
Note: This is a preprint of a paper accepted for the 2nd International Workshop on Quantum Software Engineering
 (Q-SE 2021) co-located with ICSE 2021, to be published in the corresponding proceedings.

Quantum Software Models: The Density Matrix for
Classical and Quantum Software Systems Design

Iaakov Exman
Software Engineering Department

The Jerusalem College of Engineering – Azrieli
Jerusalem, Israel
iaakov@jce.ac.il

Alon Tsalik Shmilovich
Software Engineering Department

The Jerusalem College of Engineering – Azrieli
Jerusalem, Israel

alonshmilo@gmail.com

Abstract— Linear Software Models enable rigorous linear
algebraic procedures for modular design of classical software
systems. These procedures apply a spectral approach to matrix
representations – e.g. the Laplacian – of the software system.

Recent intensive research efforts towards quantum
computers have increased expectations that quantum
computing could in due time materialize as a practical
alternative to classical computing. It is reasonable to inquire
about quantum software desirable features and prepare in
advance modular design procedures for quantum software
systems.

However, it does not make sense to have two totally separate
procedures for modular design, one for classical software
systems and another for quantum software systems. This paper
claims that there should be just a single unified and rigorous
design procedure for both classical and quantum software
systems.

Our common design procedure starting point for both
classical and quantum software systems is Von Neumann’s
quantum notion of Density Operator and its Density Matrix
representation. This paper formulates and demonstrates
modular design in terms of projection operators obtained from
a design Density Matrix and shows their equivalence to the
Linear Software Models results of the Laplacian matrix
spectrum for the classical case. The application in practice of the
design procedure for both classical and quantum software is
illustrated by case studies.

Keywords—Quantum Software Models, Software Design,
Density Matrix, Laplacian Matrix

I. INTRODUCTION

Linear Software Models [7] represent classical software
systems by a bipartite graph with two sets of vertices, one set
standing for Structors – a generalization of classes – and
another for Functionals – a generalization of class methods in
object-oriented parlance. Structors contain and provide
Functionals. Being a bipartite graph [18], there are edges only
between vertices of the Structors set and vertices of the
Functionals set, but not between vertices of the same set.

The Laplacian Matrix [13] [19] L associated with the
bipartite graph is defined by eq. (1):

 L = D - A 

where D is the Degree matrix – diagonal by definition –
showing bipartite graph vertex degrees, and A an Adjacency
matrix showing vertex neighbors. When two vertices are
neighbors, the respective Adjacency matrix element is 1-
valued, with a minus sign due to eq. (1). Otherwise, it is zero-
valued.

A. Laplacian for Classical Software Systems

Modules of a classical software system can be formally
obtained by a procedure relying upon the eigenvalues and
eigenvectors of the respective Laplacian. A module is defined
as a connected component of the bipartite graph.

The number of modules of the software system
represented by the Laplacian is given by the multiplicity of the
zero-valued eigenvalues [9], [5]. The modules composition –
in terms of Structors and Functionals – is given by the
eigenvectors corresponding to the zero-valued eigenvalues.

When there are “outliers” – seen as Laplacian matrix
elements coupling two potential modules – leading to a larger
sparse module, one can split this larger sparse module using
the Fiedler eigenvector [9]. This Fiedler vector fits to the
smallest non-zero eigenvalue of the Laplacian matrix.

A modular bipartite graph of a schematic abstract example
of a software system is seen in Fig. 1. The corresponding
Laplacian matrix is shown in Fig. 2. Modules are seen as
diagonal blocks of the Adjacency matrix within the Laplacian.
Laplacian eigenvectors corresponding to the modules, are
shown in Fig. 3.

Fig 1. Bipartite Graph of a schematic abstract software system. It has 4
Structors – S1, S2, S3, S4 (green) and 4 Functionals – F1, F2, F3, F4 (orange).
The Structor S2 provides two Functionals F1 and F2. This system has 3
modules (light blue rectangles) calculated from the Laplacian (in Fig. 2)
through the eigenvectors (in Fig. 3). (Figures in color online).

Fig. 2. Laplacian matrix of the schematic abstract software system (in Fig. 1).
The Laplacian diagonal contains the Degree matrix elements (pink). The
Adjacency matrix (with minus signs) and its 3 block-diagonal modules (light
blue rectangles) is seen in the upper-right and lower-left quadrants. Modules
are obtained from the Laplacian eigenvectors (in Fig. 3).

Fig. 3. Eigenvectors of the Laplacian matrix (in Fig. 2). The upper row
(yellow) shows vertices fitting the eigenvector elements. The lower rows
show three eigenvectors fitting zero-valued eigenvalues. The inferred
modules, one module for each eigenvector, are shown in the r.h.s. (light blue).

B. The Density Matrix Design Choice

The Quantum Software Models introduced in this paper
were inspired by Linear Software Models and are their natural
continuation due to their common basis upon linear algebra:

 Linear Software Models are for classical software
systems design a framework based upon linear algebra;

 Quantum Software Models for quantum computing
(e.g. [14]) also have linear algebra as its mathematical
basis.

In the density operator picture of the Hilbert formulation
of quantum mechanics the state of a quantum system is
identified with a positive semidefinite, trace one, Hermitian
matrix, called a Density Matrix [17]. The Laplacian matrix of
a graph is symmetric and positive semidefinite. Braunstein
and co-authors [3] observed that any Laplacian matrix L(G) of
a graph G, scaled by the degree-sum d(G) of the graph G, has
trace one, thus it is a Density Matrix . They define it as the
density matrix of a graph G:

 L(G d(G) 

Since we represent any given software system by a
bipartite graph, and its Laplacian, we re-define the density
matrix in equation (2) as the design Density Matrix of the
Software System.

We select the design Density Matrix as the starting point
of choice for the design procedure of Quantum Software
Models, by generality considerations, to make concrete the
claim that there should be just a single unified and rigorous
design procedure for both classical and quantum software
systems:

 Any software system can be designed from the
information in the design Density Matrix.

Except for the design qualifier, we look at the design
Density Matrix as a density matrix for all purposes. We shall
not explicitly use the design qualifier, unless needed to stress
this characteristic. Now, we may focus on modularity from a
deeper perspective.

C. Paper Organization

The remaining of the paper is organized as follows.
Section II looks at modular design from a deeper perspective.
Section III formulates and illustrates Classical Software
Design in terms of the Density Matrix. Section IV formulates
and illustrates Quantum Software Design from the same
perspective. Section V mentions related work. The paper is
concluded with a Discussion in section VI.

II. A DEEPER PERSPECTIVE ON MODULARITY DESIGN

A Density Matrix is a matrix representation of a Density
Operator, which is a projection operator. Using the Dirac bra-
ket notation, a Density Operator  is a general kind of ket-bra:

 ⟩⟨ 

where  is a generic notation for a quantum state [14].

Any projection operator, in short, a projector, actually
projects its argument into a sub-space of the relevant Hilbert
state space. From this point of view, a module – previously
defined as a connected component of the bipartite graph – is
redefined in terms of projectors, obtaining modules from the
design Density Matrix.

A. Modules Defined by Projection Operators

The Density operator acts on the state space of the
system. A set of orthonormal basis vectors, a set of kets, spans
the state space. One can associate a projection operator with
each of the kets in the basis set.

One assumes that a whole software system design,
classical or quantum, is completely described by its density
operator. The respective Density Matrix can be expressed as a
sum of the projection operators of the kets in the basis set, with
suitable coefficients. For instance, for the Density Matrix
obtained by scaling the Laplacian in Fig. 2, the computational
basis set is |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩ and
|111⟩.

Modules are partitions of the whole software system, with
internal interactions, spanning a sub-space of the whole
software system. More formally, one can state the definition
as follows.

Definition 1: Module of a Software System. A module
of a software system is a sub-system of a given software
system. It spans a sub-space of the space state of the whole
software system, given by a partition of the projection
operators of the kets in the system basis set, such that each
module sub-space is orthogonal to all other module sub-spaces
of the software system.

Case studies illustrating this definition are provided for
classical and quantum software systems in the next sections.

B. From Density Matrix to Modules

A procedure to obtain Modules from the software system
design Density Matrix is as follows:

1. Apply the Density Matrix to each ket in the basis set
spanning the state space of the software system.

2. Obtain the projection operators for each ket in the
basis set.

3. Express the Density Matrix as a sum of the projection
operators obtained in the previous step.

4. Partition the sum of projection operators into disjoint
sets of projection operators, each partition fitting a
different module.

5. The number of modules in the software system is the
number of disjoint sets of projection operators.

6. The composition of each module is given by the basis
kets subset of the respective projection operators.

C. Modules Validation

A final step to obtain the actual modules of a given
software system is to check whether the modules obtained by
the procedure in the previous sub-section are irreducible. A
problem, already mentioned in sub-section 1.1, could be
caused by an “outlier” coupling two smaller modules into a
larger and sparser module. This larger module is reducible in
principle to the smaller modules.

III. CLASSICAL SOFTWARE DESIGN

The software design purpose is to enable software system
analysis and development. Information sources for a classical
software system depend on the software life cycle
development stage: UML class diagram, a source code
program, an executable code. This section formulates
theorems on number and components of classical software
modules and illustrates them by a case-study.

A. From Class Diagram to Density Matrix

The idea is very simple: a- from a class diagram obtain the
software system bipartite graph; b- from the graph generate
the Laplacian matrix; c- scale the Laplacian by the degree-sum
d(G) of the graph G, by eq. (2) to get the Density Matrix.

The information items extracted from the class diagram
are: 1- class names; 2- methods provided by each class; 3-
possible relationships between classes, in particular
inheritance. Inheritance can be inferred, from the bipartite
graph or from the Laplacian matrix, when two or more classes
provide the same method.

Production of a software system design is not a one-pass
action. Usually, one suggests an initial design, which is
analyzed, and eventually improved. There could be a few
cycles of this nature.

B. Number and Components of Classical Software Modules

The modules number and components obtained from the
Density Matrix (see section II.B) are stated in the next
theorems.

Theorem 1: Number of Classical Software Modules.
The number of modules in a classical software system
represented by its design Density Matrix is given by the
number of partition classes of the basis kets’ projectors
corresponding to the Density Matrix of the software system.

Proof:
By the Fiedler theorems [9], software modules are

obtained from the Laplacian matrix eigenvectors, fitting the
zero-valued eigenvalues. Thus, the proof consists in showing
that projectors applied to the lowest Laplacian eigenvectors
also obtain zero eigenvalues. It suffices to refer to the
Laplacian, since it is related to the Density Matrix by eq. (2).

The lowest frequency Laplacian eigenvectors are non-
negative and have two identical halves (by Theorem 4 in
Exman and Sakhnini [7]), so eigenvectors do not contribute
opposite signs.

Basis vectors (kets and bras) for the Density Matrix are
mutually orthogonal. In the chosen computational basis each
basis vector has a single positive element (different from all
other basis vectors) and all other elements are zeros. Each
partition projector is composed of pairs of basis vectors,
characterizing the row and column of each matrix element.
Applying the projector bras on the eigenvector ket obtains a

zero eigenvalue due to different location of its non-zero
elements and the opposite bra signs. ⧠

Theorem 2: Components of a Classical Software
Module. The module components in a classical software
system represented by its Density Matrix are given by the
Structors and Functionals fitting the respective basis kets/bras
in the projection operators of the partition class of the software
system Density Matrix.

Proof:
Since the partition classes of the projection operators are

also partition classes of the kets/bras in the Density Matrix,
and there is a one-to-one correspondence with the respective
Structors and Functionals, the theorem is proved. ⧠

C. Classical Case Study: Prototype Design Pattern

Our classical software system case study has been shown
in abstract form in Figures 1 to 3 (in section I.A). We continue
with the same system, revealing that it is the Prototype design
pattern. A design pattern is a reusable small set of classes with
a definite role, frequently found in object-oriented programs.

The Prototype design pattern (see page 117 in the GoF
book [11]) creates new objects by copying a prototypical
instance. This system starts with the Main program of the
Prototype-Client demanding a Specific-Shape (e.g. Rectangle,
Triangle or Circle). If the shape is already stored in the
Shapes-Cache, one retrieves the desired shape. Otherwise,
one clones the desired shape, (the Clone functional is inherited
from the Generic-Cloneable-Shape). A commercial Java code
of the Prototype pattern similar to our model is found in ref.
[16]. The Structors and Functionals of the Prototype design
pattern are collected in Fig. 4. Its Density Matrix is seen in
Fig. 5.

After collecting all the projection operators composing the
Density Matrix and partitioning them into disjoint sets, one
obtains the results in Fig. 6.

Fig. 4. Prototype Design Pattern – List of Structors and Functionals,
corresponding to the Laplacian matrix (in Fig. 2), and to the Density Matrix
(in Fig. 5).

Fig. 5. Prototype Design Pattern – Density Matrix  fitting the Laplacian
matrix L (in Fig. 2). The Laplacian Trace (degree-sum) equals 10, therefore
 = 0.1*L by eq. (2). The basis set kets are shown above the respective
columns (orange) and the fitting basis set bras to the left of the respective
rows.

Fig. 6. Prototype Module Projectors – Results obtained by applying the
procedure in sub-section II.B. The projectors in terms of kets and bras are
shown in the middle of the figure (omitting the degree-sum coefficient to
emphasize the kets/bras partition classes). The module components in terms
of Structors and Functionals are seen in the r.h.s. of the figure.

One should not confuse the ket above each column in Fig.
5 with the respective column label. To obtain the projectors
fitting each ket one needs to apply the Density Matrix on the
ket, obtaining the column labelled by the respective Structor
label. For instance, applying ⟩one obtains the leftmost
column labelled F1. Thus, the resulting projection operator is:
 |000⟩ = 0.1*(2*|000⟩ - |100⟩ - |101⟩)⟨000|.

The results in Fig. 6 comply with Theorems 1 and 2 in
section III.B. The number of modules equals the number of
projector partitions. The module components are given by the
Structor and Functional labels, fitting the kets and bras within
the projectors. They are confirmed by the classical linear
algebra results from the eigenvectors (compare with Fig. 3).

IV. QUANTUM SOFTWARE DESIGN

This section introduces Quantum Software Design from a
new viewpoint on Quantum Computing. A single unified and
rigorous design procedure for both classical and quantum
software systems implies analogous techniques and the same
theorems of the classical case (section III.B) to obtain
quantum software modules. High-level quantum circuits are
the source of quantum software design information.

A. From High-Level Quantum Circuit to Density Matrix

First, one informally defines a high-level Quantum
Circuit. It has parallel horizontal qubit lines and boxes
containing one or more quantum gates (e.g. CNOT,
Hadamard, Toffoli) or even classical computations. Boxes
cover one or more qubit lines. A high-level quantum circuit is
a sequential diagram, with “time” increasing from left (the
input qubits) to right (typically a measurement output). There
may be boxes (displayed vertically) executed in parallel. For
more formal quantum circuit definitions see e.g. [14].

Information extraction is done as follows: a- begin with a
high-level quantum circuit; b- extract lists of Structors and
Functionals, and their relationships; c- obtain a bipartite graph
from these concepts; d- generate the graph’s Laplacian; e-
obtain the fitting quantum software design Density Matrix.

B. Analogies between Class Diagram and Quantum Circuit

High-level quantum circuits for quantum software design
clearly have differences from class diagrams for classical
design (see the Discussion section VI.D). Here we focus on
similarities relevant to software design. Both class diagrams
and quantum circuits expose software structures without
fixing their exact numbers. For instance, in the classical
Prototype case study, the number of Specific Shape classes is
not fixed a priori. The same is true in a high-level quantum
circuit: e.g. the number of applied Hadamard gates is left
indeterminate.

C. Structors and Functionals from Quantum Circuits

The data extracted from high-level quantum circuits is
similar to the classical case: a set of Structors, a set of
Functionals and their relationships, i.e. which Structor
provides certain Functionals. These entities yield a bipartite
graph and its quantum software design Density Matrix.

Structors and Functionals of a quantum software system
design have the same roles as those entities in a classical
software design. Structors – structural entities, the Boxes – are
the basic building blocks of the hierarchical software
structure. They are analogous to the boxed subcircuits of e.g.
the Quipper quantum programming language [12]. These
subcircuits are used multiple times within a larger circuit, thus
boxed and given a generic name, semantically meaningful for
the software engineer. Functionals – behavioral entities – are
sets of gates for well-defined computations.

Modules, obtained from a quantum software design
Density Matrix, enclose Structors and their Functionals.
Modules containing modules, build the software system
overall hierarchical structure.

D. Quantum Case Study: Grover Search

Grover search is a well-known quantum algorithm for
searching an unstructured database, attaining a quadratic
speedup on the number of queries, relative to the classical
computation. This quantum algorithm (see e.g. Nielsen and
Chuang [14]) starts with equal probabilities for all input
qubits, then recognizes and marks the target by an oracle, to
iteratively amplify it in every cycle, and finally obtain the
target by a measurement action. This is done in four steps,
seen in the high-level quantum circuit in Fig. 7:

1. The nth tensor power of the Hadamard operator H
transforms the input into an equal superposition state.

2. Apply an oracle to recognize and mark the target.

3. Perform target amplification by means of an
“inversion about the average”.

4. Measure the amplified target, yielding the final result.

The respective Structors and Functionals extracted from
the high-level quantum circuit in Fig. 7 are shown in Fig. 8.

Fig. 7. Schematic Grover algorithm high-level quantum circuit – From left
to right, the nth tensor power of the Hadamard operator H puts n input qubits
in an equal superposition state. An oracle marks the target, which is amplified
by an inversion about the average. The final result is obtained by
measurement.

 Fig. 8. Grover algorithm Structors and Functionals – These correspond to
the four boxes of the quantum circuit in Fig. 7.

The Oracle and the Amplification Structors, highlighted
(in blue) in Figures 7 and 8, jointly constitute the Grover
Iteration, looping in a few cycles during computation. A
design justification for keeping these two Structors together in
a single module is their functional similarity – analogous to a
classical inheritance: Amplification is written as 2*|⟩⟨| -I ;
the Oracle can be formulated as I - 2*|⟩⟨| (see e.g. Arikan
et al. [1]). Here  stands for the marked target.

The joint Grover Iteration is a size 2*2 software Module,
in the middle of the quantum circuit (Fig. 7). This module
relative position is sequential information relevant to a
sequence diagram (see Discussion in section VI.D).

The Grover algorithm bipartite graph is an architectural
units’ diagram, generating a system design Density Matrix.
One can easily perceive that, except for the above mentioned
module sequential relative position, the Grover algorithm
Density Matrix is almost identical to the classical Prototype
Design Pattern Density Matrix.

An alternative architectural design of the Grover system
keeps the Oracle and the Amplification separate, allowing
independent optimization of each of them (e.g. Figgatt et al.
[10]). Such design Density Matrix has Adjacency matrix
quadrants with strictly diagonal modules.

V. RELATED WORK

A. Graphs, Laplacians and Density Matrices

Linear Software Models for classical software system
design based upon linear algebra have been developed by
Exman and co-authors. Exman and Sakhnini described
software systems by bipartite graphs, leading to Laplacian
Matrices [7]. Splitting too sparse software modules has been
done with Fiedler eigenvectors [9], [5]. Exman and Wallach
[8] recently applied these Models to software consumers.

Braunstein and co-authors [3], followed by Wu [20], make
the transition from graphs’ Laplacian matrices to quantum
computing Density Matrices, investigating separability issues.

Perez-Delgado and Perez-Gonzalez [15], in a non-
algebraic approach to Quantum Software Modeling, suggest
minimal quantum extensions to the UML classical language,
in order to apply it to quantum software systems. This in
contrast to our opposite direction, viz. Density Matrix
quantum language to be applied to classical software systems.

B. Modularity in Quantum Software Design

Modularity ideas for quantum computing software, have
been recognized within several contexts. Zhang et al. [21]
applied modular computer architecture to NMR quantum
computing, claiming that modularized software architecture
plays an increasing role for large-scale quantum computing.

Debnath et al. [6] demonstrate quantum computing
programmable in software, compiled into modular logic gates
for reconfigurable algorithms without altering the hardware.

 Figgatt et al. [10] describe a complete 3-Qubit Grover
search, with various Oracle implementations. The
initialization and amplification stages were optimized
disregarding the oracle contents to preserve the algorithm
modularity, enabling insertion of possible alternative oracles
without changing the other stages.

VI. DISCUSSION

A. Modularity Reasons for Quantum Design

A single quantum software system may have Density
Matrices for distinct purposes, among others, based upon
different choices of basis vectors. For instance, Batle et al. [2]
use a Bell basis’ Density Matrix, to investigate how quantum
correlations vary as the Grover search algorithm is run.

The current paper chooses a design Density Matrix to
analyze modularity of quantum software systems. We observe
that any scaled Laplacian of a software system is a design
Density Matrix, but not any density matrix in general can be
converted to a Laplacian representing a software system
design.

There are various reasons for quantum software
modularization. These include enabling comprehension of
quantum computation semantics by human engineers, and
increasing computation efficiency, in particular partitioning of
networked quantum systems. Often functional separation
facilitates comprehension or enhances independent
optimization. In other cases, the opposite may be needed, i.e.
integrating various Functionals into a single Module.

B. Unified Classical and Quantum Design Procedure

There is a double motivation for “a single unified and
rigorous design procedure for both classical and quantum
software systems” focusing on modularity. The pragmatic
argument is to facilitate development of hybrid software
systems made of classical and quantum sub-systems.

A foundational argument is to preserve Brooks’ idea of
conceptual integrity [4] throughout software systems
involving both classical and quantum aspects, enabling
comprehension of these systems by human software
engineers.

C. Classical Software Systems as classical limit of Quantum
Systems

Counterintuitively at first sight, we conjecture that it
should be easier to obtain classical software systems as a
classical limit of quantum software systems, than the other
way round. Indeed, in physics there is a theoretical expectation
of classical systems to be derivable as classical limits from
quantum systems. Moreover, this continuity between quantum
and classical software systems, offers novel yet unexplored
territory for deeper understanding of classical software (see
next section VI.D).

Can we heuristically justify a quantum to classical
software continuity? In one sentence the argument is: the
quantum state/operator duality is a suitable formalism for the
same classical software state/operator duality.

In the density operator picture of quantum mechanics a
quantum system state is identified with the Density Matrix,
which at the same time is an operator applicable to states. Von
Neumann’s Density Matrix [17] insight is supported by
elegant Dirac notation. A ket |a⟩ (and a bra ⟨b|) is a state. A
bra-ket inner product ⟨b|a⟩ yields a number. By simple order
exchange, |a⟩⟨b| is an operator, a projector, applicable to other
states.

Classical software is a static description of a system, a
potential computation waiting for a trigger, in other words, a
state. At the same time, classical software is runnable – when

interpreted or compiled, details being irrelevant for the
argument – i.e. an operator applicable to other input states.

D. Software and Hardware: Design and Implementation

The original design diagrams for classical and quantum
software are different mainly by historical reasons. Classical
design diagrams include: UML class diagram displaying
structure; sequence diagram showing time-dependence of
specific scenarios that may occur in a system; statechart
displaying states for the whole system.

Quantum design diagrams include high-level quantum
circuits, displaying a double character of both structure and
time sequence, with implicit states. In this paper we focus on
structure design, leaving the sequential aspect to be discussed
elsewhere.

In this work Quantum Software design means high-level
abstract Structors, such as init or oracle, and their Functionals,
as illustrated by the Grover algorithm case study. Quantum
software implementation makes design concrete by assigning
to abstract design entities, specific types and numbers of
quantum gates, interconnections, input and output qubits.

Quantum hardware design and implementation refer to the
underlying physics – e.g. NMR, trapped atomic ions, photonic
devices – easily distinguishable from quantum software, and
out of the scope of this paper.

E. Future Work

This paper made initial steps towards a unified modeling
viewpoint of classical and quantum software systems. In
future work we intend to explore additional theoretical aspects
of the ideas presented here and apply them in practice to a
more extensive investigation of medium and larger quantum
software systems.

F. Main Contribution

The main contribution of this paper is the unified linear
algebra design approach to classical and quantum software
systems, starting from their representation as design Density
Matrices.

REFERENCES
[1] Erdal Arikan, “An information-theoretic analysis of Grover’s

algorithm”, arXiv:quant-ph/0210068v2 Oct 2002.

[2] Josep Batle, Raymond Ooi, Ahmed Farouk, M.S. Alkhambashi and
Soliman Abdalla, “Global versus local quantum correlations in the
Grover search algorithm”, Quantum Inf. Process, DOI:
10.1007/s11128-015-1174-y, 2015.

[3] Samuel L. Braunstein, Sibasish Ghosh and Simone Severini, “The
Laplacian of a graph as a density matrix: a basic combinatorial
approach to separability of mixed states”, arXiv:quant-ph/0406165v2
Oct 2006.

[4] Frederick P. Brooks Jr., The Mythical Man-Month – Essays in Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[5] Nair M.M. deAbreu, 2007. “Old and new results on algebraic
connectivity of graphs”, Linear Algebra and its Applications, 423, pp.
53-73, 2007. DOI: https://doi.org/10.1016/j.laa.2006.08.017

[6] Shantanu Debnath, Norbert M. Linke, Caroline Figgatt, Kevin A.
Landsman, Kenneth Wright and Christopher Monroe, “Demonstration
of a small programmable quantum computer with atomic qubits”,
arXiv:1603.04512v3 [quant-ph] Aug 2016.

[7] Iaakov Exman and Rawi Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107.

[8] Iaakov Exman and Harel Wallach, “Linear Software Models: An
Occam’s Razor Set of Algebraic Connectors Integrates Modules into a
Whole Software System, Int. Journal of Software Engineering and
Knowledge Engineering, Vol. 30, No 10, pp. 1375-1413, 2020. DOI:
http://dx.doi.org/10.1142/S0218194020400185

[9] Miroslav Fiedler, “Algebraic Connectivity of Graphs”, Czech. Math.
J., Vol. 23, (2) 298-305, 1973.

[10] Caroline Figgatt, Dmitri Maslov, Kevin A. Landsman, Norbert M.
Linke, Shantanu Debnath and Christofer Monroe, “Complete 3-Qubit
Grover Search on a programmable quantum computer”, Nature
Communications, 8: 1918, 2018. DOI: https://doi.org/10.1038/s41467-
017-01904-7.

[11] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Boston, MA, 1995.

[12] Alexander S. Green, Peter L. Lumsdaine, Neil J. Ross, Peter Salinger
and Benoit Valiron, “Quipper: a Scalable Quantum Programming
Language”, arXiv:1304.3390, April 2013.

[13] Russel Merris, “Laplacian matrices of graphs: A survey”, Linear
Algebr. Appl. 197–198, pp. 143–176, 1994.

[14] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cambridge, UK,
2000.

[15] Carlos A. Perez-Delgado and Hector G. Perez-Gonzalez, “Toward a
Quantum Software Modeling Language”, in IEEE/ACM 42nd Int. Conf.
on Software Engineering Workshops (ICSEW’20), May 23-29, ACM,
New York, NY, USA, 2020.
https://doi.org/10.1145/3387940.3392183.

[16] Prototype Design Pattern, 2016, Web site:
http://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

[17] John von Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der
Quantenmechnik”, Nachrichten von der Gesellschaft der
Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, pp.
245-272, 1927. https://eudml.org/doc/59230.

[18] Eric W. Weisstein, Bipartite graph, 2020.
http://mathworld.wolfram.com/Bipartite-Graph.html

[19] Eric W. Weisstein, Laplacian, 2020.
http://mathworld.wolfram.com/LaplacianMatrix.html

[20] Chai Wah Wu, “Multipartite separability of Laplacian matrices of
graphs”, The Electronic Journal of Combinatorics, Vol. 16, #R61,
2009.

[21] Jingfu Zhang, Wenzhang Liu, Zhiwei Deng, Zhihang Lu and Gui Lu
Long, “Modularization of the multi-qubit controlled phase gate and its
NMR implementation”, arXiv:0406209v2 [quant-ph] Nov 2004.

