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Abstract—The seamless textual input in Augmented Reality
(AR) is very challenging and essential for enabling user-friendly
AR applications. Existing approaches such as speech input
and vision-based gesture recognition suffer from environmental
obstacles and the large default keyboard size, sacrificing the
majority of the screen’s real estate in AR. In this paper, we
propose MyoKey, a system that enables users to effectively and
unobtrusively input text in a constrained environment of AR
by jointly leveraging surface Electromyography (sEMG) and
Inertial Motion Unit (IMU) signals transmitted by wearable
sensors on a user’s forearm. MyoKey adopts a deep learning-
based classifier to infer hand gestures using sEMG. In order to
show the feasibility of our approach, we implement a mobile
AR application using the Unity application building framework.
We present novel interaction and system designs to incorporate
information of hand gestures from sEMG and arm motions from
IMU to provide seamless text entry solution. We demonstrate the
applicability of MyoKey by conducting a series of experiments
achieving the accuracy of 0.91 on identifying five gestures in
real-time (Inference time: 97.43 ms).

Index Terms—Textual Input, Augmented Reality, EMG, IMU,
Deep Learning

I. INTRODUCTION

The advancing mobile hardware has facilitated the devel-
opment of Augmented Reality (AR) applications [1]. AR
overlays virtual content directly on top of the user’s physical
surroundings. The virtual content can take diverse forms such
as icons, menus, windows, and keyboards. The default inter-
action design (e.g., controlling a cursor with a mini-touchpad
wired to the smartglasses or vision-based hand gesture recog-
nition) enables users to interact with virtual content. In many
AR applications, large-size virtual content is easy to locate.
However, the default approaches are significantly inefficient
for textual input, which involves small-sized content selection.
More specifically, selecting character keys on a virtual key-
board is error-prone and inefficient [2] since choosing small
character keys for a highly repetitive task is difficult [3].

There are various approaches to achieve seamless user
experiences for text input in AR. First, speech recognition can
be used to input words by recognizing the voice of users.
However, it is limited by several major drawbacks [4]: (1)
Privacy, where the user may disclose sensitive information
to people around; (2) Noise, where the environmental noise

can cause unintended textual input or corrupt the intended
one. Second, vision-based approaches can detect hand to input
character keys. However, it has the following limitations: (1)
The virtual QWERTY keyboard, such as the one in Microsoft
Hololens, occupies the large surface of the screen’s center
area; (2) Computer vision is susceptible to occlusion and
lighting conditions, and without additional markers, vision-
based tracking of hands at arbitrary orientations over a large
area is challenging [5]. Lastly, existing mid-air taps methods
such as HIBEY system [3] and LEAP Motion sensors [6]
can be a solution for portable devices, but lifting the user’s
arm in prolonged time with such approaches suffer from
hand fatigue [7] and limited device accessibility in mobile
scenarios [8].

Accordingly, we propose the MyoKey, an unobtrusive so-
lution to input characters and words in AR. MyoKey can
recognize various hand gestures and arm motions by utiliz-
ing external sensors on the user’s forearm, collecting two
essential information: (a) surface Electromyography (sEMG),
recognizing hand gestures through measuring the electrical
potential from muscle cells. (b) Inertial Measurement Unit
(IMU), tracking the motion and orientation of the user’s arm.
MyoKey demonstrates three advantages over the prior works.
First, sEMG collects more robust signals than computer-vision
based methods whose performance varies by the occlusion
and lighting conditions. Second, it enables off-hand interaction
with the AR environment instead of performing hand gestures
in front of the facial area, causing arm fatigue [7]. Third,
the MYO armband device is non-invasive and socially accept-
able [8], where users can perform gestures naturally in their
waist level. MyoKey also minimizes the keyboard interface to
reserve the majority of the screen space for applications in
the holographic environment. The contributions of our work
include as follows: (1) We present a novel interaction and
system design to enhance text inputs in the constrained AR
environment by leveraging sEMG and IMU signals. (2) We
show the preliminary results to demonstrate the possibility
of our system by achieving a high accuracy of 0.91 on
recognizing five gestures in real-time (Inference time: 97.43
ms). (3) The natural gestures in our design can support off-
handed interactions with text entry interfaces of many contexts
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Figure 1: Hand gestures and arm motions used for the inter-
action

(in-text or keyboard cursors/ recommended words/ character
deletion).

II. RELATED WORK

We discuss the most relevant works on character selection
in AR, as well as deep learning models and mobile AR driven
by sEMG and IMU.

A. Textual Input in AR

On-device interaction [8] enables character selection, for
example, on a sensible surface of a device: Taps and Swipes [9]
on the spectacle frame of smartglasses, and an addendum ring
surface allowing cursor pointing to characters within finger
space [10] for subtle inputs [11]. The body-center interaction
method is based on an interface attached to the user’s body. An
infrared sensor-based study, Palmtype [12], used a wrist band
with multiple sensors to create a virtual palm keyboard using a
visual display. In MyoKey, we explore the IMU-induced and
sEMG-driven interaction for character inputs. The freehand
interaction-based approach [13] relies on visual recognition of
hand movements to obtain textual input. HIBEY [3] explores
the 1-line keyboard configuration but neglects the interaction
with in-text characters, while MyoKey addresses both the
in-text (selection/deletion of typed characters) and keyboard
interaction (selecting new characters/ recommended words).

B. Deep Learning and Mobile AR using sEMG and IMU

Convolutional neural networks (CNNs) is a member of
the artificial neural network (ANN) family, which is widely
applied on mobile AR applications [14]. Researchers utilize
deep learning on user behavior analytics [15] and mobile
AR system for object recognition and context-aware track-
ing [16]. Surface Electromyography (sEMG) is a non-invasive
method to quantitatively measure the electrical potential differ-
ences between muscle and ground electrodes. Several studies
use sEMG to tackle gesture recognition tasks [17]. Another
study [18] attempts to identify in-hand objects using IMU
and sEMG sensors in wearable devices. In contrast, MyoKey
leverages IMU and sEMG sensors to achieve robust and off-
hands gestural inputs in AR.

III. DESIGN OF TEXT ENTRY INTERFACE

This section focuses on the design hand gestures and arm
motions that map with the 1-line text entry layout.

Table I: Hand gestures and arm motions with associated
functions in MyoKey

Signals Interaction Function in the context

sEMG
(Hand Gesture)

One move cursor left on the text
Two move cursor right on the text

Three delete a character that cursor is on
Four select a recommended word
Fist select a character from the keyboard

IMU
(Arm Motion)

Left move keyboard cursor left
Right move keyboard cursor right

A. Hand Gestures

The set of gestures we used as input to our system are de-
rived from the internationally recognized well-known number
of gestures due to their usage in American Sign Language
(ASL), with the following motivation. User familiarity with
ASL leads to better sEMG signals. Also, standard gestures
improve replicability. As shown in Figure 1, we use an ASL
gesture subset where the numbers ‘1’, ‘2’, ‘3’, ‘4’ map to
the ASL number gestures while the gesture fist represents the
number ‘0’). We did not take the sEMG signal resolution of
each gesture into account while choosing the gesture set. Thus,
we keep the gesture set simple and easily recognizable by any
learning model. Each gesture serves to represent a selection
mode in the text entry interface. Table I lists the functions of
five gestures. Gestures ‘1’ and ‘2’ govern the left and right
movements of the in-text cursor (i-cursor), while gesture ‘3’
enables the character deletion at the i-cursor position. Gesture
‘0’ (Fist) and ‘4’ activates the IMU-induced keyboard cursor
(k-cursor) driven by the user’s arm motions, and the selection
of recommended words, respectively. When the user holds
the gesture ‘0’ to locate the k-cursor at a character more
than 500 ms dwell time, the character will be selected into
the text. Multiple characters can be chosen until the gesture
‘0’ being released. Besides, the recommended word at the k-
cursor position is selected once the user releases the respective
gesture.

B. Arm Motions

Users with MyoKey control the k-cursor with arm move-
ments through capturing the IMU data at 60 Hz from the 3-axis
MYO armband. In the 1-line keyboard layout, we neglect other
axis data to avoid unnecessary cursor movements in the layout
and hence relieve the users’ physical loading in the repetitive
task of character inputs. The k-cursor movement corresponds
to the x-axis data ranging from 0°to 110°linearly mapping to
the 27 characters in the 1-line layout.

C. 1-line Layout Configuration

Inspired by a prior work designing the minimized inter-
faces [3], we arrange the 27 characters (i.e., the 26 Roman
alphabets (a – z) and the white space ‘ ’) in a horizontal
formation in the alphabetical order (we position the white
space after the alphabet). The alphabetical layout helps the
user learning of the visible layout intuitively and brings
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Figure 2: The system overview of MyoKey.

benefits to MyoKey such as performance improvement [19]
and better usability to novice users [20]. Besides, prior works
on 1-line layouts demonstrated that the alphabetical order
outperforms the QWERTY and ENBUD layouts [21]. The 1-
line characters and recommended words locate at the upper
edge area to reserve the limit-size screen real estate.

IV. SYSTEM DESIGN

In this section, we present the system design of MyoKey,
including the EMG, Classification model, an AR application.

A. EMG

EMG is measured from electrical signals generated by the
muscle tissues by using electrodes on the human skin. There
are two types of electrodes as the skin surface electrode
(non-invasive) located near this field and the needle electrode
(invasive) inserted in [22]. We use a skin surface based
electrode which sends signals based on the action potentials
of the muscle, which leads voltage with both positive and
negative peaks. EMG devices can collect and amplify the
signals generated by the human muscles, process and transmit
them to other devices. The mapping of the collected signals
to the user’s gesture is highly dependent on both the fidelity
of the collected signals and the selected classification method.
We employed an MYO armband to collect signals generated
by the arm muscles. In MyoKey, the MYO armband connects
to the mobile companion via Bluetooth.

B. Classification

For the classification of sEMG signals, we used a convolu-
tional neural network (CNN). Eight channels of temporal data
that are streamed by sEMG sensors withhold multiple patterns
recognizable by the employed CNN. Generally, recognition is
sensitive to the sensor positioning as a temporal picture might
shift dramatically. Employed CNN consists of 5 convolutional
layers, one fully connected (with a dropout rate of 50%),
as well as the softmax layer defining the output. During the
training phase kernels of each hierarchical convolutional layers
learn patterns within one or multiple sEMG channels: the first
layer consists of 25 [1 × 10] filters; the second - 25 [2 × 25]
filters; the third - 50 [10×25] filters; the fourth - 100 [10×50]
filters; the fifth - 200 [10× 100].

Table II: The average accuracy and inference time (standard
deviation) for the discussed gestures.

Average Accuracy (SD) Average Inference Time (SD)

0.91 (0.040) 97.43 ms (1.424)

C. AR Application

We present a system overview of MyoKey consisting of
a Myo armband and AR application based on the Unity
engine. As shown in Figure 2, MYO armband is responsible
for collecting the raw sEMG and IMUs data and sending
them to the AR application. After having established the
CNN model for hand gesture recognition and the IMU signal
processing unit, our AR application features the following
elements. First, the application displays to users the 1-line
keyboard layout with both character keys typed words at the
top edge. Second, full AR-headset supports using the HoloKit
(https://holokit.io/), which is designed to provide users with
mixed reality experience at a low cost.

V. EXPERIMENTS AND EVALUATION

In this section, we evaluate the performance of the classifier
for the discussed gesture set in Section III-A.

Dataset. We first employ the data collected in [23]. To
estimate the classifier’s performance, we randomly select
five subjects. Then, we conduct our experiments on those
participants who are all right-handed without any muscular
condition or skin allergy reported. Their ages range from 23
to 34 years old. The average time of train data recording was
around 5 minutes for each subject. Within the experiment, par-
ticipants performed gestures with the armband on, following
the instructions. Three 30 seconds long records are done per
gesture for each subject on the 200Hz frequency. The first
two records are used to establish train sets. The last record is
used to construct test trials. Each record is then divided into
28 separate trials of 200 samples each. Note that there are 30
trials per 30 seconds, but first and the last second are trimmed
because they may not have any essential information. The trials
are further trimmed according to the selected time window of
a current experiment. We trained the classifier and ran tests
on collected static data. Classifier training is performed on the
laptop, and takes approximately 30 minutes, averaged on 750
epochs per single subject.

Performance. Table II shows the average accuracy and
standard deviation of the models for all subjects. Our CNN
model achieves a high accuracy of 0.91 with a small standard
deviation, which can satisfy multiple contexts in the text
input interfaces. Figure 3 shows the confidence matrix of
cumulative accuracy across all subjects. From the confusion
matrix, we can observe that it is challenging for our CNN
model to distinguish between Gesture ’2’, ’3’, and ’4’. In
other words, results of all subjects (1 – 5) show higher
error rates with Gestures ’2’, ‘3’ and ‘4’ than other gestures,
while Gestures ‘0’ (Fist) and ‘1’ have less error prune. It is
because those confusing gestures are physically similar to each



Figure 3: Confusion matrix for the subject-gesture experiment.

other. We believe that the larger size of training data or data
augmentation methods can be of help to further improve the
performance of the model since the per-subject data is severely
limited. Also, different gesture sets can improve accuracy.

Inference Time. The inference time indicates how much the
model spends to predict using one data sample. As shown in
Table II, the average inference time (i.e., latency) of our model
is around 97.43 ms on average, which is small enough to
provide continuous classification in real-life application [17].
For the time measurement, we use a 2.5 GHz Intel Core i7
with two cores and two 8GB LPDDR3 DRAM.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed MyoKey, a sEMG and IMU
sensing-based system to effectively and unobtrusively input
texts in the constrained screen real estate of AR, with two
prominent designs: (1) Hand gesture recognition using sEMG
signals; (2) Novel interaction design enabling users to nat-
urally select character keys based on IMU signals and 1-
line keyboard layout with off-hand posture. Our preliminary
results demonstrate CNN’s capability of finding patterns from
noisy signals and hence identifying hand gestures with an
alternative modality. The multiple gestures with a reasonable
recognition rate can satisfy the multiple contexts in the text
input interfaces. For future works, we will investigate the
combination of gestures to the design of minimalist interfaces,
for example, splitting the 1-line character layouts by two
gestures for less ambiguous IMU-induced k-cursor pointing.
Accordingly, we will build language models for different split-
ting configurations. Finally, we will evaluate the performance
of these configurations in terms of typing speed and accuracy.
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