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Abstract—We propose a new architecture for optimiza-
tion modeling frameworks in which solvers are expressed as
computation graphs in a framework like TensorFlow rather
than as standalone programs built on a low-level linear
algebra interface. Our new architecture makes it easy for
modeling frameworks to support high performance com-
putational platforms like GPUs and distributed clusters, as
well as to generate solvers specialized to individual prob-
lems. Our approach is particularly well adapted to first-
order and indirect optimization algorithms. We introduce
cvxflow, an open-source convex optimization modeling
framework in Python based on the ideas in this paper, and
show that it outperforms the state of the art.

I. INTRODUCTION

Optimization offers a principled approach to solving
problems in a wide variety of application domains, such
as machine learning, statistics, control, signal and image
processing, networking, engineering design, finance, and
many others [BV04]. Instead of designing specialized al-
gorithms for each individual problem, the user describes
the problem as the minimization of a cost function and
the optimal solution with minimal cost is found by the
optimization method.

The wealth of applications for this methodology has
driven the development of several high-level modeling
languages. These languages provide a separation of con-
cerns between the development of mathematical models
and the implementation of numerical routines to opti-
mize these models. This is especially useful for rapidly
prototyping new applications, allowing practitioners to
easily experiment with different cost functions and con-
straints by writing expressions that closely mimic the
mathematical optimization problem. Prominent examples
of modeling languages and frameworks include AMPL
[FGK02], YALMIP [Lof04], and CVX [GB14], as well
as several tied closely to particular solvers, such as
CPLEX’s ILOG [ILO07] and MathProg from GLPK
[Mak00].

Despite the popularity of these modeling frameworks,
support for modern large-scale computational environ-
ments such as GPUs and distributed clusters is virtually
nonexistent. In part, this is due to fundamental challenges
in scaling interior point methods, which have historically
been the basis for solvers of most modeling frameworks,
as these methods require solving sparse linear systems
to high accuracy and as such do not benefit greatly
from GPU implementation. In addition, distributing such
methods beyond a single machine typically requires
high bandwidth interconnects such as those available
exclusively in HPC environments.

However, there are also highly practical reasons for the
lack of support for new environments: mature solvers of-
ten require several years to develop and writing entirely
new implementations of low-level numerical routines
specialized to each environment is unappealing. Tradi-
tionally, a degree of platform independence has been
provided by implementing on top of low-level linear al-
gebra libraries (e.g., BLAS, LAPACK, and SuiteSparse),
but as we discuss in this paper, this architecture is often
insufficient, especially for large problems. In addition,
such libraries do not handle memory management and
data transfer between GPU and CPU or between multiple
machines.

The solution that we explore is a new architecture
for optimization modeling frameworks based on solvers
represented as computation graphs. This architecture
is well-suited for solving large optimization problems
by taking advantage of problem-specific structure. In
particular, the computation graph abstraction naturally
represents the composition of structured linear operators
which can be significantly more efficient than the stan-
dard sparse or dense matrix representation. We develop
such a method in this paper and demonstrate that it
outperforms the existing state of the art for solving large
convex optimization problems, a GPU-enabled version
of SCS [OCPB16], which itself is one of the few GPU-PyHPC2016; Salt Lake City, Utah, USA; November 2016
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optimized solvers available, POGS [FB15] being another
example.

A secondary, but not insignificant, benefit of this
approach is automatic support for a wide variety of com-
putational environments (CPU, GPU, distributed clus-
ters, etc.), leveraging the considerable momentum and
engineering effort of existing computation graph frame-
works from the deep learning community. A potential
drawback of our approach is that the runtime system
must support the necessary mathematical operations to
implement numerical optimization algorithms. For first-
order and indirect solvers, the many frameworks devel-
oped for deep learning, such as TensorFlow [AAB+16],
Theano [BBB+10], [BLP+12], Caffe [JSD+14], and
Torch [CKF11], provide all the necessary functionality.
The frameworks have only limited support, however, for
the sparse matrix factorization routines used by direct
solvers. Thus, given the computation graph implementa-
tions available at this time, our architecture tends to favor
first-order and indirect methods as opposed to interior
point methods.

The outline of the paper is as follows. In §II, we
review the traditional architecture for optimization mod-
eling frameworks and discuss its shortcomings. In §III,
we explore prior work that addressed the shortcomings
of the traditional architecture. In §IV, we describe the
new architecture we propose and the computation graph
abstraction the architecture is based on. In §V, we
present cvxflow, an open-source implementation of
the ideas in this paper, and numerical results comparing
cvxflow with the state of the art.

II. TRADITIONAL ARCHITECTURE

The traditional architecture for optimization modeling
frameworks dates back to AMPL [FGK02] and GAMS
[BKMR88] in the 1980s. In this architecture, solving an
optimization problem is divided into a three step process,
shown in Fig. 1. The process begins with a high-level
description of the optimization problem expressed in a
modeling language. The first step is canonicalization, in
which the problem is transformed through symbolic ma-
nipulation into an equivalent problem in a standard form.
The second step is matrix stuffing, in which the symbolic
representation of the standard form is instantiated so
that linear operators are represented by sparse matrices.
Often canonicalization and matrix stuffing are combined
into a single step. The final step is to call a solver with
the sparse matrix representation of the standard form as
input and return the solver output as the solution.

The ecosystem of modeling frameworks for convex
optimization is an illustrative example of the traditional
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Fig. 1: The traditional architecture for optimization modeling
frameworks.

architecture. Convex optimization modeling languages
are built around the principles of disciplined convex
programming, a set of rules for constructing optimization
problems that make it easy to verify problem convexity.
Implementations include CVX [GB14] and YALMIP
[Lof04] in MATLAB, CVXPY [DB16a] in Python, Con-
vex.jl [UMZ+14] in Julia, and the standalone compilers
CVXGEN [MB12] and QCML [CPDB13]. We discuss
each component of the traditional architecture in the
concrete case of convex modeling frameworks.

A. Canonicalization

The standard form for convex optimization problems
is a cone program, an optimization problem of the form

minimize cTx
subject to Ax+ b ∈ K, (1)

where x ∈ Rn is the optimization variable; A ∈ Rm×n,
b ∈ Rm, and c ∈ Rn are constants; and K is a nonempty
closed convex cone [NN92]. Convex optimization mod-
eling frameworks symbolically convert problems into
cone programs via epigraph transformations [GB08].

B. Matrix stuffing

In solvers and other software that use the cone pro-
gram standard form as an input format for problems, c
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and b are represented by arrays and A is represented
by a standard sparse matrix format, such as column
compressed storage. Matrix stuffing generates a sparse
matrix representation of A from the symbolic repre-
sentation generated through canonicalization [DB16b].
Solvers use a sparse matrix representation of A because
they generally use algorithms and libraries that exploit
sparsity.

C. Solver

A wide variety of solver implementations have been
developed for problems in the cone program stan-
dard form. Many solvers are written in pure C, in-
cluding MOSEK [Mos15], SDPA [YFF+12], ECOS
[DCB13], and SCS [OCPB16]. Other solvers are written
in higher level languages, such as SeDuMi [Stu99] and
SDPT3 [TTT99] in MATLAB and CVXOPT [ADV15]
in Python. The solvers rely heavily on low-level linear al-
gebra interfaces like BLAS and LAPACK [LHKK79] for
basic operations and libraries like SuiteSparse [Dav16]
for sparse matrix factorization. Existing cone solvers are
almost exclusively restricted to CPU implementations;
an exception is SCS which provides GPU support using
the cuBLAS library [NVI08].

D. Drawbacks

The traditional approach to optimization modeling
frameworks has been enormously successful, allowing
modeling languages and solver implementations to be
developed independently in the programming languages
best suited to their function. The conventional solver
implementation is based on interior point methods, for
which the dominant computational effort is solving a
sparse linear system. Such a solver can be ported rel-
atively easily to new platforms provided the necessary
linear algebra libraries (BLAS, LAPACK, SuiteSparse,
etc.) are available.

However, many optimization problems of interest are
too large to be solved with interior point methods and,
more generally, any method that requires a direct solu-
tion to a linear system involving the A matrix of the cone
program standard form (1). In some problem domains
the memory requirements even for sparse A matrices
can be prohibitive (e.g., 2D convolution in large-scale
image reconstruction), while at the same time efficient
procedural evaluations of the matrix-vector computations
with A and AT exist (e.g., FFT-based convolution).

A possible solution is a first-order method, such
as SCS [OCPB16], which only requires solving linear
systems to moderate accuracy. This approach can be
implemented with either a direct or indirect method

for the linear solver subroutine. In the case of a direct
solver, the computational cost can be amortized by
caching the factorization of the A matrix leading to
iterations that are significantly faster than interior point
methods. In the indirect case, a matrix-free method such
as conjugate gradient is used, requiring only matrix-
vector computations with A and AT . In the traditional
architecture, these computations are simply implemented
with sparse matrix multiplies, but the proposed graph-
based approach enables taking advantage of specialized
linear operator implementations, as we will discuss in
detail in the next section.

III. ALTERNATIVE APPROACHES

Prior work has explored alternative approaches to
bypassing the limitations of the traditional architecture
for optimization modeling frameworks, with a focus on
scaling to larger problem sizes. There are two main
lines of work that are precursors to the graph-based
architecture proposed in this paper: the first replaces
the sparse matrix representation of the standard form
generated by matrix stuffing with a more general rep-
resentation, and the second explores new standard forms
based on functions with efficient proximal operators.
In this section, we review these approaches, providing
motivation for our general graph-based framework.

A. Abstract linear operators

In solving many convex optimization problems, the
majority of computational time is spent in evaluating
linear operators. While the sparse matrix representation
of cone programs is fully general, it does not provide
the most efficient implementation for many types of
linear functions. Matrix-free CVXPY replaces traditional
sparse matrix representation of the cone program stan-
dard form (1) with a computation graph based repre-
sentation. The computation graph representation allows
the modeling layer to encode information about struc-
tured linear operators in the optimization problem that
solvers can exploit [DB16b]. The matrix-free CVXPY
implementation includes a custom runtime system for
computation graphs, as opposed to the cvxflow im-
plementation presented in this paper, which is built on
TensorFlow.

B. Proximal standard forms

Another line of work explores solvers based on
functions with efficient proximal operators. Epsilon
[WWK15] introduces the standard form

minimize
∑N

i=1 fi(Aix), (2)
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where x ∈ Rn is the optimization variable, Ai ∈ Rmi×n

are linear operators, and fi are functions with efficient
proximal operators [PB14]. Epsilon exploits the flexibil-
ity of the standard form (2) to rewrite the problem so it
can be solved efficiently by a variant of the alternating
direction method of multipliers (ADMM) [BPC+11].
Along similar lines, POGS [FB15] introduces a slightly
different standard form, again based on functions with ef-
ficient proximal operators, and includes a highly efficient
GPU implementation of an ADMM-based algorithm.

The ProxImaL modeling framework also targets the
standard form (2), but supports a variety of solver
algorithms and applies problem rewritings specialized
to optimization problems in imaging [HDN+16]. Prox-
ImaL moves towards platform independence by gener-
ating solver implementations using Halide [RKBA+13].
Halide is a language and compiler that allows for plat-
form independent abstraction of individual mathematical
operations, but not of full algorithms composed of many
operations inside control logic.

These new proximal standard forms are not nec-
essarily incompatible with the traditional architecture
based on sparse matrices. However, as opposed to cone
solvers and in particular interior point methods, the
implementation of algorithms operating on the proximal
standard forms is less reliant on sparse linear algebra
and thus there is less benefit from building on existing
sparse linear algebra libraries. These approaches instead
require a library of proximal operator implementations
which can benefit greatly from being built on a high-
level framework such as Halide or TensorFlow, providing
platform independence and a highly optimized runtime
system.

IV. GRAPH-BASED ARCHITECTURE

In this section, we propose a new graph-based ar-
chitecture for optimization modeling frameworks. Our
architecture divides the process of solving an optimiza-
tion problem into three steps, shown in Fig. 2. As
with the traditional architecture we begin with a high-
level problem description which is canonicalized to a
standard form. The solver generation step produces a
computation graph representing the solver algorithm,
which is executed by the runtime system to produce a
solution.

The key difference from the traditional architecture is
that the graph-based approach directly generates com-
putation graphs representing the numerical algorithms
for solving problems rather than representing all prob-
lems with sparse matrices. The first benefit of this
approach is support for abstract linear operators with
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Runtime execution 

Fig. 2: The proposed graph-based architecture for optimization
modeling frameworks.

highly efficient implementations, such as convolution,
Kronecker products, and others. The second benefit is
a closer connection between canonicalization and solver
generation, which can now both be implemented in the
same high-level language and even in a single library.
This more easily allows for supporting different stan-
dard forms that incorporate problem-specific structure.
Finally, the new architecture severs the link between the
solver implementation and computing platform, allowing
solvers to take advantage of new computing platforms
simply by changing the target of the computation graph
runtime system.

We next explain the central abstraction, computa-
tion graphs, and describe how such graphs representing
solvers are generated.

A. Computation graphs

A computation graph is a directed acyclic graph
(DAG) where each vertex represents a mathematical
operation and each edge represents data transfer. Input
vertices have no incoming edges, while output vertices
have no outgoing edges. A vertex is evaluated by
applying its operation to the data on the vertex and
broadcasting the result on its outgoing edges. The overall
graph is evaluated by loading data onto the input vertices,
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Fig. 3: A computation graph for f(x, y) = x2 + 2x+ y.

evaluating the vertices in topological order, and reading
the results off the output vertices.

For example, Fig. 3 shows a computation graph for
the function f(x, y) = x2 + 2x + y. The input vertices
represent the variables x and y. The output vertex rep-
resent the top level sum. The internal vertices represent
the operations z → z2 and z → 2z.

Given a computation graph to evaluate a function,
computation graphs for evaluating the function’s gra-
dient or adjoint (for linear functions) can be obtained
through simple graph transformations [Gri89], [DB16b].
Function, gradient, and adjoint evaluations are the key
operations in first-order and indirect solvers and are even
sufficient to precondition a problem [DB16c].

Computation graphs are a useful intermediate rep-
resentation for solvers because they abstract away the
platform-specific details of both computation and mem-
ory management. These details are handled by a com-
putation graph runtime system, which has platform-
specific code to execute each mathematical operation
and to pass data from one operation to the next. By
contrast, a solver built on the traditional abstraction of
a low-level linear algebra interface must implement its
own platform-specific logic for mathematical operations
not expressible as linear functions and for memory
management.

B. Solver generation

The solver generation step produces a computation
graph representing a numerical algorithm for solving
an optimization problem. Graph generation is naturally
implemented in a high-level functional programming
style with modular functions that produce computation
graphs implementing numerical algorithms or subrou-
tines. Typically, these functions take as inputs individual
nodes or in some cases are naturally parameterized by
graph generator functions.

As a concrete example, the Python code snippet for
generating a TensorFlow graph representing the conju-

gate gradient method for the linear system Ax = b is
shown below.

def cg_solve(A, b, x_init, tol=1e-8):
delta = tol*norm(b)

def body(x, k, r_norm_sq, r, p):
Ap = A(p)
alpha = r_norm_sq / dot(p, Ap)
x = x + alpha*p
r = r - alpha*Ap
r_norm_sq_prev = r_norm_sq
r_norm_sq = dot(r,r)
beta = r_norm_sq / r_norm_sq_prev
p = r + beta*p
return (x, k+1, r_norm_sq, r, p)

def cond(x, k, r_norm_sq, r, p):
return tf.sqrt(r_norm_sq) > delta

r = b - A(x_init)
loop_vars = (

x_init, tf.constant(0),
dot(r, r), r, r)

return tf.while_loop(
cond, body, loop_vars)[:3]

In this example, the function cg_solve is param-
eterized by the the linear operator A, and vector b
with initial starting point, vector x_init. The inputs
b and x_init are computation graph nodes and A
is a single-argument function such that A(x) produces
the computation graph representing the linear operator
applied to an arbitrary vector x. Implemented in this
fashion, the conjugate gradient method can be applied
to any linear operator expressed as a computation graph.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples of
solving convex optimization problems in our proposed
architecture. As solving linear systems forms the basis
for convex methods, we first present results for an indi-
rect linear solver with various linear operators. Using this
indirect linear solver as a subroutine, we then implement
a version of SCS [OCPB16] in the computation graph
framework and compare with the native version of SCS
implemented in C. We present results for both CPU and
GPU environments; all experiments are run on a 32-core
Intel Xeon 2.2GHz processor and an nVidia Titan X GPU
with 12GB of RAM.

Our implementation builds on CVXPY [DB16a], a
convex optimization modeling framework in Python.
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Using this framework, convex optimization problems can
be expressed with minimal code and are automatically
converted into the standard conic form (1). As an exam-
ple, the nonnegative deconvolution problem we consider
in Section V-C is written as the following Python code.

from cvxpy import *
x = Variable(n)
f = norm(conv(c, x) - b, 2)
prob = Problem(Minimize(f), [x >= 0])

Here c and b are previously-defined problem inputs and
n is the size of the optimization variable. Our imple-
mentation differs from the existing CVXPY functionality
in that instead of solving problems by constructing
sparse matrices and calling numerical routines written
in C, we build a computation graph, as described in
Section IV, and evaluate with TensorFlow. Ultimately,
this implementation achieves faster running times than
existing methods—for example, on the large nonnega-
tive deconvolution example, our implementation takes
roughly 1/10th the time of SCS running on GPU, the
existing state-of-the-art method for solving large convex
problems to moderate accuracy.

Concurrent with the publication of this paper, we are
releasing the cvxflow Python library; it is available at

http://github.com/cvxgrp/cvxflow
and includes the code for all of the examples in this
section. The implementation is general and solves any
problem modeled with CVXPY using TensorFlow.

A. Regularized least squares
We begin with solving linear systems using the con-

jugate gradient method (CG) [HS52]. CG is matrix-
free which makes it a natural fit for linear systems
represented as a graph, allowing for specialized imple-
mentations of each linear operator including those that
are inefficient to represent as sparse matrices such as
convolution, Kronecker products, and others. In terms
of the graph-based architecture shown in Fig. 2, the
standard form in this example is a linear system and the
solver generation step generates a graph representing the
conjugate gradient method.

In particular, we consider the regularized least squares
problem

minimize (1/2)‖Ax− b‖22 + λ‖x‖22 (3)

where x ∈ Rn is the optimization variable, the linear
map A : Rn → Rm and vector b ∈ Rm are problem
data, and λ > 0 is the regularization parameter. This
problem has the solution

x? = (λI +ATA)−1AT b, (4)

dense matrix sparse matrix convolution
variables n 3000 3000 3000
nonzeros in A 18000000 180000 4095000

spsolve
solve time 255 secs 28 secs 41 secs
memory usage 2.2 GB 1.06 GB 1.5 GB
objective 5.97× 10−1 5.97× 10−1 7.68× 10−1

CG TensorFlow
solve time, CPU 3.0 secs 0.9 secs 2.9 secs
solve time, GPU 2.0 secs 0.7 secs 1.0 secs
graph build time 0.4 secs 0.1 secs 0.1 secs
memory usage 1.8 GB 755 MB 946 MB
objective 5.97× 101 5.97× 10−1 7.68× 10−1

CG iterations 49 49 71

TABLE I: Results for regularized least squares.

which can be computed by solving a linear system.
It is often the case that A takes the form of a sparse

or dense matrix; for example, in a statistical problem
each row of A may represent an observation of multiple
variables weighted by x in order to predict the response
variable. However, A can also be an abstract linear
operator; for example, a convolution with a vector c,
written as Ax = c ∗ x. We present results for each of
these examples: a sparse matrix, a dense matrix, and
convolution.

In the matrix examples, entries are sampled from
N (0, 1) with 1% nonzero in the sparse case. For con-
volution, we apply the Gaussian kernel with standard
deviation n/10. In all cases, the response variable is
formed by b = Ax̂ + v where v has entries sampled
from N (0, 0.012) and x̂ from N (0, 1). The conjugate
gradient method is run until the residual satisfies ‖(λI+
ATA)xk −AT b‖2 ≤ 10−8‖AT b‖2.

Table I shows the results for these experiments,
demonstrating that conjugate gradient on Tensor-
Flow is significantly faster than the baseline method,
scipy.sparse.spsolve. This is a somewhat weak
baseline as spsolve does not run on GPU and is not
well-suited for dense matrices. Nonetheless, this com-
parison highlights the difference in architecture exploited
by TensorFlow which can take advantage of dedicated
implementations for the linear operators leading to sig-
nificantly faster solve times.

B. Lasso

Next we solve a convex problem with SCS [OCPB16].
In this case, the canonicalization step produces a problem
in the standard cone form (1) and solver generation
produces a graph implementing the SCS iterations. In
essence, the algorithm iterates between projections onto
a linear subspace and a convex cone; the former is

6
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dense matrix sparse matrix convolution
variables n 6001 6001 6001
constraints m 12002 12002 12001
nonzeros in A 18012002 1812002 4107002

SCS native
solve time, CPU 29 secs 3.4 secs 6.4 secs
solve time, GPU 27 secs 3.8 secs 7.6 secs
matrix build time 13 secs 1.4 secs 2.8 secs
memory usage 3.1 GB 663 MB 927 MB
objective 3.36× 101 3.19× 101 2.02× 100

SCS iterations 40 40 60
avg. CG iterations 2.66 2.71 2.72

SCS TensorFlow
solve time, CPU 23 secs 25 secs 24 secs
solve time, GPU 9.9 secs 7.1 secs 5.3 secs
graph build time 1.8 secs 2.0 secs 0.8 secs
memory usage 8.7 GB 4.6 GB 1.2 GB
objective 3.36× 101 3.19× 101 2.02× 100

SCS iterations 60 40 180
avg. CG iterations 3.35 3.55 1.93

TABLE II: Results for lasso.

done through solving a linear system with a computation
graph representing the CG method as in the previous
section. The SCS method is appealing in this context
as it works well with approximate solutions to linear
systems, such as those produced by CG.

We consider the lasso problem

minimize (1/2)‖Ax− b‖22 + λ‖x‖1, (5)

where the regularization term ‖x‖1 replaces the ‖x‖22 in
the regularized least squares problem from the previous
section. This problem is convex but no longer has a
closed-form solution.

To generate problem instances, we construct example
linear operators A as in the previous section. We set
the regularization parameter to λ = 0.1‖AT b‖∞ where
‖AT b‖∞ is the smallest value of λ such that the solution
is zero.

Table II compares the TensorFlow version of SCS
to the native implementation and demonstrates that in
the dense matrix and convolution cases, the solve time
on GPU is faster with TensorFlow. This highlights the
benefit of the computation graph, taking advantage of
specialized implementations for dense matrix multiplica-
tion and convolution. In contrast, when the input linear
operator A is a sparse matrix, native SCS is faster.

C. Nonnegative deconvolution
As a final example further illustrating the benefit of

abstract linear operators, we consider the nonnegative
deconvolution problem

minimize ‖c ∗ x− b‖2
subject to x ≥ 0

(6)

small medium large
variables n 101 1001 10001
constraints m 300 3000 30000
nonzeros in A 9401 816001 69220001

SCS native
solve time, CPU 0.1 secs 2.2 secs 260 secs
solve time, GPU 2.0 secs 2.0 secs 105 secs
matrix build time 0.01 secs 0.6 secs 52 secs
memory usage 360 MB 470 MB 10.4 GB
objective 1.38× 100 4.57× 100 1.41× 101

SCS iterations 380 100 160
avg. CG iterations 8.44 2.95 3.01

SCS TensorFlow
solve time, CPU 3.4 secs 5.7 secs 88 secs
solve time, GPU 5.7 secs 3.2 secs 13 secs
graph build time 0.8 secs 0.8 secs 0.9 secs
memory usage 895 MB 984 MB 1.3 GB
objective 1.38× 100 4.57× 100 1.41× 101

SCS iterations 480 100 160
avg. CG iterations 2.75 2.00 2.00

TABLE III: Results for nonnegative deconvolution.

where x ∈ Rn is the optimization variable, and c ∈ Rn,
b ∈ R2n−1 are problem data. As in the previous example,
the canonicalization step transforms the problem to the
standard form (1) and solver generation produces a
computation graph for the SCS algorithm.

We generate problem instances by taking c to be
the Gaussian kernel with standard deviation n/10 and
convolving it with a sparse signal x̂ with 5 nonzero
entries sampled uniformly from [0, n/10]. We set the
response b = c ∗ x̂+ v with v ∼ N (0, 0.012).

Table III shows that on large problem sizes, the SCS
TensorFlow implementation performs significantly better
than the native implementation, requiring 13 seconds as
compared to 105 seconds. This difference is largely due
to differences in architecture, as the matrix-based SCS
requires a considerable amount of time (52 seconds) to
simply construct the sparse matrix representing the con-
volution operator. As many linear operators benefit from
from specialized implementations (see e.g., [HHS+14],
[BGFB94], [VB95], [DB15]), one could easily demon-
strate an even more significant gap between the proposed
architecture and existing methods simply by choosing
more egregious examples that highlight this difference.
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