
Modelling Quantum Circuits with UML 
Ricardo Pérez-Castillo 

 University of Castilla-La Mancha 
Talavera de la Reina, Spain 

ricardo.pdelcastillo@uclm.es 

Luis Jiménez-Navajas 
University of Castilla-La Mancha 

Ciudad Real, Spain 
luis.jimeneznavajas@uclm.es 

Mario Piattini 
University of Castilla-La Mancha 

Ciudad Real, Spain 
mario.piattini@uclm.es 

ABSTRACT 
None of the quantum computing applications imagined will ever 
become a reality without quantum software. Quantum 
programmes have, to date, been coded with ad hoc techniques. 
Researchers in the field of quantum software engineering  are, 
therefore, now demanding more systematic techniques and 
methods with which to produce software with sufficient quality. 
One of the challenges and lessons learned from classic software 
engineering is the need for high-level, abstract and technology-
independent representations with which to design software 
before it is coded. This paper specifically addresses this challenge 
for quantum software design. Since UML is a well-proven 
modelling language that has been widely employed by industry 
for some time, we propose a UML extension for the 
representation of quantum algorithms. Our proposal comprises 
the definition of a UML profile based on various stereotypes that 
can be applied to the existing UML activity diagrams in order to 
represent quantum circuits. The advantage of this representation 
is that UML quantum circuits can be interrelated with other 
UML elements and diagrams, which will make it possible to 
represent various concerns and viewpoints of the so-called 
hybrid information systems. This will consequently enable 
classical and quantum aspects to be modelled together in 
integrated designs in a technological-agnostic manner that is 
already supported by a considerable number of existing software 
design tools. 

CCS CONCEPTS 
• General and reference → General conference
proceedings; Design; • Software and its engineering →
System description languages; Unified Modeling Language
(UML); Software design engineering; • Theory of
computation → Quantum computation theory; Quantum
information theory.
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1 INTRODUCTION 
The impact of quantum computing on today’s society is 
undeniable [1, 2]. Quantum computing has a many promising 
applications [3], such as cryptography, financial services, 
pharmacy and health, energy and farming, defence, etc. 

None of the advantages that have been forecast to appear 
with the advent of quantum computing will be achieved with 

cutting-edge machines only, but these applications could be 
brought into existence  through the use of quantum software [4]. 
This new computing paradigm has devised a completely 
different approach for programming, along with building blocks 
for quantum programmes that are also unique. Quantum 
software is typically designed as quantum circuits that apply a 
set of quantum gates to various qubits in order to explore a 
search space in a non-deterministic and probabilistic manner. 

In this scenario, quantum software engineering needs to be 
developed as a new field [4, 5] in order to provide new 
techniques, methods and practices with which to analyse, design, 
code and create quantum software with sufficient quality in a 
more systematic manner. Other well-proven and successful 
classical software engineering techniques and methods could, 
together with these new techniques and methods, be adapted for 
quantum software [5]. The adaptation of existing techniques and 
methods is also important owing to the coexistence of classical 
and quantum software, which in many cases operate together in 
the so-called hybrid information systems.  

We believe that hybrid information systems will become 
mainstream as quantum computing machines are improved and 
more and more companies invest in migrating parts of their 
classical software towards quantum. However, it does not, from 
an economic point of view, make sense to implement every tiny 
and simplistic business process as quantum software, since 
classical software still performs better in the case of certain 
problems. Our envisioned scenario considers companies that 
migrate some of their mission-critical functionalities to quantum 
software while other new functionalities are implemented in 
quantum software owing to the new possibilities facilitated by 
this new computing paradigm. Classical and quantum software 
should, therefore, be modernised in order to attain hybrid 
information systems [6].  

Many of the problems solved by the existing software 
engineering methods and techniques are still the same as those 
involved in the design and construction of hybrid information 
systems [7]. For example, abstract representations for software 
are a key aspect as regards discussing design concerns and 
modelling systems with high-level representations, while 
implementation details are hidden. One well-proven solution, 
that is most widely used in classical software engineering, is the 
usage of standard modelling languages such as UML [8] for the 
analysis and design of information systems. We believe that 
UML modelling is a powerful tool for the design of hybrid 
information systems. This can be achieved by following a model-
driven engineering (MDE) approach that has at least two 
important advantages. First, UML models focus on domain and 
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conceptual representations in a technological-agnostic manner, 
and second, automated model transformations can be established 
from/to UML to/from source code for different platforms. 
Quantum software engineering that designs and develops 
quantum software by means of UML can consequently abstract 
technical complexities while focusing on the domain of the 
problem or business model, thus requiring only the functional 
knowledge needed for the solution. The advantages of MDE are 
a key aspect at this time of rapid evolution and a lack of 
standardisation in quantum programming, since companies are 
afraid of investing in platforms that will not continue in the 
future. 

Although the UML was defined in a general and technology-
independent manner, it was not originally conceived for the 
design of quantum software. It is, therefore, necessary to extend 
UML in order to cover the new quantum concerns. This paper 
introduces the ongoing results of research focused on the 
extension of the UML and presents a preliminary UML profile 
with which to represent quantum circuits as activity diagrams. 
The main implication of this work is that quantum circuits 
(based on the variant of the Penrose graphical notation) can be 
represented with UML, signifying that these elements can be 
linked with other abstract design elements of hybrid information 
systems that are also represented in the UML through the use of 
existing [9] or future extensions. 

The remainder of the paper is structured as follows: Section 2 
states the relevance of using UML in quantum software 
engineering, after which Section 3 introduces the UML profile 
for use in modelling quantum circuits, with a running example 
for the quantum teleportation algorithm. Finally, Section 4 
discusses the main implication and future efforts of this research. 

2 UML FOR QUANTUM SOFTWARE  
This section presents the usage of UML in quantum software 

engineering and how it can be extended. 

2.1 Usage of UML in Quantum Software 
The development of quantum or hybrid information systems 
cannot simply consist of a collection of code modules. The 
development of these systems should rather follow a whole life 
cycle, i.e. a “pre-defined pathway for implementing and solving 
large projects on quantum both in a time-efficient and resource-
efficient manner” [7]. It does not matter how long the life cycle 
is, since it is certain that the quantum software must be designed 
at some point. Software design defines the architecture, system 
elements, interfaces and other characteristics of a system [10] in 
order to accomplish goals using a set of primitive components, 
and is subject to constraints [11].  

UML can help by gathering and analysing software 
requirements and incorporating them into a programme design 
in a technology- and methodology-independent manner. This 
will make it possible to additionally use UML with hybrid 
information systems. 

Although other modelling languages can be used to design 
software, we believe that the usage of UML in quantum software 
engineering will have several advantages: 

1. Different perspectives. UML provides many different 
diagrams types to look at systems from various 
perspectives and represent different concerns. These 
viewpoints are useful as regards modelling hybrid 
information systems. 

2. Design validation. The aforementioned perspectives 
allow UML to help quantum software engineers to 
communicate, explore potential designs and validate the 
architectural design of the software. The UML is highly 
extended in industry and is, in some cases and to a certain 
extent, easy for non-technical staff to understand.  

3. Best practices. UML represents a collection of best 
engineering practices that have proved successful in the 
modelling of large complex systems. These practices could 
consequently be applied in quantum/hybrid information 
systems. One example of this is the aforementioned MDE 
approach, which ensures platform independence. 

4. Structured Design. UML modelling makes it easier to 
structure software as a collection of self-contained modules 
or components. This enables the reuse of code, scalability, 
and robustness. The state of the art of the quantum 
software engineering field is demanding precisely this [5]. 

5. Tooling. Since UML is a widely adopted ISO/IEC standard, 
most of the design and modelling tools support it. One of 
the primary goals of the UML is to advance the state of 
industry by enabling object visual modelling tool 
interoperability [8]. Quantum software modelling could be 
integrated into the tools used by many software engineers. 

6. Software Modernisation. UML is not only used for 
designing target hybrid systems that will then be 
implemented by forward engineering. UML models can 
also be generated by reverse engineering tools that analyse 
existing software, e.g., in order to migrate or modernise 
software towards hybrid information systems [6].  

Despite these advantages, UML needs to be adapted in order 
to capture all the new semantics and building blocks involved in 
quantum software. Literature already contains some first 
approximations. For example, in [9], Q-UML is proposed as a 
concrete syntax definition with which to represent certain 
quantum elements in class and sequence diagrams. In [6], UML 
is stated to be a relevant model for use in software 
modernisation processes, such as the reverse engineering or 
restructuring phase, and a UML extension is introduced with an 
example for use case diagrams. Other authors have already used 
UML (without providing extensions) to model quantum software 
[12]. 

2.2 UML Extensibility 
UML was defined on the basis of the MOF (Meta-Object Facility), 
which is a meta-metamodel.  UML is, therefore, a metamodel 
that is used to define different UML models, and the extension of 
UML consequently consists of extending the metamodel. It is 
necessary to bear in mind that all metamodels have both an 



Modelling Quantum Circuits in UML  
 

 

abstract syntax (that describes the concepts in the language, 
their characteristics and interrelationships) and a concrete 
syntax (that defines the specific textual or graphical notations 
required for the abstract elements). It is possible to extend the 
UML by principally following three different approaches [13]. 

1. A new instance of the MOF model. This approach 
consists of creating a completely new metamodel based on 
MOF. The result of this heavyweight approach is a new 
Domain-Specific Modelling Language (DSML). 

2. Derivation of a new UML metamodel. This approach 
adds new metamodel elements to the existing one. As 
occurs with the first approach, it is a different metamodel, 
but at least considers the original UML metamodel as it is. 

3. UML Profile. This is a lightweight extension approach 
that is based on the UML built-in extension mechanism, 
UML Profiling. UML profiles are created as a set of 
stereotypes, tagged values and constraints defined for 
some of the existing UML elements. 

These three approaches have various pros and cons. The 
expressiveness of the two first approaches is powerful, since 
conformity with UML is not necessary (particularly in the case of 
approach 1). Despite the fact that the expressiveness of UML 
profiles is limited, standardisation and conformance are better, 
since the extension is fully compliant with UML. This advantage 
is a key aspect as regards the usage of the defined profile with 
existing UML modelling tools. Moreover, it is easier to maintain 
extensions that have been defined as UML profiles since the 
associated modelling tools do not need to be adjusted after each 
change, as occurs with a DSML. DSMLs (approaches 1 and 2), in 
fact, usually end up with an overloaded and imprecise language. 
The aforementioned advantages lead us to believe that the UML 

profile is the best way in which to define the UML extension for 
quantum information systems. 

Figure 1 presents the part of the UML metamodel (abstract 
syntax) employed to define UML Profiles. A UML profile is 
defined as a package containing a set of defined stereotypes (that 
may or may not have a specific image). The UML profile must 
then be applied to a certain model. The attributes used to filter 
which UML elements are available when the Profile is applied 
are metamodelReference and metaclassReference. When a 
stereotype is applied to a model element, the values of the 
properties are traditionally referred to as tagged values. 

3 QUANTUM UML PROFILE 
This section presents the preliminary UML profile defined in 
order to represent quantum programmes as activity diagrams by 
using a graphical notation similar to that employed by quantum 
circuits. It should be noted that a broader UML profile will be 
defined for the representation of not only quantum circuits but 
also the analysis and design concerns of hybrid information 
systems. These other UML diagrams are not, however, within 
the scope of this paper. 

The entire Quantum UML Profile is presented in Figure 2. 
The UML profile consists of 6 stereotypes with which to add the 
new semantic related to quantum circuits (see dark gray 
elements at right-hand side of Figure 2): quantum circuit, qubit, 
quantum gate, control qubit, measure, reset. The left-hand side of 
Figure 2 shows an excerpt of the UML metamodel employed to 
represent UML Activity Diagrams, i.e., the base diagram used to 
model quantum circuits with UML.  

 

Figure 1: UML metamodel employed to define UML Profiles (Adapted from [8]). 
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Figure 2: Quantum UML Profile. 

The metaclass elements (light gray) in Figure 2 are those that 
are not abstract and are, therefore, the elements available to be 
included in the UML Activity Diagram. The leftwards arrows 
from stereotypes to metaclass elements in Figure 2 are extension 
elements (see Figure 1) that are used to indicate that the 
properties of a metaclass are extended through the use of the 
respective stereotype. 

The intuitive idea behind representing quantum circuits with 
UML activity diagrams is that each algorithm is represented with 
a single compound activity with the stereotype <<quantum 
circuit>>. The entire circuit is, therefore, defined in this activity, 
and the compound activity can be reused in other circuits, as 
occurs in quantum programming. The various activity partitions 
(graphically represented as horizontal swim lanes) can be 
defined in the parent activity by employing the <<qubit>> 
stereotype. The circuit has as many activity partitions as different 
qubits used in the algorithm. All the different quantum gates 
applied in the circuits are, therefore, represented as action 
elements and are placed in the respective swim lane, according 
to the qubit under which the gate is applied or controlled. On the 
one hand, ordinary quantum gates (such as H, Y, Z, etc.) are 
represented as call operation actions plus the <<quantum gate>> 
stereotype. On the other hand, conditional gates are represented 
with multiple action elements. The control qubits are 
represented with send signal action elements with the stereotype 
<<controlled qubit>>, while the gate applied is represented with 

the counterpart element, accept event action, plus the <<quantum 
gate>> stereotype (see Figure 2). Additionally, in order to add the 
semantic concerning the relationships between the control 
qubits, various UML constraint elements are established between 
the action elements involved. 

In addition to these core elements, special operations, such as 
qubit measuring and qubit resetting, are represented with value 
specification action elements and their respective stereotypes 
<<measure>> and <<reset>>. 

The control flow of quantum circuits is represented in the 
UML Activity Diagram with control flow elements that connect 
two action elements. In quantum circuits, isolated quantum gates 
that are applied independently in different qubits can sometimes 
be executed in any order. In this case, a control flow is 
established from top to bottom for every qubit. On other 
occasions, the order of certain quantum gates is important, and 
barriers are used in graphical quantum circuits. In this case, 
these synchronizations are represented in the UML Activity 
Diagram with fork and join nodes. The control flow in UML 
Activity Diagrams should eventually be defined in a continuous 
manner, starting from the special element initial node, and 
ending in the special element activity final node. This signifies 
that the result should be a fully connected graph. This is a 
change as regards graphical quantum circuits,  in which the 
control flow could, to a certain extent, be ambiguous. The UML 
extensions we provide support and advocate the definition of an 



Modelling Quantum Circuits in UML 

exact control flow, similar to that provided by quantum 
programming languages such as Q# or QASM. 

3.1 Running Example 
In order to illustrate how the Quantum UML Profile is applied, 
and to demonstrate its applicability, the paper provides a 
running example by using the teleportation algorithm [14] (see 
Figure 3). 

Figure 3: Quantum circuit for the teleportation algorithm. 

This algorithm supports quantum teleportation, a technique 
used to transfer quantum information from source to destination 
by employing entangled states. In this example, q0 is the qubit 
that represents the message to be sent, q1 is an auxiliary qubit, 
and q2 is the target qubit that will receive the information coded 
in q0. In this example, Hadamard (H) gates are used in order to 
place a qubit into a state of superposition. CNOT is a conditional 
X gate that rotates the position of the qubit in the X axis (like a 
NOT gate for classical computers) if the value of another qubit is 
one. It similarly uses a conditional Z gate that applies a rotation 
in the Z axis depending on the value of another qubit. In 
addition to these gates, two measures are taken in qubit q0 
(message) and q1 (auxiliary) that collapse these qubits and take 
certain values. At the end of the algorithm, q2 (target) will have 
the same value that q0 had. 

Figure 4 shows how the Quantum UML Profile is applied in 
an activity diagram in order to represent the equivalent quantum 
circuit for the teleportation algorithm. As explained previously, 
the whole circuit is enclosed in a composed activity with the 
respective stereotype. This circuit, therefore, has three horizontal 
activity partitions (one for each qubit). The quantum gates and 
measures are then placed as action elements in the same position 
as in the original quantum circuit (compare Figure 3 and Figure 
4). The usage of a fork and join elements for the original 

synchronization barriers should also be noted. With regard to 
the quantum gates CNOT and CZ, these are modelled with pairs 
of send signal action and accept event action connected by a 
restriction edge (together with the stereotypes <<controlled 
qubit>> and <<quantum gate>>). 

One interesting aspect of the quantum circuit represented 
with UML is that measures can be connected with data store 
nodes that represent classical values after a qubit is measured 
(see msg1 and register1 in Figure 4). Other ordinary UML 
elements, outside the whole circuit, could be connected with 
elements of the quantum circuit in order to define relationships 
with classical elements. This is specifically valuable as regards 
representing three relevant concerns: 

• Quantum requests from the classical programmes (also
known as drivers) to the quantum programmes, i.e., the
remote calls from the master server.

• Cost functions that manage the multiple calls to the
quantum circuits and the aggregation of results in the
classical source code of the drivers. This is a key aspect,
since the non-deterministic and probabilistic nature of
quantum algorithms makes it necessary to execute the
quantum circuits multiple times.

• Optimizers are other functions that are interesting to
model in association with the quantum circuits. These
functions are used to invoke quantum circuits with
different parameters with the goal of optimizing certain
circuits (e.g., reduction of quantum gates or qubits).

Finally, with regard to the running example, the execution 
flow of the circuit in UML is explicitly represented through the 
use of control flow elements from the initial node to the activity 
final node through all the quantum gates (see Figure 4). This 
explicit flow contrasts with the original quantum circuit in 
Figure 3, in which the execution flow is implicit. If attention is 
paid to the equivalent QASM source code of the teleportation 
algorithm (see Figure 5), it will be noted that the explicit control 
flow modelled with the Quantum UML Profile is almost the same 
as that defined using the source code (QASM or any other 
quantum programming language). The explicit execution flow 
has some advantages in some cases, such as the optimization of 
quantum algorithms, during which the specific order of the 
quantum gates may be of interest. 

Figure 4: Quantum circuit represented with UML for the teleportation algorithm. 



 

Figure 5: The QASM code for the teleportation circuit. 

4 DISCUSSION 
This paper introduces the idea of modelling quantum circuits 

in UML Activity Diagrams. Although several quantum circuit 
notations with which to graphically represent quantum 
algorithms already exist, the UML adds a similar notation that is 
understood by main role players in the quantum software 
engineering field and which is available in many existing 
modelling tools. In fact, the approach followed in this research 
consists of a lightweight extension based on a UML profile (the 
built-in extension mechanism provided by UML). Unlike other 
heavy-weight extension mechanisms, we believe the Quantum 
UML Profile has two clear advantages: (i) the reuse of existing 
UML modelling tools, and (ii) integration with other standard 
UML elements, which is useful as regards representing hybrid 
information systems. 

The Quantum UML Profile designed in this paper consists of 
6 stereotypes that can be applied to various standard UML 
elements used in activity diagrams. These stereotypes have been 
intentionally defined without a graphical icon, as would have 
been possible. This design decision was made in order to 
preserve the UML profile in order to make it as aseptic as 
possible. Literature shows that there is a certain variation in 
graphical representations of quantum gates. For example, the CZ 
gate is represented with a bullet point for the control qubit 
connected to a square labelled with ‘Z’, or can alternatively be 
represented with two bullet points that are connected (as shown 
in Figure 3). It was for this reason that we decided to avoid 
specific graphical representations of the stereotypes defined. 
Thus, all the quantum gates are supported, and the ordinary 
graphical UML notation can additionally be associated with 
similar UML elements (with the same graphical notation) in 
order to model classical software parts. The modelling of hybrid 
information systems with a common notation can consequently 
be improved through a reduction in complexity, thus attaining a 
better understandability. 

The main implication of this work is that quantum circuits 
can be designed and modelled in the UML. The existing UML-
based code generators could, therefore, be extended in order to 
automatically generate quantum source code in various 

programming languages, such as QASM, Q#, or Qiskit, among 
others. The implication of this work should not, however, be 
understood from the mere point of view of forward engineering. 
These UML representations may be key aspects during the 
software modernisation processes employed to migrate classical 
and quantum software towards hybrid information systems. For 
example, reverse engineering tools could abstract UML quantum 
circuits from quantum source code.  

This paper proposes the UML extension as part of more 
extensive long-term research devoted to providing a Quantum 
UML Profile that will cover other viewpoints and aspects of the 
analysis and design of hybrid information systems. For example, 
use case, class, sequence, component and deployment diagrams 
will be extended with the Quantum UML Profile, and our future 
research lines will comprise precisely this. 
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