issues to be addressed, 
such as hybrid networking, varied user grouping, cross-
community sensing and mining, and so on. These new 
challenges will bring unprecedented opportunities to 
academic researchers, industrial designers/developers, as 
well as policy makers.  
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