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Abstract—Emotion recognition is usually achieved by collecting
features (physiological signals, events, facial expressions, etc.) to
predict an emotional ground truth. This ground truth is arguably
unreliable due to its subjective nature. In this paper, we introduce
a new approach to measure the magnitude of an emotion in the
latent space of a Neural Network without the need for a subjective
ground truth. Our data consists of physiological measurements
during video gameplay, game events, and subjective rankings of
game events for the validation of our model. Our model encodes
physiological features into a latent variable which is then decoded
into video game events. We show that the events are ranked in
the latent space similarly to the participants’ subjective ranks.
For instance, our model’s ranking is correlated (Kendall τ of
0.91) with the predictability rankings.

Index Terms—affective computing, video games, emotion
recognition, neural networks, appraisal theory, arousal, valence,
emotional dimensions

I. INTRODUCTION AND RELATED WORK

One of the main motives for automatic emotion recognition
has been the improvement of human computer interaction
(HCI) by affording machines human-like abilities to better
anticipate and adapt to their operators behaviours and needs.
Both Cowie et al. [3] and Fragopanagos et al. [5] describe the
challenges and opportunities in this endeavour covering not
only the need for machines to recognize human emotions but
also how machines can influence human emotions.

Since then, there has been an abundance of research lit-
erature on the topic of automatic emotion recognition using
physiological signals, a topic which is still very active [6],
[16]. Affective gaming is an exciting sub-field of HCI where
the emotions of video game players are detected and ana-
lyzed in the context of gaming. Video games offer a high
level of immersion and can elicit a wide range of emotions,
making it a popular tool in emotion research [7], [10]. In
the literature, emotion recognition in affective gaming (and
in general) is achieved, almost invariably, by utilizing various
supervised learning techniques which require inputs of features
like physiological signals, events, facial expressions, etc. The
targeted ground truth can be discrete (happy, sad, angry, etc.)
or continuous (arousal, valence, etc.) [7], [8], [10], [16]. More
recently, deep learning techniques have also made their impact
in affective gaming [1].

The quality and reproducibility of the resulting models is
closely tied to the quality of the ground truth labels [2]. In
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general, there are a few common methods to acquire ground
truth data: expert annotations, crowd-sourced annotations, self-
reports, induced emotions. These different methods to acquire
the ground truth make the models difficult to meaningfully
compare. Most are unavoidably subjective in nature since the
verbalized/communicated emotion does not necessarily reflect
the true underlying emotion of the subject [13]. They also
depend on the capacity of an individual to assess their own
or an other’s emotional state [9], [12]. Consequently, these
methods only provide a crude approximation of the ground
truth.

To create models that better capture the emotion of an
individual we must take a step back to look at where emo-
tions come from. Moors [11], does an invaluable comparison
of the different theories and concludes that there is much
agreement that emotions stem from a combination of com-
ponent processes. We will focus on a specific component-
process representation called appraisal theory that is now well
established [14]. The general appraisal process starts with an
event which is subsequently appraised and weighed against
various criteria which together regulate the specific emotion.
In a recent analysis, Scherer and Moors [15], bring to light
problems in emotion research like the use of discrete emotions
despite that emotions are often a combination of different
components with varying amplitudes in a continuous space.
Although correlated, internal emotional states, experienced
feelings, and expressed feelings are not one and the same.
The emotional states are mainly dependent on the various
appraisal criteria, the experienced feelings are the conscious
representation of an amalgamation of the internal emotional
states, the expressed feelings are a further modulation of
the experienced feelings based on sociocultural norms and
interpersonal relationships.

Recent work of Yannakakis et al. [17] make strong argu-
ments for an ordinal approach to measuring and analyzing
emotions. Emotions and the subsequent subjective feelings
towards an event are not absolute, they are experienced in
relation to the emotions of previous events.Yannakakis et al.
show the validity, reliability, and robustness across domains of
an ordinal approach to measuring emotions. Hence, we also
adopt this approach in our work.

In our work we attempt to recover the internal emotional
state by creating a machine learning model that does not rely
on subjective feelings. We do not yet make any recommenda-



tions for the specific layers and components best suited for this
task but rather propose a general architecture that resembles
parts of the appraisal process.

We show that it is feasible to indirectly measure the ampli-
tude of an emotion in the latent space of a Neural Network
without the need for a ground truth of emotion.

Our experimental data consists of physiological signals
collected from video game players while they are engaged
in gameplay. We create a model with physiological features
as input and specific events in the game as targets using a very
basic neural network with an encoder/decoder architecture. We
then look at how the model’s latent/learned variables relate to
emotion, therefore avoiding the use of subjective data during
model training. To our knowledge this is a new approach to
emotion recognition and we hope that our results encourage
further development in this direction.

II. MODEL ARCHITECTURE

We designed our overall architecture in such a way that
it resembles a generic appraisal model where an event goes
through an appraisal process (represented in the encoder)
which produces an internal representation of emotional states
(latent space) that are translated into a measurable physio-
logical reaction (decoder). This is illustrated in the upper
part of Figure 1. The encoder and decoder components can
include any of the modern neural network layers and their
combinations. Our main assumption is that if the inputs and
outputs of the model are strongly linked via internal emotional
states, then the latent space will capture these states.

Events
Physiological

Latent
spaceEncoder Decoder

signals/features
Physiological
signals/features

Events

Fig. 1: The proposed general neural network architecture.

Since our goal is to detect the emotional state from phys-
iological signals we invert the model and use physiological
signals on the input side and the events on the output like the
lower part of Figure 1.

III. DATA AND IMPLEMENTATION

In our experiment, pairs of players were asked to play a
round of 1 vs 1 deathmatch using the Xonotic computer video
game. Xonotic is an open source fast paced first person shooter
similar to Quake 4. The goal of the deathmatch gamemode
is to be the first to get 10 frags (kills), the player respawns
within a few seconds after each death. There are several items
scattered in the environment that the player can pick up and
which are replenished after a short time. Several types of
game events were automatically recorded during gameplay:
weapon pickup, armor pack pickup, damage boost pickup,
health pack pickup, health boost pickup, deal damage, die
(killed by enemy), suicide (death caused by self damage),
kill, receive damage. We also recorded the electrocardiogram

(ECG), electrodermal activity (EDA), and respiration of the
players using a Bitalino device. Immediately after the partici-
pants finished their gameplay session, they were asked to rank
a list of game events in terms of four emotional dimensions
[4]: arousal, valence, control, and predictability (four different
ranking tasks of the game events per participant).

In total, we collected physiological data from 19 dyads (38
participants). We visually inspected the signal quality for each
participant and discarded a participant’s physiological data if
the quality of either the EDA or ECG was not good. This left
us with physiological data for 19 participants. All 38 rankings
for each ranking task remained valid.

A. Participant ranking analysis

To show the disparity between the participants’ subjective
rankings of the game events, we compared them by calculating
the Kendall τ rank correlation between all pairs of ranking in
each ranking task. The results of this comparison are shown in
Figure 2, where we calculate a histogram of Kendall τ values
(in the range of −1 to +1). As expected, the participants did
not perfectly agree. The median/mean Kendall τ for arousal,
valence, control, and predictability were 0.42/0.44, 0.56/0.52,
0.42/0.44, and 0.38/0.34 respectively.
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Fig. 2: Kendall τ rank correlation histogram.

Seeing how the participant rankings are correlated, we
wanted to capture a global representative ranking for each
ranking task. To achieve this, we used the Schulze Condorcet
method to combine all rankings into one for each ranking task.
The resulting rankings are shown in Table I.

Next, we wanted to see which events had the highest agree-
ment among participants in each ranking task. For two events
i, j, we can count how many pairs of rankings have them
in the same relative order (number of concordances, conci,j)
or disagree on their relative order (number of discordances,
disci,j). Then we can calculate a concordance score, csi, for
each event, i, using the following equation:

csi =

∑
j conci,j∑

j conci,j +
∑

j disci,j
=

∑
j conci,j(

R
2

)
(J − 1)

(1)

Where R is the total number of rankings for the ranking task,
and J is the total number of events to rank. The results from



TABLE I: Condorcet rankings of each ranking task. Game events with an asterisk are item pickups.

armor* dmgboost* deal dmg die healthboost* health* kill receive dmg suicide weapon*
Arousal 9th 6th 4th 3rd 7th 10th 1st 5th 2nd 8th
Valence 6th 5th 9th 2nd 8th 7th 10th 3rd 1st 4th
Control 9th 5th 6th 2nd 8th 10th 4th 3rd 1st 7th
Predictability 8th 6th 5th 2nd 7th 10th 3rd 4th 1st 9th
Model 7th 6th 5th 2nd 8th 9th 3rd 4th 1st 10th

our data are shown in Figure 3, where we notice that the
’suicide’ game event has the highest concordance score among
all ranking tasks except arousal, followed by the ’die’ game
event. This tells us that the rank given to the ’suicide’ game
event had the highest agreement between participants.
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Fig. 3: Concordance score of events for each emotional
dimension.

B. Model implementation and training

In our implementation we chose to use the most simple
and basic components of a neural network as a starting point.
To achieve this, our inputs consisted of pre-processed physi-
ological features calculated from 15 second rolling windows
(13 second overlap) of the filtered signals. The EDA signal
was filtered using a low-pass Butterworth filter of order 4
with a cutoff frequency of 5Hz. The ECG signal was filtered
using a FIR bandpass filter of order 33 with a low frequency
cuttoff of 3Hz and high frequency cutoff of 45Hz. Then the
heart rate (HR) was calculated from the filtered ECG signal.
The input features to the model were the mean and variance
of the standardized (per participant) HR, and the mean and
variance of the derivative of the filtered EDA signal. The
targets consisted of a multi-hot encoded vector of the events
where an event was ’hot’ (had a value of 1) if there was at
least one occurrence of that event in the first 8 seconds of
the main 15 seconds window and 0 otherwise. The reason for
including events only in the first 8 seconds of the main 15
second window is to ensure that we do not include events
which have not yet influenced the physiological signals in the
main window, and to also include as much of the physiological
response as feasible for the events in that window.

Both our encoder and decoder layers consisted of a fully
connected layer with no bias. The latent space had a single
dimension. The full implemented model is shown in Figure 4.
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Fig. 4: Implemented model. Events with an asterisk are item
pickups.

We trained 50 models with different training and validation
sets. We split the data by dyads - for each model 70% were
chosen randomly (without replacement) and the remaining
30% were used for validation. We used a weighted binary
cross entropy loss function. For each model, the weights for
the loss function were calculated from their respective training
sets. We did not use a test set since we were not interested in
how well the model could predict the game events from the
physiological signals and to maximize the data that would go
into the training and validation. Despite the lack of a test set,
we did pay attention that the loss of the model decreases with
each epoch indicating that the model is learning.

IV. RESULTS AND DISCUSSION

For each model we can rank the game events according
to how sensitive their corresponding neurons are to the latent
variables. This can be achieved by entering a range of values to
the input of the decoder. In our case, since our decoder layer
consists of a single linear layer with no bias we could use
the decoder weights directly to order the events. For example,
if the events [kill, die, pickup armor] have weights [-2,5,1],
then the rank would be [kill, pickup armor, die]. We compared
the ranking correlation between all model ranks (50 in total)
in the same manner as with the participant rankings. The
median and mean Kendall τ were 0.022 and 0.037 respectively
indicating that there is no correlation between the models.
Upon inspection, it was clear that many of the model rankings
were reversed (had negative Kendall τ ). This was due to the
nature of the architecture we used which allowed for the
weights of the encoder and decoder to both be multiplied by
−1 with no effect to the training performance. To solve this
issue, we anchored the ’suicide’ game event to one side of the
ranking, i.e. we reversed ranks that were deemed to be flipped
with respect to that event. Our choice of this event was based
on the event concordance score from the participants’ rankings
(see Figure 3) where it had a higher score overall. In Figure 2,



we see that the models correlation (post anchoring) increased
significantly but still remains weak with the median and mean
Kendall τ being 0.2 and 0.24 respectively.

The weak correlation between the models tells us that this
particular neural network architecture cannot easily distinguish
emotions given the particular physiological features that we
used. Another factor has to do with the individuality of the
appraisal process. Our training data included features from
multiple participants resulting in conflicting information.

A. Model Condorcet

Like with the participant rankings, we computed the models’
Condorcet ranking so that we can easily compare with the
participant Condorcet rankings. It is included in Table I. In
Figure 5 we show the Kendall τ correlation of the Condorcet
rankings of the emotional dimensions (participant data) along
with the Condorcet ranking of the models.
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Fig. 5: Rank correlation between the Condorcet ranks.

Arousal, control, and predictability are highly correlated
with each other while valence is not significantly correlated
with the rest. The model ranking is most correlated with pre-
dictability but is also significantly correlated with arousal and
control. This leads us to believe that the model successfully
captured the most significant emotional factor that relates the
physiological signals to the game events.

V. CONCLUSION AND FUTURE WORK

In this paper, we wanted to reveal a path towards auto-
matically recognizing the internal emotional state of a person
parallel to the current field of automatic emotion recognition
which focuses on expressed subjective feelings. Our approach
is to create a neural network architecture which closely mirrors
the well established appraisal processes.

Our model learned an internal relation in its latent space
by only using physiological features and the occurrences of
the game events themselves. The latent space was found to be
highly correlated with the emotional dimension of predictabil-
ity based on a comparison of the aggregate participant rankings
of events and the aggregate model rankings of events. This

leads us to conclude that our model has learned to recognize
an internal emotional state using physiological features.

It is important to note that there are challenges in this
analysis that must be addressed. The use of engineered features
in the input is a limitation on the learning capacity of a neural
network since important information about the signal is lost.
The current model’s latent space is not sign consistent since
all the weights can be multiplied by −1 without affecting
the loss. The architecture lacks the capacity to learn non-
linear relationships and also lacks memory. Both of these are
important in the appraisal process and should be incorporated
in the model. We must incrementally integrate more complex
components into our architecture that retain or improve the
interpretability of the latent space.
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