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Abstract— Linear Software Models enable rigorous linear 
algebraic procedures for modular design of classical software 
systems. These procedures apply a spectral approach to matrix 
representations – e.g. the Laplacian – of the software system.  

Recent intensive research efforts towards quantum 
computers have increased expectations that quantum 
computing could in due time materialize as a practical 
alternative to classical computing.  It is reasonable to inquire 
about quantum software desirable features and prepare in 
advance modular design procedures for quantum software 
systems.  

However, it does not make sense to have two totally separate 
procedures for modular design, one for classical software 
systems and another for quantum software systems. This paper 
claims that there should be just a single unified and rigorous 
design procedure for both classical and quantum software 
systems.  

Our common design procedure starting point for both 
classical and quantum software systems is Von Neumann’s 
quantum notion of Density Operator and its Density Matrix 
representation. This paper formulates and demonstrates 
modular design in terms of projection operators obtained from 
a design Density Matrix and shows their equivalence to the 
Linear Software Models results of the Laplacian matrix 
spectrum for the classical case. The application in practice of the 
design procedure for both classical and quantum software is 
illustrated by case studies. 

Keywords—Quantum Software Models, Software Design, 
Density Matrix, Laplacian Matrix 

I. INTRODUCTION 

Linear Software Models [7] represent classical software 
systems by a bipartite graph with two sets of vertices, one set 
standing for Structors – a generalization of classes – and 
another for Functionals – a generalization of class methods in 
object-oriented parlance. Structors contain and provide 
Functionals. Being a bipartite graph [18], there are edges only 
between vertices of the Structors set and vertices of the 
Functionals set, but not between vertices of the same set. 

The Laplacian Matrix [13] [19] L associated with the 
bipartite graph is defined by eq. (1): 

 L = D - A 

where D is the Degree matrix – diagonal by definition –
showing bipartite graph vertex degrees, and A an Adjacency 
matrix showing vertex neighbors. When two vertices are 
neighbors, the respective Adjacency matrix element is 1-
valued, with a minus sign due to eq. (1). Otherwise, it is zero-
valued. 

A. Laplacian for Classical Software Systems 

Modules of a classical software system can be formally 
obtained by a procedure relying upon the eigenvalues and 
eigenvectors of the respective Laplacian. A module is defined 
as a connected component of the bipartite graph. 

The number of modules of the software system 
represented by the Laplacian is given by the multiplicity of the 
zero-valued eigenvalues [9], [5]. The modules composition – 
in terms of Structors and Functionals – is given by the 
eigenvectors corresponding to the zero-valued eigenvalues. 

When there are “outliers” – seen as Laplacian matrix 
elements coupling two potential modules – leading to a larger 
sparse module, one can split this larger sparse module using 
the Fiedler eigenvector [9]. This Fiedler vector fits to the 
smallest non-zero eigenvalue of the Laplacian matrix. 

A modular bipartite graph of a schematic abstract example 
of a software system is seen in Fig. 1. The corresponding 
Laplacian matrix is shown in Fig. 2. Modules are seen as 
diagonal blocks of the Adjacency matrix within the Laplacian. 
Laplacian eigenvectors corresponding to the modules, are 
shown in Fig. 3. 

Fig 1. Bipartite Graph of a schematic abstract software system. It has 4 
Structors – S1, S2, S3, S4 (green) and 4 Functionals – F1, F2, F3, F4 (orange). 
The Structor S2 provides two Functionals F1 and F2. This system has 3 
modules (light blue rectangles) calculated from the Laplacian (in Fig. 2) 
through the eigenvectors (in Fig. 3). (Figures in color online). 

Fig. 2. Laplacian matrix of the schematic abstract software system (in Fig. 1). 
The Laplacian diagonal contains the Degree matrix elements (pink). The 
Adjacency matrix (with minus signs) and its 3 block-diagonal modules (light 
blue rectangles) is seen in the upper-right and lower-left quadrants. Modules 
are obtained from the Laplacian eigenvectors (in Fig. 3). 

 

 

 



Fig. 3. Eigenvectors of the Laplacian matrix (in Fig. 2). The upper row 
(yellow) shows vertices fitting the eigenvector elements. The lower rows 
show three eigenvectors fitting zero-valued eigenvalues. The inferred 
modules, one module for each eigenvector, are shown in the r.h.s. (light blue).  

B. The Density Matrix Design Choice 

The Quantum Software Models introduced in this paper 
were inspired by Linear Software Models and are their natural 
continuation due to their common basis upon linear algebra:  

 Linear Software Models are for classical software 
systems design a framework based upon linear algebra; 

 Quantum Software Models for quantum computing 
(e.g. [14]) also have linear algebra as its mathematical 
basis. 

In the density operator picture of the Hilbert formulation 
of quantum mechanics the state of a quantum system is 
identified with a positive semidefinite, trace one, Hermitian 
matrix, called a Density Matrix [17]. The Laplacian matrix of 
a graph is symmetric and positive semidefinite. Braunstein 
and co-authors [3] observed that any Laplacian matrix L(G) of 
a graph G, scaled by the degree-sum d(G) of the graph G, has 
trace one, thus it is a Density Matrix . They define it as the 
density matrix of a graph G: 

 L(G d(G) 

Since we represent any given software system by a 
bipartite graph, and its Laplacian, we re-define the density 
matrix in equation (2) as the design Density Matrix of the 
Software System. 

We select the design Density Matrix as the starting point 
of choice for the design procedure of Quantum Software 
Models, by generality considerations, to make concrete the 
claim that there should be just a single unified and rigorous 
design procedure for both classical and quantum software 
systems: 

 Any software system can be designed from the 
information in the design Density Matrix. 

Except for the design qualifier, we look at the design 
Density Matrix as a density matrix for all purposes. We shall 
not explicitly use the design qualifier, unless needed to stress 
this characteristic. Now, we may focus on modularity from a 
deeper perspective. 

C. Paper Organization  

The remaining of the paper is organized as follows. 
Section II looks at modular design from a deeper perspective. 
Section III formulates and illustrates Classical Software 
Design in terms of the Density Matrix. Section IV formulates 
and illustrates Quantum Software Design from the same 
perspective. Section V mentions related work. The paper is 
concluded with a Discussion in section VI. 

II. A DEEPER PERSPECTIVE ON MODULARITY DESIGN 

A Density Matrix is a matrix representation of a Density 
Operator, which is a projection operator. Using the Dirac bra-
ket notation, a Density Operator  is a general kind of ket-bra: 

 ⟩⟨ 

where  is a generic notation for a quantum state [14]. 

Any projection operator, in short, a projector, actually 
projects its argument into a sub-space of the relevant Hilbert 
state space. From this point of view, a module – previously 
defined as a connected component of the bipartite graph – is 
redefined in terms of projectors, obtaining modules from the 
design Density Matrix. 

A. Modules Defined by Projection Operators 

The Density operator acts on the state space of the 
system. A set of orthonormal basis vectors, a set of kets, spans 
the state space. One can associate a projection operator with 
each of the kets in the basis set. 

One assumes that a whole software system design, 
classical or quantum, is completely described by its density 
operator. The respective Density Matrix can be expressed as a 
sum of the projection operators of the kets in the basis set, with 
suitable coefficients. For instance, for the Density Matrix 
obtained by scaling the Laplacian in Fig. 2, the computational 
basis set is |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩ and 
|111⟩. 

Modules are partitions of the whole software system, with 
internal interactions, spanning a sub-space of the whole 
software system. More formally, one can state the definition 
as follows. 

Definition 1: Module of a Software System. A module 
of a software system is a sub-system of a given software 
system. It spans a sub-space of the space state of the whole 
software system, given by a partition of the projection 
operators of the kets in the system basis set, such that each 
module sub-space is orthogonal to all other module sub-spaces 
of the software system. 

Case studies illustrating this definition are provided for 
classical and quantum software systems in the next sections. 

B. From Density Matrix to Modules 

A procedure to obtain Modules from the software system 
design Density Matrix is as follows: 

1. Apply the Density Matrix to each ket in the basis set 
spanning the state space of the software system. 

2. Obtain the projection operators for each ket in the 
basis set. 

3. Express the Density Matrix as a sum of the projection 
operators obtained in the previous step. 

4. Partition the sum of projection operators into disjoint 
sets of projection operators, each partition fitting a 
different module. 

5. The number of modules in the software system is the 
number of disjoint sets of projection operators. 

6. The composition of each module is given by the basis 
kets subset of the respective projection operators. 

 



C. Modules Validation 

A final step to obtain the actual modules of a given 
software system is to check whether the modules obtained by 
the procedure in the previous sub-section are irreducible. A 
problem, already mentioned in sub-section 1.1, could be 
caused by an “outlier” coupling two smaller modules into a 
larger and sparser module. This larger module is reducible in 
principle to the smaller modules. 

III. CLASSICAL SOFTWARE DESIGN 

The software design purpose is to enable software system 
analysis and development. Information sources for a classical 
software system depend on the software life cycle 
development stage: UML class diagram, a source code 
program, an executable code. This section formulates 
theorems on number and components of classical software 
modules and illustrates them by a case-study. 

A. From Class Diagram to Density Matrix 

The idea is very simple: a- from a class diagram obtain the 
software system bipartite graph; b- from the graph generate 
the Laplacian matrix; c- scale the Laplacian by the degree-sum 
d(G) of the graph G, by eq. (2) to get the Density Matrix. 

The information items extracted from the class diagram 
are: 1- class names; 2- methods provided by each class; 3- 
possible relationships between classes, in particular 
inheritance. Inheritance can be inferred, from the bipartite 
graph or from the Laplacian matrix, when two or more classes 
provide the same method. 

Production of a software system design is not a one-pass 
action. Usually, one suggests an initial design, which is 
analyzed, and eventually improved.  There could be a few 
cycles of this nature. 

B. Number and Components of Classical Software Modules 

The modules number and components obtained from the 
Density Matrix (see section II.B) are stated in the next 
theorems. 

Theorem 1: Number of Classical Software Modules. 
The number of modules in a classical software system 
represented by its design Density Matrix is given by the 
number of partition classes of the basis kets’ projectors 
corresponding to the Density Matrix of the software system. 

Proof:  
By the Fiedler theorems [9], software modules are 

obtained from the Laplacian matrix eigenvectors, fitting the 
zero-valued eigenvalues. Thus, the proof consists in showing 
that projectors applied to the lowest Laplacian eigenvectors 
also obtain zero eigenvalues. It suffices to refer to the 
Laplacian, since it is related to the Density Matrix by eq. (2). 

The lowest frequency Laplacian eigenvectors are non-
negative and have two identical halves (by Theorem 4 in 
Exman and Sakhnini [7]), so eigenvectors do not contribute 
opposite signs. 

Basis vectors (kets and bras) for the Density Matrix are 
mutually orthogonal. In the chosen computational basis each 
basis vector has a single positive element (different from all 
other basis vectors) and all other elements are zeros. Each 
partition projector is composed of pairs of basis vectors, 
characterizing the row and column of each matrix element. 
Applying the projector bras on the eigenvector ket obtains a 

zero eigenvalue due to different location of its non-zero 
elements and the opposite bra signs.   ⧠ 

Theorem 2: Components of a Classical Software 
Module. The module components in a classical software 
system represented by its Density Matrix are given by the 
Structors and Functionals fitting the respective basis kets/bras 
in the projection operators of the partition class of the software 
system Density Matrix. 

Proof:  
Since the partition classes of the projection operators are 

also partition classes of the kets/bras in the Density Matrix, 
and there is a one-to-one correspondence with the respective 
Structors and Functionals, the theorem is proved. ⧠ 

C. Classical Case Study: Prototype Design Pattern 

Our classical software system case study has been shown 
in abstract form in Figures 1 to 3 (in section I.A). We continue 
with the same system, revealing that it is the Prototype design 
pattern. A design pattern is a reusable small set of classes with 
a definite role, frequently found in object-oriented programs.  

The Prototype design pattern (see page 117 in the GoF 
book [11]) creates new objects by copying a prototypical 
instance. This system starts with the Main program of the 
Prototype-Client demanding a Specific-Shape (e.g. Rectangle, 
Triangle or Circle). If the shape is already stored in the 
Shapes-Cache, one retrieves the desired shape. Otherwise, 
one clones the desired shape, (the Clone functional is inherited 
from the Generic-Cloneable-Shape). A commercial Java code 
of the Prototype pattern similar to our model is found in ref. 
[16]. The Structors and Functionals of the Prototype design 
pattern are collected in Fig. 4. Its Density Matrix is seen in 
Fig. 5. 

After collecting all the projection operators composing the 
Density Matrix and partitioning them into disjoint sets, one 
obtains the results in Fig. 6.    

 

 
 
Fig. 4. Prototype Design Pattern – List of Structors and Functionals, 
corresponding to the Laplacian matrix (in Fig. 2), and to the Density Matrix 
(in Fig. 5). 
 

Fig. 5. Prototype Design Pattern – Density Matrix  fitting the Laplacian 
matrix L (in Fig. 2). The Laplacian Trace (degree-sum) equals 10, therefore  
 = 0.1*L by eq. (2). The basis set kets are shown above the respective 
columns (orange) and the fitting basis set bras to the left of the respective 
rows. 

 



Fig. 6. Prototype Module Projectors – Results obtained by applying the 
procedure in sub-section II.B. The projectors in terms of kets and bras are 
shown in the middle of the figure (omitting the degree-sum coefficient to 
emphasize the kets/bras partition classes).  The module components in terms 
of Structors and Functionals are seen in the r.h.s. of the figure. 

One should not confuse the ket above each column in Fig. 
5 with the respective column label. To obtain the projectors 
fitting each ket one needs to apply the Density Matrix on the 
ket, obtaining the column labelled by the respective Structor 
label.  For instance, applying ⟩one obtains the leftmost 
column labelled F1. Thus, the resulting projection operator is: 
 |000⟩ = 0.1*(2*|000⟩ - |100⟩ - |101⟩)⟨000|. 

The results in Fig. 6 comply with Theorems 1 and 2 in 
section III.B. The number of modules equals the number of 
projector partitions. The module components are given by the 
Structor and Functional labels, fitting the kets and bras within 
the projectors. They are confirmed by the classical linear 
algebra results from the eigenvectors (compare with Fig. 3). 

IV. QUANTUM SOFTWARE DESIGN 

This section introduces Quantum Software Design from a 
new viewpoint on Quantum Computing. A single unified and 
rigorous design procedure for both classical and quantum 
software systems implies analogous techniques and the same 
theorems of the classical case (section III.B) to obtain 
quantum software modules. High-level quantum circuits are 
the source of quantum software design information. 

A. From High-Level Quantum Circuit to Density Matrix 

First, one informally defines a high-level Quantum 
Circuit. It has parallel horizontal qubit lines and boxes 
containing one or more quantum gates (e.g. CNOT, 
Hadamard, Toffoli) or even classical computations. Boxes 
cover one or more qubit lines. A high-level quantum circuit is 
a sequential diagram, with “time” increasing from left (the 
input qubits) to right (typically a measurement output). There 
may be boxes (displayed vertically) executed in parallel.  For 
more formal quantum circuit definitions see e.g. [14]. 

Information extraction is done as follows: a- begin with a 
high-level quantum circuit; b- extract lists of Structors and 
Functionals, and their relationships; c- obtain a bipartite graph 
from these concepts; d- generate the graph’s Laplacian; e- 
obtain the fitting quantum software design Density Matrix. 

B. Analogies between Class Diagram and Quantum Circuit 

High-level quantum circuits for quantum software design 
clearly have differences from class diagrams for classical 
design (see the Discussion section VI.D). Here we focus on 
similarities relevant to software design. Both class diagrams 
and quantum circuits expose software structures without 
fixing their exact numbers. For instance, in the classical 
Prototype case study, the number of Specific Shape classes is 
not fixed a priori. The same is true in a high-level quantum 
circuit: e.g. the number of applied Hadamard gates is left 
indeterminate. 

C. Structors and Functionals from Quantum Circuits 

The data extracted from high-level quantum circuits is 
similar to the classical case: a set of Structors, a set of 
Functionals and their relationships, i.e. which Structor 
provides certain Functionals. These entities yield a bipartite 
graph and its quantum software design Density Matrix. 

Structors and Functionals of a quantum software system 
design have the same roles as those entities in a classical 
software design. Structors – structural entities, the Boxes – are 
the basic building blocks of the hierarchical software 
structure. They are analogous to the boxed subcircuits of e.g. 
the Quipper quantum programming language [12]. These 
subcircuits are used multiple times within a larger circuit, thus 
boxed and given a generic name, semantically meaningful for 
the software engineer. Functionals – behavioral entities – are 
sets of gates for well-defined computations. 

Modules, obtained from a quantum software design 
Density Matrix, enclose Structors and their Functionals. 
Modules containing modules, build the software system 
overall hierarchical structure. 

D. Quantum Case Study: Grover Search 

Grover search is a well-known quantum algorithm for 
searching an unstructured database, attaining a quadratic 
speedup on the number of queries, relative to the classical 
computation. This quantum algorithm (see e.g. Nielsen and 
Chuang [14]) starts with equal probabilities for all input 
qubits, then recognizes and marks the target by an oracle, to 
iteratively amplify it in every cycle, and finally obtain the 
target by a measurement action. This is done in four steps, 
seen in the high-level quantum circuit in Fig. 7: 

1. The nth tensor power of the Hadamard operator H 
transforms the input into an equal superposition state. 

2. Apply an oracle to recognize and mark the target. 

3. Perform target amplification by means of an 
“inversion about the average”. 

4. Measure the amplified target, yielding the final result. 

The respective Structors and Functionals extracted from 
the high-level quantum circuit in Fig. 7 are shown in Fig. 8. 

Fig. 7. Schematic Grover algorithm high-level quantum circuit – From left 
to right, the nth tensor power of the Hadamard operator H puts n input qubits 
in an equal superposition state. An oracle marks the target, which is amplified 
by an inversion about the average.  The final result is obtained by 
measurement. 
 

 Fig. 8. Grover algorithm Structors and Functionals – These correspond to 
the four boxes of the quantum circuit in Fig. 7. 

 

 

 



The Oracle and the Amplification Structors, highlighted 
(in blue) in Figures 7 and 8, jointly constitute the Grover 
Iteration, looping in a few cycles during computation. A 
design justification for keeping these two Structors together in 
a single module is their functional similarity – analogous to a 
classical inheritance: Amplification is written as 2*|⟩⟨| -I ; 
the Oracle can be formulated as I - 2*|⟩⟨| (see e.g. Arikan 
et al. [1]). Here  stands for the marked target. 

The joint Grover Iteration is a size 2*2 software Module, 
in the middle of the quantum circuit (Fig. 7). This module 
relative position is sequential information relevant to a 
sequence diagram (see Discussion in section VI.D).  

The Grover algorithm bipartite graph is an architectural 
units’ diagram, generating a system design Density Matrix. 
One can easily perceive that, except for the above mentioned 
module sequential relative position, the Grover algorithm 
Density Matrix is almost identical to the classical Prototype 
Design Pattern Density Matrix. 

An alternative architectural design of the Grover system 
keeps the Oracle and the Amplification separate, allowing 
independent optimization of each of them (e.g. Figgatt et al. 
[10]). Such design Density Matrix has Adjacency matrix 
quadrants with strictly diagonal modules. 

V. RELATED WORK 

A. Graphs, Laplacians and Density Matrices 

Linear Software Models for classical software system 
design based upon linear algebra have been developed by 
Exman and co-authors. Exman and Sakhnini described 
software systems by bipartite graphs, leading to Laplacian 
Matrices [7]. Splitting too sparse software modules has been 
done with Fiedler eigenvectors [9], [5]. Exman and Wallach 
[8] recently applied these Models to software consumers. 

Braunstein and co-authors [3], followed by Wu [20], make 
the transition from graphs’ Laplacian matrices to quantum 
computing Density Matrices, investigating separability issues. 

Perez-Delgado and Perez-Gonzalez [15], in a non-
algebraic approach to Quantum Software Modeling, suggest 
minimal quantum extensions to the UML classical language, 
in order to apply it to quantum software systems. This in 
contrast to our opposite direction, viz. Density Matrix 
quantum language to be applied to classical software systems. 

B. Modularity in Quantum Software Design 

Modularity ideas for quantum computing software, have 
been recognized within several contexts. Zhang et al. [21] 
applied modular computer architecture to NMR quantum 
computing, claiming that modularized software architecture 
plays an increasing role for large-scale quantum computing. 

Debnath et al. [6] demonstrate quantum computing 
programmable in software, compiled into modular logic gates 
for reconfigurable algorithms without altering the hardware.  

 Figgatt et al. [10] describe a complete 3-Qubit Grover 
search, with various Oracle implementations. The 
initialization and amplification stages were optimized 
disregarding the oracle contents to preserve the algorithm 
modularity, enabling insertion of possible alternative oracles 
without changing the other stages. 

VI. DISCUSSION 

A. Modularity Reasons for Quantum Design 

A single quantum software system may have Density 
Matrices for distinct purposes, among others, based upon 
different choices of basis vectors. For instance, Batle et al. [2] 
use a Bell basis’ Density Matrix, to investigate how quantum 
correlations vary as the Grover search algorithm is run.  

The current paper chooses a design Density Matrix to 
analyze modularity of quantum software systems. We observe 
that any scaled Laplacian of a software system is a design 
Density Matrix, but not any density matrix in general can be 
converted to a Laplacian representing a software system 
design. 

There are various reasons for quantum software 
modularization. These include enabling comprehension of 
quantum computation semantics by human engineers, and 
increasing computation efficiency, in particular partitioning of 
networked quantum systems. Often functional separation 
facilitates comprehension or enhances independent 
optimization. In other cases, the opposite may be needed, i.e. 
integrating various Functionals into a single Module. 

B. Unified Classical and Quantum Design Procedure 

There is a double motivation for “a single unified and 
rigorous design procedure for both classical and quantum 
software systems” focusing on modularity. The pragmatic 
argument is to facilitate development of hybrid software 
systems made of classical and quantum sub-systems. 

A foundational argument is to preserve Brooks’ idea of 
conceptual integrity [4] throughout software systems 
involving both classical and quantum aspects, enabling 
comprehension of these systems by human software 
engineers. 

C. Classical Software Systems as classical limit of Quantum 
Systems 

Counterintuitively at first sight, we conjecture that it 
should be easier to obtain classical software systems as a 
classical limit of quantum software systems, than the other 
way round. Indeed, in physics there is a theoretical expectation 
of classical systems to be derivable as classical limits from 
quantum systems. Moreover, this continuity between quantum 
and classical software systems, offers novel yet unexplored 
territory for deeper understanding of classical software (see 
next section VI.D). 

Can we heuristically justify a quantum to classical 
software continuity? In one sentence the argument is: the 
quantum state/operator duality is a suitable formalism for the 
same classical software state/operator duality. 

In the density operator picture of quantum mechanics a 
quantum system state is identified with the Density Matrix, 
which at the same time is an operator applicable to states. Von 
Neumann’s Density Matrix [17] insight is supported by 
elegant Dirac notation. A ket |a⟩ (and a bra ⟨b|) is a state. A 
bra-ket inner product ⟨b|a⟩ yields a number. By simple order 
exchange, |a⟩⟨b| is an operator, a projector, applicable to other 
states. 

Classical software is a static description of a system, a 
potential computation waiting for a trigger, in other words, a 
state. At the same time, classical software is runnable – when 



interpreted or compiled, details being irrelevant for the 
argument – i.e. an operator applicable to other input states. 

D. Software and Hardware: Design and Implementation 

The original design diagrams for classical and quantum 
software are different mainly by historical reasons. Classical 
design diagrams include: UML class diagram displaying 
structure; sequence diagram showing time-dependence of 
specific scenarios that may occur in a system; statechart 
displaying states for the whole system.  

Quantum design diagrams include high-level quantum 
circuits, displaying a double character of both structure and 
time sequence, with implicit states. In this paper we focus on 
structure design, leaving the sequential aspect to be discussed 
elsewhere. 

In this work Quantum Software design means high-level 
abstract Structors, such as init or oracle, and their Functionals, 
as illustrated by the Grover algorithm case study. Quantum 
software implementation makes design concrete by assigning 
to abstract design entities, specific types and numbers of 
quantum gates, interconnections, input and output qubits. 

Quantum hardware design and implementation refer to the 
underlying physics – e.g. NMR, trapped atomic ions, photonic 
devices – easily distinguishable from quantum software, and 
out of the scope of this paper. 

E. Future Work 

This paper made initial steps towards a unified modeling 
viewpoint of classical and quantum software systems. In 
future work we intend to explore additional theoretical aspects 
of the ideas presented here and apply them in practice to a 
more extensive investigation of medium and larger quantum 
software systems. 

F. Main Contribution 

The main contribution of this paper is the unified linear 
algebra design approach to classical and quantum software 
systems, starting from their representation as design Density 
Matrices. 

REFERENCES 
[1] Erdal Arikan, “An information-theoretic analysis of Grover’s 

algorithm”, arXiv:quant-ph/0210068v2 Oct 2002. 

[2] Josep Batle, Raymond Ooi, Ahmed Farouk, M.S. Alkhambashi and 
Soliman Abdalla, “Global versus local quantum correlations in the 
Grover search algorithm”, Quantum Inf. Process, DOI: 
10.1007/s11128-015-1174-y, 2015. 

[3] Samuel L. Braunstein, Sibasish Ghosh and Simone Severini, “The 
Laplacian of a graph as a density matrix: a basic combinatorial 
approach to separability of mixed states”, arXiv:quant-ph/0406165v2 
Oct 2006. 

[4] Frederick P. Brooks Jr., The Mythical Man-Month – Essays in Software 
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA, 
USA, 1995. 

[5] Nair M.M. deAbreu, 2007. “Old and new results on algebraic 
connectivity of graphs”, Linear Algebra and its Applications, 423, pp. 
53-73, 2007. DOI: https://doi.org/10.1016/j.laa.2006.08.017 

[6] Shantanu Debnath, Norbert M. Linke, Caroline Figgatt, Kevin A. 
Landsman, Kenneth Wright and Christopher Monroe, “Demonstration 
of a small programmable quantum computer with atomic qubits”, 
arXiv:1603.04512v3 [quant-ph] Aug 2016. 

[7] Iaakov Exman and Rawi Sakhnini, “Linear Software Models: Bipartite 
Isomorphism between Laplacian Eigenvectors and Modularity Matrix 
Eigenvectors”, Int. Journal of Software Engineering and Knowledge 
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI: 
http://dx.doi.org/10.1142/S0218194018400107. 

[8] Iaakov Exman and Harel Wallach, “Linear Software Models: An 
Occam’s Razor Set of Algebraic Connectors Integrates Modules into a 
Whole Software System, Int. Journal of Software Engineering and 
Knowledge Engineering, Vol. 30, No 10, pp. 1375-1413, 2020. DOI: 
http://dx.doi.org/10.1142/S0218194020400185 

[9] Miroslav Fiedler, “Algebraic Connectivity of Graphs”, Czech. Math. 
J., Vol. 23, (2) 298-305, 1973. 

[10] Caroline Figgatt, Dmitri Maslov, Kevin A. Landsman, Norbert M. 
Linke, Shantanu Debnath and Christofer Monroe, “Complete 3-Qubit 
Grover Search on a programmable quantum computer”, Nature 
Communications, 8: 1918, 2018. DOI: https://doi.org/10.1038/s41467-
017-01904-7. 

[11] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, 
Design Patterns: Elements of Reusable Object-Oriented Software, 
Addison-Wesley, Boston, MA, 1995. 

[12] Alexander S. Green, Peter L. Lumsdaine, Neil J. Ross, Peter Salinger 
and Benoit Valiron, “Quipper: a Scalable Quantum Programming 
Language”, arXiv:1304.3390, April 2013. 

[13] Russel Merris, “Laplacian matrices of graphs: A survey”, Linear 
Algebr. Appl. 197–198, pp. 143–176, 1994. 

[14] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and 
Quantum Information, Cambridge University Press, Cambridge, UK, 
2000. 

[15] Carlos A. Perez-Delgado and Hector G. Perez-Gonzalez, “Toward a 
Quantum Software Modeling Language”, in IEEE/ACM 42nd Int. Conf. 
on Software Engineering Workshops (ICSEW’20), May 23-29, ACM, 
New York, NY, USA, 2020. 
https://doi.org/10.1145/3387940.3392183. 

[16] Prototype Design Pattern, 2016, Web site: 
http://www.tutorialspoint.com/design_pattern/prototype_pattern.htm 

[17] John von Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der 
Quantenmechnik”, Nachrichten von der Gesellschaft der 
Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, pp. 
245-272, 1927. https://eudml.org/doc/59230. 

[18] Eric W. Weisstein, Bipartite graph, 2020. 
http://mathworld.wolfram.com/Bipartite-Graph.html 

[19] Eric W. Weisstein, Laplacian, 2020. 
http://mathworld.wolfram.com/LaplacianMatrix.html 

[20] Chai Wah Wu, “Multipartite separability of Laplacian matrices of 
graphs”, The Electronic Journal of Combinatorics, Vol. 16, #R61, 
2009. 

[21] Jingfu Zhang, Wenzhang Liu, Zhiwei Deng, Zhihang Lu and Gui Lu 
Long, “Modularization of the multi-qubit controlled phase gate and its 
NMR implementation”, arXiv:0406209v2 [quant-ph] Nov 2004. 

 

 


