
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-18T03:18:56Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Edge2Guard: Botnet attacks detecting offline models for
resource-constrained IoT devices

Author(s) Sudharsan, Bharath; Sundaram, Dineshkumar; Patel, Pankesh;
Breslin, John G.; Ali, Muhammad Intizar

Publication
Date 2021-03-22

Publication
Information

Sudharsan, Bharath, Sundaram, Dineshkumar, Patel, Pankesh,
Breslin, John G., & Ali, Muhammad Intizar. (2021).
Edge2Guard: Botnet attacks detecting offline models for
resource-constrained IoT devices. Paper presented at the IEEE
19th International Conference on Pervasive Computing and
Communications (PerCom Workshops), Kassel, Germany, 22-
26 March, doi: 10.13025/xbz2-8f29

Publisher National University of Ireland Galway

Link to
publisher's

version
https://doi.org/10.13025/xbz2-8f29

Item record http://hdl.handle.net/10379/16752

DOI http://dx.doi.org/10.13025/xbz2-8f29

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Edge2Guard: Botnet Attacks Detecting Offline
Models for Resource-Constrained IoT Devices

Bharath Sudharsan∗, Dineshkumar Sundaram†, Pankesh Patel∗, John G. Breslin∗, Muhammad Intizar Ali‡
∗Confirm SFI Research Centre for Smart Manufacturing, Data Science Institute, NUI Galway, Ireland

{bharath.sudharsan, pankesh.patel, john.breslin}@insight-centre.org
†AVM Solutions, dinesh.kumar@avmsolutionsuk.com

‡ School of Electronic Engineering, DCU, Ireland, ali.intizar@dcu.ie

Abstract— In today’s IoT smart environments, dozens of MCU-
based connected device types exist such as HVAC controllers,
smart meters, smoke detectors, etc. The security conditions for
these essential IoT devices remain unsatisfactory since: (i) many
of them are built with cost as the driving design tenet, resulting
in poor configurations and open design; (ii) their memory and
computational resource constraints make it highly challenging
to implement practical attack protection mechanisms; and (iii)
currently, manufacturers use simplified light protocol versions
to save memory for extra features (to boost sales). When
such issues and vulnerabilities are exploited, devices can be
compromised and converted into bots whereby severe DDoS
attacks can be launched by a botmaster. Such tiny devices are
safe only when connected to networks with defense mechanisms
installed in their networking devices like routers and switches,
which might not be present everywhere, e.g. on public/free Wi-
Fi networks. To safeguard tiny IoT devices from cyberattacks,
we provide resource-friendly standalone attack detection models
termed Edge2Guard (E2G) that enable MCU-based IoT devices
to instantly detect IoT attacks without depending on networks
or any external protection mechanisms. During evaluation, our
top-performing E2G models detected and classified ten types of
Mirai and Bashlite malware with close to 100% detection rates.

Index Terms—Edge Intelligence, Intelligent Microcontrollers,
IoT Security, Attacks Detection, IoT Botnet Attacks, DDoS.

I. INTRODUCTION

Advances in semiconductor technology have reduced their
dimensions and cost while improving the performance and
capacity of small IoT chipsets. Methods from recent research
[1]–[4] enable users to fit, deploy and execute advanced
ML models [5]–[8] on quite basic chipsets that are highly
resource-constrained. On the other hand, algorithms [9] are
emerging to enable resource-constrained IoT devices to self-
learn from evolving real-world data, producing futuristic IoT
devices that can re-train themselves on-the-fly to produce better
edge analytics results. Such cutting edge technologies and
algorithms are not of much use when an IoT application
powered by them gets easily compromised during cyberattacks
like DDoS (Distributed Denial of Service) attacks. The DDoS
packets generated from a single compromised device are
sufficient to launch attacks with an enormous magnitude that
could easily disrupt any IoT smart environment (see Fig. 1),
corrupting a functioning IoT meta-system. Recent reports have
estimated that over 50 billion devices will be connected to
the Internet by 2025, over half of which may be vulnerable

to multiple cyberattacks1. According to a Symantec report2, it
takes only 2 minutes to attack an IoT device, and in a Kaspersky
Lab threat report3, they were able to collect 121,588 malware
samples from IoT devices in 2018, ≈ 4 times more than in
2017.

Despite the existence of such high threats, the security
conditions of widely deployed essential IoT devices like
HVAC controllers, smart meters, security cameras, etc. remain
unsatisfactory. This is because, to produce lower-power and
-cost devices (feasibility), MCUs and small CPUs are used
as the brains of such IoT devices. Since such tiny chipset
devices are highly resource-constrained with only a few MB
of memory (Flash, SRAM and EEPROM) and have limited
computational power, it is highly challenging to implement
practical attack protection mechanisms. Also, since such
devices are built with cost as the driving design tenet, they have
poor configurations and open design. Next, to save memory and
simultaneously provide attractive functionalities to customers
(to boost sales), manufacturers adopt simplified lightweight
versions of protocols in their devices, making them susceptible
to various attacks. Such issues make IoT devices the low-
hanging fruit for attackers. More seriously, their vulnerabilities
can be exploited to create botnets that launch severe DDoS
attacks when commanded by an attacker/botmaster.

To safeguard tiny IoT devices, we cannot expect network-
based attack detection mechanisms [10] on all external net-
works. For example, our smartwatch may connect to dubious
free Wi-Fi networks in public places like shopping malls,
when we arrive at the airport, etc. and get attacked by bots
or malicious devices from such insecure networks. Hence,
there is a pressing need for a defense mechanism that can
execute on memory and power-constrained MCU-based IoT
devices, without impairing their lifespan or jeopardizing their
functionality.

In this paper, we provide Edge2Guard (E2G) models to
alleviate the above cyber-security issues. When E2G models
are deployed on IoT devices, they continuously monitor
network traffic data to detect malware attacks in real-time.
We achieved almost 100% accurate detection rates using E2G.

1https://threatpost.com/half-iot-devices-vulnerable-severe-attacks/153609/
2https://docs.broadcom.com/doc/istr-22-2017-en
3https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/



Fig. 1. Attack flow in a typical IoT smart environment; vulnerable devices are converted into bots, the rest are attacked: E2G models can execute offline on
resource-constrained IoT devices to detect malware like Bashlite/Gafgyt and Mirai that turns connected devices into remotely controlled bots.

Unlike other approaches, our models detect attacks without
depending on networks (standalone) or any external protection
mechanisms (offline), and they can be executed on a wide range
of MCU-based IoT devices without imposing computational
pressure and also without disturbing device routine (resource-
friendly design).

II. BACKGROUND AND RELATED WORK

In Section II-A, we briefly describe how bots can affect
an IoT smart environment by initiating various DDoS attacks
with its operational flow/sequence in Section II-B. In sections
II-C & II-D, we brief the standard and ML-based studies that
aim to detect botnets, IoT-related anomalies, malware attacks
in order to maintain a risk-free smart environment.

A. DDoS Attacks

Using any type of attack from the DDoS family, the
botmaster attempts to obstruct legitimate IoT devices from
accessing their network services. As shown in Fig. 1, a
hacker can create a network of bots (a botnet) by initially
compromising one IoT device (e.g. a CCTV). Then, the CCTV
bot, disrupting its standard routine (thereby compromising
security), converts vulnerable devices in the network into bots
and also launches a DDoS attack on other nearby devices and
remote servers when commanded.

The DDoS attacks launched by tiny IoT devices like
smart speakers [11], smart plugs, smart meters, etc. are more
challenging to detect since the attackers forge malicious packets
leveraging the device’s firmware design flaws or bugs in their
communication protocols. Also, as shown in Fig. 1, besides
being affected by DDoS attacks, compromised IoT devices
(bots) are used by the botmaster as a local assistant tool during
DDoS attacks. Hence the current dumb security levels of such

devices allows them to be controlled, resulting in establishing
a distributed botnet. For example, within 20 hours of the Mirai
malware being released, 65k IoT devices were compromised
and turned into bots, and were used to launch massive DDoS
attacks targeting remote servers. In the following, we outline
the two major categories of IoT DDoS attacks.

Flooding attacks. A massive numbers of disguised network
packets are injected to exhaust the victim’s resources and net-
work bandwidth. A common type of attack is where the attacker
employs a large number of repetitive communication requests,
eventually filling the victim’s buffer, restricting victims from
accepting new messages and requests from legitimate devices.
ICMP flooding, UDP flooding, DNS flooding are common
examples of this attack. In the following, we present commonly
found attacks:

– Protocol exploitation attacks. The attackers exploit specific
features or implementation bugs to exhaust the victim’s network
resources. For example, the three-way handshake feature in
TCP can be used to disrupt legitimate IoT devices by ACK
and PUSH flooding. Here, initially, SYN messages are sent
en masse to the edge server, and the bot which sent it refuses
to react to the server response messages, causing servers to
persistently wait for non-existent ACK messages. This leads to
exhausting of the limited buffer queues of the server, leaving
no room for processing new connection requests.

– Reflection flooding attacks. Using the bots, forged request
packets with a manipulated source address are sent to the edge
server. Since the spoofed packets are indistinguishable from
the legitimate ones of IoT devices (victims), massive response
packets are directed to the victim. Amplification flooding
attack is a type of reflection attack where bots fraudulently
cause a server to generate a tremendous volume of response



Fig. 2. Overview of malware communication and its basic components.

packets to a victim with limited requests. Attackers usually
combine those two types of attacks to turn small queries into
much larger payloads, then use it to bring down the IoT devices.

– Slow request/response attacks. The attacker’s bot in the
IoT network holds the communication channel by spoofing
high-workload requests or responses, resulting in high server
resource consumption, preventing legitimate requests from
going through. Differentiating this attack from the usual traffic
is difficult, and its mitigation process is cumbersome as a
single bot (any tiny IoT edge device like a smart doorbell) in
the network is sufficient to perform this attack.

B. Botnet and the IoT Zombie Armies

Malicious actors use our daily IoT devices as their powerful
and mysterious playground since such devices are vast in
numbers and diverse in locations. Their primary goal is to
gather botnets to serve their nefarious purposes, ranging from
spam and advertisement fraud to DDoS. In this section, we
present the IoT botnet landscape and the reasons for its success.

Multitudinous IoT-powered DDoS armies are rapidly assem-
bled by prevalent malware families like Mirai and Bashlite. The
majority of such DDoS-malware comprises of two parts: the bot
part coded in C, and its infrastructure. Using Fig. 2, we explain
the botnet and its infrastructure. In any such smart environment,
if there is a bot deployed, as shown in the circled 1 , it starts
exploring the IP space (at a max rate of 128 connections/sec) to
find and convert vulnerable devices into bots. After successfully
compromising a new device, it gains shell access, then in the
next step circled 2 , the new victim’s characteristics such as
IP address, port, login credentials, etc., are transmitted to the
Reporter server. Then, in the step circled 3 , the botmaster
connects to the report server using a Tor circuit to investigate
the features of the newly acquired devices. After this, the
botmaster infects it by sending the device IP from the report
server to the Loader server, which is the step circled 4 . In

the next step circled 5 , depending on the victim’s hardware
architecture, via TFTP or wget, the appropriate binary is
downloaded and executed. In the step circled 6 , new and
existing bots listen to instructions from the Command and
Control server (C&C), and every 60 secs, heartbeat packets are
transmitted between C&C and bots (servers directly controlled
by the botmaster). When commanded, attack traffic is generated
by an enormous number of bots (compromised IoT devices
functioning in smart factories, experience centers, etc.), through
which target servers are attacked in the final step circled 7 .

C. DDoS Attack Defense Techniques

To protect IoT devices, in the following, we outline standard
techniques that detect attacks before they occur.

IP traceback. Performing packet filtration closer to the attack
source (to avoid impacting other networks) is essential to reveal
the actual bot and path followed by attack packets. Widely
used IP traceback techniques can be used to assist in packet
filtration. A link testing technique was presented in [12] that
performs a recursive search, where the link testing path starts
from the router closest to the victim device and ends at the
source router of the identified attacker. In [13], a hash-based
IP traceback approach by using practical packet logging was
presented, which can be used to defend against botnet DDoS
and reflection-based attacks.

Entropy variations. To detect slow request or response attacks,
users can find the difference in the entropy values (flow-header
features and behavioral features) of attack packets at the source
or destination IP address and their corresponding ports [14].
In [15], short term entropy was employed for early attack
detection and long term entropy for attack classification. This
approach can be deployed to identify protocol exploitation
flooding attacks.

Intrusion detection and prevention systems (IDS/IPS). In
an IoT architecture, IDS can be deployed on any layer, such
as in the cloud layer [16] for gathering alerts from edge
sensors, and can then correlate and analyze the alerts. In
the firewall layer [17] on SDN switches, when malicious
activity is detected, IPS can prevent intrusions via packet
drops, resetting connections, or blocking the attacker’s traffic.
In attack detection studies, various methods [18, 19] focus on
detecting the early steps of propagation and communication
with the command and control server. Other articles look at
host-based [19, 20] and network-based approaches [18, 21]–
[23]. In [24], the hierarchical taxonomy of botnet detection
approaches was presented.

D. ML Techniques to Detect Botnets

A wide variety of ML algorithms are available to detect
attacks in IoT environments. Article [25] presents an OC-
SVM detection mechanism for application-layer DDoS attacks.
Honeypots [26] detect botnet DDoS attacks by capturing device
malware installation attempts using unsupervised methods.
Another ANN-based method [27] accurately discovered several
application-layer DDoS attacks. Methods to detect botnet



activities within consumer IoT networks was presented in
[28]. N-BaIoT [10], an autoencoder, was proposed to detect
anomalous network traffic from compromised IoT devices
(bots). The study [29] presents a CNN-based DDoS attack
detection and warning system.

The techniques in section II-C are executed at various IoT
architecture levels, i.e., the IP traceback and entropy variations
are at the network layer, and IDS are on the cloud and in
switches. Similarly, the above and other ML approaches [30]
build models based on attack packets to predict or classify
DDoS attacks, which are then deployed on different networking
devices such as routers, honeypots, switches and firewalls.
From the surveys by [24, 31], many on-device methods were
left uncited, and offline (network independent) methods for
resource-constrained IoT devices were not mentioned at all.
In conclusion, our E2G models can execute offline on MCU-
based IoT devices to detect attacks in any IoT environment
with high accuracy, without imposing computational pressure,
and also without disturbing device routines.

III. PROPOSED EDGE2GUARD DESIGN

To provide a standalone attack-detecting mechanism for
resource-constrained MCU-based IoT devices, we follow the
ML-based approach, where we select a dataset, then train
to produce resource-friendly attacks detecting E2G models,
followed by extensive evaluation4. In the rest of this section,
we provide the steps involved in designing E2G models, and
explain how to deploy and execute them on tiny IoT devices.

A. Dataset and IoT Devices

We select and use the N-BaIoT [10] dataset as it contains
data patterns (raw data in the pcap packet capture format
using port mirroring) for normal and attack traffic from nine
commercial IoT devices. The attack traffic was collected
by infecting devices with authentic botnets from the Mirai
and Bashlite families, whose traits and attack impacts were
explained in Section II-B. For each data packet, the 115
features provided in the dataset that we use for training are the
traffic statistics (packet context) extracted over several temporal
windows (behavioral snapshots of when packets arrive). These
115 features are derived from five sets of 23 features extracted
from 100ms, 500ms, 1.5sec, 10sec, and 1min time windows
that are most recent. In the dataset, for each device, under
each attack class, 5 subclasses represent the type and class of
traffic. Hence, it contains 80 files with attack traffic data, 9
files (one for each device) with benign (regular) traffic data,
and the overall dataset contains around 7 million instances.

B. Exploratory Data Analysis

We used a PCA dimensionality reduction method to mathe-
matically reduce the 115 features into two features, which we
plot and visualize in Fig. 3 in order to explore the patterns and
find out trends between the malicious and benign traffic data.
From Fig. 3, we can notice from the plots of the Provision PT-
737E and PT-838 camera models that they both have similar

4Code available at https://github.com/bharathsudharsan/Edge2Guard

Fig. 3. 3D scatter plots for EDA: PCA was used to reduce and plot the
115 features of main classes Mirai, Bashlite, and benign (regular) traffic for
various IoT devices. The bar graphs show the class count.

traffic patterns. Also the plots of SimpleHome 1002 and 1003
camera models have similar patterns. From this, we can infer
that both Mirai and Bashlite malware behave the same way
for devices from the same brand. Therefore, one E2G model
is sufficient for same brands of device. Next, we can notice
from the plot for a baby monitor that it contains benign data
(regular traffic plotted in green) that is spread across the plot,
indicating that frequent activities are performed on the baby
monitor compared to other IoT devices. We also noticed that
two devices contain traffic data for only one family of attacks,
which was the reason for absence of 10 attack traffic data files
(80 files were available instead of 90). From the bar graphs in
Fig. 3, it is clear that the dataset is highly imbalanced (unequal
distribution of classes) with a 1:13 ratio of normal:attack traffic.
Hence we need to pre-process the dataset before training in
order to obtain unbiased E2G models. A more detailed report
that includes data statistics, variable types, 2D visualizations of
features, data profile of each malware type, etc. are available
in our repository.

C. Data Pre-processing

We pre-process the data to group it into four categories, using
which, for each device, we train multiple supervised learning
classifiers that can detect attacks by accurately differentiating
them from regular traffic. The group names starting with all
data consists of the entire imbalanced dataset with 65,00,000
instances (data rows) for attack traffic, 500,000 instances for
normal traffic. The E2G models trained using all data with 3
classes should detect and classify the main class name, i.e.,
whether the input data is Mirai or Bashlite or benign, and
the model trained on all data with 11 classes should classify
exactly which subclass the input data belongs to (each subclass
is a member of the Mirai or Bashlite families). For group names



TABLE I
COMPARING PERFORMANCE OF VARIOUS ATTACK DETECTION E2G

MODELS FOR DANMINI DOORBELL.

Model Acc Recall Prec F1 Kappa MCC
Random Forest 1.0000 0.9999 1.0000 1.0000 0.9999 0.9999
Decision Tree 0.9998 0.9997 0.9998 0.9998 0.9997 0.9997
K Neighbors 0.9980 0.9935 0.9980 0.9980 0.9960 0.9960
Ridge Regr 0.9969 0.9958 0.9969 0.9969 0.9936 0.9936
iForest 0.9700 0.96 1.00 0.98 0.6546 0.6977
OC-SVM 0.9300 0.93 1.00 0.96 0.0453 0.1058
Ada Boost 0.9245 0.9202 0.9340 0.9216 0.8392 0.8522
QDA 0.6834 0.8271 0.8491 0.6724 0.4799 0.5712
Naive Bayes 0.6585 0.3543 0.7312 0.5410 0.0693 0.1829
Linear SVM 0.4204 0.3930 0.4682 0.3959 0.0762 0.1060
LOF 0.1400 0.85 0.09 0.17 0.0182 0.0912
Logistic Regr 0.0486 0.3333 0.0024 0.0045 0.0000 0.0000

starting with under sampled, we balance the data by under
sampling data rows belonging to the majority attack traffic
class to obtain a balanced dataset with 360,410 instances for
normal traffic and 639,590 for attack traffic. Similar to the
above groups, the under sampled data with 3 classes and
under sampled data with 11 classes trained models should
classify the family names and family members respectively.
When using any of the above four groups, we follow a 70-
30 training-testing split and used all the 115 features since
malware can attack the device at different time intervals.

D. E2G Models Design and Evaluation

The processed data can be used to build E2G models in three
different approaches. In the first approach, we propose training
a generic E2G model using the entire dataset that can detect
attacks on any IoT device. Second, we can build one model
for each category of device, i.e. one E2G model for cameras
and another for doorbells. Third, we build separate models
for each IoT device using the processed benign and attack
traffic data of the corresponding devices. All of the above
approaches have their merits and demerits. For example, in the
first, the size of the E2G model will be larger than the available
MCU memory because model size increases with the count of
devices. Also, the dataset for the other existing thousands of
devices needs to be collected and used for training, which is
not feasible. In the second, accurate attack detection cannot
be guaranteed for devices whose traffic data were not exposed
during training. So we implement a third approach where the
resultant E2G model for each device is small in size due to
using device-specific training data.

E2G Supervised Learning Models. Before training various
types of models for each IoT device, we initially took the pre-
processed data of the Danmini doorbell and trained multiple
supervised learning models, and present its performance in
terms of accuracy, recall, precision, F1 score, Kappa, and
Matthews Correlation Coefficient (MCC) in Table I. This result
was produced when evaluating using 30% unseen data. Due to
the non-linear nature of the dataset, the Random Forest (RF)
and Decision Tree (DT) classifiers performed the best, and
Logistic Regression produced the least accurate results. We did
not use Deep Autoencoders, CNNs, or ANNs like in previous

TABLE II
F1 SCORE OF THE TOP-PERFORMING RF AND DT E2G MODELS WHEN

TESTING USING IOT DEVICE DATA.

Device
All data
with 3
classes

Under
sampled
data with
3 classes

All data
with 11
classes

Under
sampled
data with
11 classes

E2G Model RF DT RF DT RF DT RF DT
Danmini Doorbell 1.0 1.0 1.0 1.0 1.0 0.86 1.0 0.57
Ecobee Thermostat 1.0 0.99 1.0 1.0 0.99 0.92 0.98 0.77
Ennio Doorbell 1.0 0.99 1.0 1.0 0.99 0.94 0.98 0.98
Philips B120N10
Baby Monitor 1.0 1.0 1.0 1.0 0.99 0.85 0.98 0.87

Provision 737E Cam 1.0 1.0 1.0 1.0 0.99 0.78 0.98 0.85
Provision 838 Cam 1.0 1.0 1.0 1.0 1.0 0.79 1.0 0.87
Samsung SNH
1011 N Webcam 1.0 1.0 1.0 1.0 0.99 0.89 0.99 0.99

Simple Home
XCS7 1002 Cam 1.0 0.99 1.0 1.0 1.0 0.91 1.0 0.64

Simple Home
XCS7 1003 Cam 1.0 0.99 1.0 1.0 0.99 0.91 0.97 0.84

methods since we aim to train and deploy attack-detecting
models on tiny IoT devices and not on networking devices
like routers and switches that have better resources.

E2G One-Class Classification Models. Malware keeps evolv-
ing, so the E2G models deployed on devices need to be updated
(via OTA) with models that are trained using the attack traffic
data for the new malware. There is a high chance of such
updates being released after the device has been compromised.
To avoid this, we approached this problem using one-class
learning approaches, as we had used in other recent work
[32]. To produce E2G One-Class Classification (OCC) models,
we trained only using benign data since, as briefly described
earlier, it is not feasible to track hundreds of new malware
forms and to collect their attack traffic data by infecting and
observing the device. Instead, in the OCC approach, we train
models just using the device-specific benign data and consider
other hundreds of types of malware attack data like Mirai,
Bashlite, etc. as outliers (not shown during training) that need
to be detected. We apply One-Class Support Vector Machines
(OC-SVM), Isolation Forest (iForest), and a Local Outlier
Factor (LOF) on the 115 features and show their evaluation
results in Table I (arranged in the order of performance).

Top-performing E2G Models for IoT Devices. The iForest
and OC-SVM OCC models perform reasonably well and also
are more feasible to design (they do not require attack traffic
data for any of the hundreds of malware family members during
training), smaller in size (since only benign data is used), and
easy to maintain (they do not require OTA updates). However,
we choose RF and DT because, in attack detection use cases,
even if a single instance of attack traffic is misclassified as
benign, the device will get compromised. Hence, we proceed
with the RF and DT E2G models as they accurately classified
all 10 types of attacks. Here, as planned, for each IoT device,
we train individual RF and DT E2G models for attack detection.
All the individual models were evaluated using the same
metrics shown in Table I. For brevity purposes, we only present



the F1 scores of the top-performing E2G RF and DT models in
Table II. We provide other types of E2G models for each IoT
device with detailed multiple metrics-based evaluations, their
feature importance, and a confusion matrix in our repository.

E. E2G Models Deployment on MCU-based IoT devices

We saved the top-performing E2G models of each device
in separate serialized Python pickle (.pkl) files (containing
learned information like model weights) and provide it in our
repository. Here, in four steps, we outline how to use our
RCE-NN pipeline [1] to deploy and execute saved E2G attack
detection models on the MCUs of IoT devices. The Model
conversion is Step 1, where the E2G model is converted into
a FlatBuffer file containing its direct data structures such
as the information arrays of graphs, subgraphs, lists of tensors,
operators, etc. Next, in Step 2 which is Model translation,
since MCUs lack native file-system support, we cannot load
and run models directly on such devices, so here we convert
the model’s FlatBuffer file into a c-byte array (the model in a
char array) using the xxd UNIX command. Step 3 is Model
integration, where the c-byte array of the E2G model is fused
with the main IoT program, for which the devices’ executable
binaries are built using a technique from RCE-NN pipeline.
Finally, in the Model Deployment (Step 4), the output from
the last step should be used to flash the binaries of the attack-
detecting E2G model onto the MCUs of IoT devices.

F. Comparing E2G Results with Other Methods

When comparing the performance of our E2G with papers
that cite and use the N-BaIoT dataset, our RF and DT
E2G models outperformed the models in articles from [25]–
[29] by showing close to 100% detection rates. Next, when
compared with the standard host-based [18]–[20] and network-
deployed [21]–[23] approaches (from Section II-C), users
can benefit more when they use our E2G models because
of their standalone, offline attack detection capabilities that
protect devices even when connected to dubious networks
by mistake. Other benefits are that we have open-sourced
the implementation and E2G models so that they can be
readily used to reproduce the results from Tables I & II. With
modifications, our code can be used to train models that can
accurately detect various types of malware family members
while being friendly enough (computationally light and not
disturbing a device’s routine) to be deployed on a wide range
of tiny IoT devices.

IV. CONCLUSION

We presented E2G models that can be comfortably executed
within the limited resource of tiny IoT devices and can classify
malware attack traffic in real time, with the highest detection
performance in comparison to existing approaches. In future
work, we aim to deploy our E2G models on devices and test
them using real-world data. We also plan to implement and
add a resource-friendly prevention and alert mechanism that
enables E2G models to perform post-attack detection actions.

ACKNOWLEDGEMENT

This publication has emanated from research supported in
part by a research grant from Science Foundation Ireland (SFI)
under Grant Number SFI/16/RC/3918 (Confirm) and also by
a research grant from Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289_P2 (Insight), with both grants
co-funded by the European Regional Development Fund.

REFERENCES

[1] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Rce-nn: A five-stage pipeline
to execute neural networks (cnns) on resource-constrained iot edge
devices,” in 10th International Conference on the Internet of Things.

[2] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Ultra-fast machine
learning classifier execution on iot devices without sram consumption,”
in 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2021.

[3] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Sram optimized
porting and execution of machine learning classifiers on mcu-based
iot devices: demo abstract,” in Proceedings of the ACM/IEEE 12th
International Conference on Cyber-Physical Systems (ICCPS), 2021.

[4] B. Sudharsan and P. Patel, “Machine learning meets internet of things:
From theory to practice,” The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2021.

[5] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Adaptive strategy to improve
the quality of communication for iot edge devices,” in 2020 IEEE 6th
World Forum on Internet of Things (WF-IoT), 2020.

[6] B. Sudharsan, S. P. Kumar, and R. Dhakshinamurthy, “Ai vision: Smart
speaker design and implementation with object detection custom skill
and advanced voice interaction capability,” in 2019 11th International
Conference on Advanced Computing (ICoAC), 2019, pp. 97–102.

[7] B. Sudharsan, P. Patel, A. Wahid, M. Yahya, J. G. Breslin, and M. I. Ali,
“Demo abstract: Porting and execution of anomalies detection models on
embedded systems in iot,” Proceedings of the ACM/IEEE Conference
on Internet of Things Design and Implementation (IoTDI), 2021.

[8] B. Sudharsan, S. Malik, P. Corcoran, P. Patel, J. G. Breslin, and M. I.
Ali, “Owsnet: Towards real-time offensive words spotting network for
consumer iot devices,” in IEEE 7th World Forum on Internet of Things,
2021.

[9] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Edge2train: A framework to
train machine learning models (svms) on resource-constrained iot edge
devices,” in 10th International Conference on the Internet of Things.

[10] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot—network-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, 2018.

[11] B. Sudharsan, P. Corcoran, and M. I. Ali, “Smart speaker design
and implementation with biometric authentication and advanced voice
interaction capability,” in Artificial Intelligence and Cognitive Science.

[12] H. Burch and B. Cheswick, “Tracing anonymous packets to their
approximate source.” in LISA, 2000, pp. 319–327.

[13] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-based ip traceback,” ACM
SIGCOMM Computer Communication Review, 2001.

[14] D. Boro and D. K. Bhattacharyya, “Dyprosd: a dynamic protocol specific
defense for high-rate ddos flooding attacks,” Microsystem Technologies.

[15] S. Oshima, T. Nakashima, and T. Sueyoshi, “Early dos/ddos detection
method using short-term statistics,” in 2010 International Conference
on Complex, Intelligent and Software Intensive Systems.

[16] S. Roschke, F. Cheng, and C. Meinel, “Intrusion detection in the
cloud,” in 2009 Eighth IEEE International Conference on Dependable,
Autonomic and Secure Computing. IEEE, 2009, pp. 729–734.

[17] P. Rengaraju, V. R. Ramanan, and C.-H. Lung, “Detection and prevention
of dos attacks in software-defined cloud networks,” in 2017 IEEE
Conference on Dependable and Secure Computing.

[18] M. Özçelik, N. Chalabianloo, and G. Gür, “Software-defined edge
defense against iot-based ddos,” in 2017 IEEE CIT.

[19] D. H. Summerville, K. M. Zach, and Y. Chen, “Ultra-lightweight deep
packet anomaly detection for internet of things devices,” in 2015 IEEE
34th IPCCC, 2015, pp. 1–8.



[20] H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri, “A lightweight anomaly
detection technique for low-resource iot devices: A game-theoretic
methodology,” in 2016 IEEE ICC.

[21] H. Bostani and M. Sheikhan, “Hybrid of anomaly-based and specification-
based ids for internet of things using unsupervised opf based on
mapreduce approach,” Computer Communications, 2016.

[22] I. Butun, B. Kantarci, and M. Erol-Kantarci, “Anomaly detection and
privacy preservation in cloud-centric internet of things,” in 2015 ICCW.

[23] D. Midi, A. Rullo, and E. Bertino, “Kalis - a system for knowledge-driven
adaptable intrusion detection for the internet of things.”

[24] S. García, A. Zunino, and M. Campo, “Survey on network-based botnet
detection methods,” Security and Communication Networks.

[25] C. She, W. Wen, Z. Lin, and K. Zheng, “Application-layer ddos detection
based on a one-class support vector machine,” International Journal of
Network Security Its Applications, vol. 9, pp. 13–24, 01 2017.

[26] R. Vishwakarma and A. K. Jain, “A honeypot with machine learning
based detection framework for defending iot based botnet ddos attacks,”

in 2019 Conference on Trends in Electronics and Informatics (ICOEI).
[27] M. Asad, M. Asim, T. Javed, M. O. Beg, H. Mujtaba, and S. Abbas,

“Deepdetect: Detection of distributed denial of service attacks using deep
learning,” Comput. J., vol. 63, pp. 983–994, 2020.

[28] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW), 2018, pp. 29–35.

[29] C. Jinyin, Y.-t. Yang, K.-k. Hu, H.-b. Zheng, and Z. Wang, “Dad-mcnn:
Ddos attack detection via multi-channel cnn,” 02 2019, pp. 484–488.

[30] P. Xiao, W. Qu, H. Qi, and Z. Li, “Detecting ddos attacks against data
center with correlation analysis,” Computer Communications.

[31] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 02, pp. 76–79, feb 2017.

[32] B. Sudharsan, D. Sundaram, J. G. Breslin, and M. I. Ali, “Avoid touching
your face: A hand-to-face 3d motion dataset (covid-away) and trained
models for smartwatches,” in 10th International Conference on the
Internet of Things Companion, ser. IoT ’20 Companion, 2020.


