
ar
X

iv
:2

10
3.

09
06

9v
1

 [
cs

.S
E

]
 1

6
M

ar
 2

02
1

Identifying Bug Patterns in Quantum Programs

Pengzhan Zhao

Kyushu University

zhao.pengzhan.813@s.kyushu-u.ac.jp

Jianjun Zhao

Kyushu University

zhao@ait.kyushu-u.ac.jp

Lei Ma

Kyushu University

malei@ait.kyushu-u.ac.jp

Abstract—Bug patterns are erroneous code idioms or bad
coding practices that have been proved to fail time and time
again, which are usually caused by the misunderstanding of a
programming language’s features, the use of erroneous design
patterns, or simple mistakes sharing common behaviors. This
paper identifies and categorizes some bug patterns in the quan-
tum programming language Qiskit and briefly discusses how to
eliminate or prevent those bug patterns. We take this research as
the first step to provide an underlying basis for debugging and
testing quantum programs.

Index Terms—Quantum program debugging, quantum soft-
ware testing, quantum bug patterns, Qiskit

I. INTRODUCTION

Debugging and testing are critical parts of an integrated

software development method in modern software develop-

ment. An appropriate method of bug finding can quickly help

developers locate and fix bugs. A software bug is regarded

as the abnormal program behaviors which deviate from its

specification [1], including poor performance when a threshold

level of performance is included as part of the specification.

Bug patterns are recurring relationships between potential bugs

and explicit errors in a program; they are common coding

practices that share similar symptoms and have been proven

to fail time and time again. Bug patterns are usually raised

from the misunderstanding of language features, the misuse of

positive design patterns, or simple mistakes having common

behaviors. Bug patterns are an essential complement to the

traditional design patterns [2], just as a good programmer

needs to know design patterns that can improve the software

design quality in various aspects, also to be a good software

developer, the knowledge of common causes of faults is a need

in order to know how to fix the software bugs.

Quantum programming is the process of designing and

building executable quantum computer programs to achieve a

particular computing result and is drawing increasing attention

recently. A number of quantum programming approaches are

available to write quantum programs, for instance, Qiskit [3],

Q# [4], ProjectQ [5], Scaffold [6], and Quipper [7]. However,

the current research so far in quantum programming is focused

on problem analysis, language design, and implementation.

Even though program debugging and software testing are

important, they have received little attention in the quantum

programming paradigm [8]. The new complexity introduced

in quantum programming makes it difficult to find the bugs in

the quantum source code. Until now, only a few approaches

have been proposed for testing and debugging quantum soft-

ware [9]–[16] and none of the previous work has focused

on the bug pattern identification in a quantum programming

language. The testing and debugging issues remain a big

problem for quantum programs [8].

We may not know what types of bugs are unique or

common happened to quantum programs without a proper bug

pattern classification, and this poses several restrictions on the

research and development of programs in the language.

• Developers may not know what type of bugs are most

likely to happen in a program, and therefore do not

know how to prevent them. In other words, a programmer

would lack a piece of fundamental knowledge on how to

write bug-free code.

• Testers do not have sufficient knowledge of how to write

adequacy test cases that can effectively cover the most

common potential errors. Only when having an idea of

how the common bugs happened in programs can the

tester set up criteria for better addressing the specific

bugs.

• Software maintenance staff do not know which language

features are more likely to result in the incorrect code, so

they cannot clearly view the current system when doing

the maintenance tasks.

The bug patterns presented in this paper may help to solve

these problems mentioned above. Identifying such patterns

in a quantum programming language can help programmers

improve their productivity in finding bugs and reduce software

maintenance costs. Bug pattern identification can also help

language designers and tool developers develop efficient bug-

finding techniques to locate bugs in quantum programs’ source

code through program analysis.

Furthermore, the information on bug patterns provides a

basis for further research on debugging quantum programs. It

provides insight into the possible consequences of different

bug types and summarizes the common behaviors among

similar ones. Also, it can be used to recognize faults that

have been already existed and prevent potential bugs. The

bug patterns identified for the quantum programming language

Qiskit could be seen as the first step towards studying general

bug patterns for quantum programming languages.

This paper chooses the widely used quantum programming

language Qiskit as our target language and identifies the

common bug patterns in Qiskit programs. We also provide

an example for each bug pattern to illustrate the pattern’s

symptoms. To the best of our knowledge, our work presented

http://arxiv.org/abs/2103.09069v1

in this paper is the first attempt to identify some bug patterns

existing in Qiskit programs systematically.

The rest of the paper is organized as follows. Section II

briefly introduces the background knowledge of quantum

programming in Qiskit and the error-prone features introduced

by quantum programs. Section III describes the identified

bug patterns in Qiskit in detail. Related work is discussed in

section IV, and concluding remarks are given in Section V.

II. BACKGROUND

We next briefly introduce the background information on

programming in Qiskit and the error-prone features in Qiskit

programs.

A. Qiskit

Qiskit is one of the most widely used open-source frame-

works for quantum computing, allowing us to create algo-

rithms for quantum computers [17]. As a Python package,

it provides tools for creating and manipulating quantum

programs and running on prototype quantum devices and

simulators [18] and can use built-in modules for noise char-

acterization and circuit optimization to reduce the impact of

noise. Qiskit also provides a library of quantum algorithms for

machine learning, optimization, and chemistry.

In Qiskit, an experiment is defined by a quantum ob-

ject data structure that contains configuration information

and the experiment sequences. The object can be used

to get status information and retrieve results [19]. Fig-

ure 1 shows a simple Qiskit program that illustrates

the entire workflow of a quantum program. The function

Aer.get_backend(’qasm_simulator’) returns a backend

object for the given backend name(qasm_simulator). The

backend class is an interface to the simulator, and the

actual name of Aer for this class is AerProvider. After

the experimental design is completed, the instructions are

run through execute method. The shots of the simulation,

which means the number of times the circuit is run, is set to

1000 while the default is 1024. When outputting the results

of a measurement, the method job.result() is used to

retrieve the measurement results. We can access the counts

via the method get_counts(circuit), which gives the

experiment’s aggregate outcomes.

B. Properties of Qubits

In the following, we use Qiskit as an example to explain

the characteristics of quantum bit (qubit) and the necessary

execution process of a complete quantum program.

In quantum computing, the basic unit of information is

the quantum bit (qubit). As shown in Figure 1, qreg =

QuantumRegister(3) means assigning a quantum register

of three qubits, and the value of each qubit is |0〉 by default.

So the initial value of these three qubits is |000〉. Next, let the

first and third qubits pass through the H (Hadamard) gate, as

shown by circuit.h(0) and circuit.h(2). In this way,

the unique property superposition of qubits is realized, which

means that each qubit can take on values of |0〉 and |1〉.

simulator = Aer.get_backend(’qasm_simulator’)

qreg = QuantumRegister(3)

creg = ClassicalRegister(3)

circuit = QuantumCircuit(qreg, creg)

circuit.h(0)

circuit.h(2)

circuit.cx(0, 1)

circuit.measure([0,1,2], [0,1,2])

job = execute(circuit, simulator, shots=1000)

result = job.result()

counts = result.get_counts(circuit)

print(counts)

Fig. 1. A simple quantum program in Qiskit

There is also an entanglement of qubit properties that only

multiple qubits can achieve. The code in the sample program is

circuit.cx(0,1). That is to say, the first qubit is entangled

with the second qubit through a CNOT (Controlled-NOT) gate

operation. We measure the first qubit, and its output is 0 for

50 percent probability and 1 for 50 percent probability. After

that, measuring the second qubit is 100 percent the same

as the first measurement result. Since the third qubit is not

related to the first two qubits, the last qubit’s measurement

result is still taken with 0 for 50 percent probability and

1 for 50 percent probability. The measurement statement of

qubits shown in Figure 1 is circuit.measure([0,1,2],

[0,1,2]). Measurement can lead to the collapse of a quantum

superposition state to a classical state. There are many kinds

of quantum measurements, and the projection measurement

of a single qubit is used here. That is, each qubit is projected

onto a state space consisting of base vectors |0〉 or |1〉. In this

program, the final output is a three-bit array.

C. Error-Prone Features in Qiskit Programs

By focusing on the language features of Qiskit, we can

classify the bug patterns in Qiskit into the following four

categories.

• Initialization: A quantum program is a series of op-

erations on qubits. The initial stage is to initialize the

quantum registers to store the qubits that need to be

manipulated. Then the classical registers are initialized

to store the values of the measured qubits. This stage

does not include setting the quantum state, as the quantum

state setting needs to be implemented by a gate operation.

Quantum registers and classical registers do not have

to be of the equal initial size. When we use multiple

classical bits to store the same qubit measurements, we

need to initialize as many classical bits as possible.

However, another case is that the initialized qubit is larger

than the classical bit. Since the programmer does not

intend to measure some qubits, it is assumed that there

is no need to initialize the classical bits equal to the

qubits. Nevertheless, this is also the reason why most

programs go wrong. So a hasty initialization can cause

some problems for subsequent programs.

• Gate Operation: The core of quantum computing is to

operate on qubits. Qiskit provides almost all the gates

to implement algorithms in quantum programs [20]. To

achieve the superposition of qubits, it must pass through

the H (Hadamard) Gate. To achieve ”entanglement” in the

case of multiple qubits, it must pass through the CNOT

(controlled-NOT) gate. In quantum language, complex

gate operations are decomposed into basic gates and

gradually realized. Controlled gates are parameterized

by two qubits, and double-controlled gates require three

qubits. However, this does not mean that the double-

controlled gate operates on three qubits at the same time.

Many errors may occur when inappropriately using gates

that operate on the qubits multiple times.

• Measurement: When we want to obtain the output, we

must perform a measurement operation on the target

qubit. The measured qubit is returned as the classical

state’s value, which no longer has superposition prop-

erties. So the qubit that has been measured cannot be

used as a control qubit to entangle with other qubits.

Although measurement is a simple operation, the program

executing a measurement statement is very complicated.

It requires thousands of projection measurements of the

qubits. Finally, it outputs all its possible results. More-

over, the number of occurrences of the result is used to

obtain the size of the probability of outputting the correct

value. Many errors start with the measurement statement

because programmers do not really understand the effect

of measurements on the state of qubits.

• Deallocation: It is crucial to reset and release the qubits

safely; otherwise, the auxiliary qubits in the entangled

state will affect the output. Deallocation is not considered

to be a specific operation due to the power of Qiskit.

We do not need to reset the qubits manually. However,

In some backends, not releasing all qubits can be prob-

lematic. In Qiskit, not handling all the qubits in the

entangled state can cause problems in the program or

output unsatisfactory values.

For better understanding, we propose these bug patterns in

terms of the quantum program execution order, which consists

of four stages (processes) that the program’s qubits go through,

and each stage interacts with the others.

III. BUG PATTERNS IN QISKIT

We next introduce six bug patterns in Qiskit as examples.

When introducing each bug pattern, we also show an example

that contains this specific pattern. Since most bug patterns have

some representation variants and alternatives, we choose the

one that appears to be the most generally applicable. These

bug patterns are also summarized in Table I.

A. Unequal Classical Bits and Qubits

In Qiskit, each classical bit in the classical register stores

a measured qubit value. Therefore, it is better to initialize

quantum registers of the same size as classical registers.

qreg = QuantumRegister(3)

creg = ClassicalRegister(2)

circuit = QuantumCircuit(qreg, creg)

circuit.h(0)

circuit.cx(0, 1)

circuit.cx(1, 2)

circuit.measure([0,1,2], [0,1,2])

Fig. 2. Unequal classical bits and qubits

qc = QuantumCircuit(3,3)

gt = Gate(’my_custom_gate’, 3, [])

qc.h(0)

qc.sdg(0)

qc.y(1)

qc.append(gt, [0,1,2])

qc.add_calibration(gt, [0,1,2], schedule)

qc = transpile(qc, backend,

basis_gates=[’u1’,’u2’,’cx’, gt])

qc.measure([0,1,2], [0,1,2])

Fig. 3. Custom gates not recognised by Qiskit

Otherwise, the bug pattern of “Unequal Classical Bits and

Qubits” may occur, especially when the number of qubits in

the quantum register is greater than that of classical bits in the

classical register. From the point of view of program integrity,

every used qubit should be measured.

As shown in Figure 2, when we want to measure the third

qubit, we receive an error message CircuitError: ‘Index out of

range.’ If we do not measure one of the qubits, then a qubit

will not get reset.

Another case is that the number of bits in the classic register

is larger than the qubit. Unless we encounter the need to use

multiple classical bits to store a qubit measurement, otherwise,

this is not a good habit. On the one hand, resources are wasted

when the program is actually developed, and on the other

hand, outputting all classic bits will cause very messy results.

Therefore we do not recommend this operation.

B. Custom Gates not Recognised

When defining a custom gate in a program, some pro-

grammers will want to define a basic gate that controls more

than two qubits directly; the bug pattern Custom gates not

recognised by Qiskit may occur. This pattern refers to a custom

gate that does not use the gate class provided by Qiskit

correctly. Alternatively, the gate is not recognized by Qiskit.

An example of an error code is shown in Figure 3, which

is a program that tends to define a three-qubit controlled gate.

First define a gate named my_custom_gate using the Gate

method, and control the number of qubits to three. When

we call this gate, the program will have an error. Because

in basic_gates, the custom gate gt is not the same as other

Qiskit-based gates.

This bug pattern is mainly caused by programmers who

do not really understand quantum gates. Quantum gates can

num_qubits = 1

tl_circuit = TwoLocal(num_qubits, [’h’, ’rx’], ’cz’,

entanglement=’full’, reps=3,

parameter_prefix = ’y’)

tl_circuit.draw(output = ’mpl’)

Fig. 4. Insufficient initial qubits

only control a maximum of 2 qubits and are known as basic

gates. The compound gates we usually use, such as the double-

controlled gate CCX (Toffoli) [3], are not the gates that

directly control three qubits. Instead, multiple single-qubit

gates and controlled gates are combined, resulting in a dual

controlled gate effect. The correct custom gate should be a

composite gate combining the basic gates provided by Qiskit

and applied to the circuit.

C. Insufficient Initial Qubits

When the TwoLocal method is used, a dual-local para-

metric circuit consisting of alternating rotating and entangled

layers can be formed. The two-local circuit is a parameterized

circuit consisting of alternating rotation layers and entangle-

ment layers. If the number of qubits of the variational form

does not match. The bug Pattern “Insufficient Initial Qubits”

may occur.

As shown in Figure 4, which is part of the code for

the Variational Quantum Eigensolver (VQE) algorithm. When

defining the VQE solver, method TwoLocal is used. As the

num_qubits is set to 1. In addition, the value of num_qubits

is replaced by any other value that does not match, the desired

result is not obtained. So it is important to initialize the values

supported by the parameter num_quibits when using para-

metric circuits or methods involving quantum entanglement.

D. Over Repeated Measurement

Some simulator backends are unable to execute the circuit

when the measurement operation performed on the qubit is

repeated too many times. Alternatively, when some methods,

such as c_if, are called but do not give the correct result.

This situation may lead to the bug pattern of “Over Repeated

Measurement.”

To show this bug pattern, consider the piece of code in

Figure 5. This is a test used to measure quantum charac-

teristics in a computing backend simulator repeatedly. We

use the Qiskit “Aer” simulator backend and the Python-based

quantum simulator module “BasicAer” to simulate the circuit

qasm_simulator. The same qubit is used multiple times

here. When we call BasicAer, the system may report an error

that the number of qubits is greater than the maximum (24) for

qasm_simulator. Not only that, the c_if method we called

did not get the desired result on the “Aer” backend simulator,

that is, the qubits of the mreg register did not achieve flipping.

While the code circ.x(mreg[0]).c_if(creg,0) did not

achieve. And if n=63 in the classic register creg, the system

will hang.

def get_circuit(n):

qreg = QuantumRegister(1)

creg = ClassicalRegister(n)

mreg = QuantumRegister(1)

dreg = ClassicalRegister(1)

circ = QuantumCircuit(qreg, mreg, creg, dreg)

for i in range(n):

circ.measure(qreg[0], creg[i])

circ.x(mreg[0]).c_if(creg, 0)

circ.measure(mreg[0], dreg[0])

return circ

b_aer = BasicAer.get_backend(’qasm_simulator’)

aer = Aer.get_backend(’qasm_simulator’)

circ65 = get_circuit(65)

print("65clbits(Aer):",execute(circ65, aer).

result().get_counts())

print("65clbits(Basic_Aer):",execute(circ65, b_aer).

result().get_counts())

Fig. 5. Over repeated measurement

In summary, we do not recommend excessive measurement

operations on qubits. The measured qubit is placed in the first

position of the quantum register, and then the measurement

is placed in the second position. Such repeated operations are

equivalent to operating “N” multiple qubits. As a result, it can

make the system extremely unstable.

E. Incorrect Operations after Measurement

When the measurement is completed, we cannot use the

measured qubit for entanglement. Otherwise, we will not get

the desired result. The result of the measurement can be treated

as a classical value that no longer has the properties that the

qubit has. If the measured value continues to be entangled

with other qubits, which is used to change the target qubit

tq = QuantumRegister(3)

tc0 = ClassicalRegister(1)

tc1 = ClassicalRegister(1)

tc2 = ClassicalRegister(1)

teleport = QuantumCircuit(tq, tc0,tc1,tc2)

teleport.h(tq[1])

teleport.cx(tq[1], tq[2])

teleport.ry(np.pi/4,tq[0])

teleport.cx(tq[0], tq[1])

teleport.h(tq[0])

teleport.barrier()

teleport.measure(tq[0], tc0[0])

teleport.measure(tq[1], tc1[0])

teleport.cx(tq[1], tq[2])

teleport.cz(tq[0], tq[2])

teleport.measure(tq[2], tc2[0])

backend = Aer.get_backend(’qasm_simulator’)

job = execute(teleport, backend,

shots=1, memory=True).result()

result = job.get_memory()[0]

print(job.get_memory()[0])

Fig. 6. Incorrect operations after measurement

TABLE I
A CATALOG OF BUG PATTERNS IN QISKIT

Bug Patterns Category Symptoms Causes Cures and Preventions

Unequal Classical Bits
and Qubits

1 Classical registers are not large
enough to store the measured
qubits

The initialized classical bits are
smaller than the qubits used or to
be measured

Try to initialize quantum and clas-
sical registers of the same size

Custom gates not recog-
nised

2 The program is unable to cus-
tomize the gate function and will
often report errors

Creating gates that directly control
more than three qubits does not
follow the principle of two qubit
entanglement

Try to use the gates provided by
Qiskit for the implementation of
the algorithm

Over Repeated Measure-
ment

3 Output error or program error when
measuring the same quantum bit
multiple times with a for loop

number of measurements repeated
several times

Reduction of meaningless mea-
surements.

Incorrect Operations af-
ter Measurement

3 Unable to get the desired post-
measurement result

Continued manipulation of the
qubit being measured, such as
changing its state or re-entangling
with other qubits

The measured result cannot be used
as a condition unless it is re-
operated and measured as the ini-
tial qubit after reset

Unsafely Uncomputa-
tion

4 The program reports an error or
does not achieve the desired result

Auxiliary qubits are not reset and
remain entangled with the target
qubit, which can affect the results
of the target qubit measurement

Correctly reset or release all qubits
to ensure they are in their initial or
post-measurement states

Insufficient Initial
Qubits

1 Causes VQE not to respect the
form of input variables and outputs
the wrong circuit

When the TwoLocal method is
used, a dual-local parametric cir-
cuit consisting of alternating rotat-
ing and entangled layers can be
formed

When using parametric circuits
or methods involving quantum
”entanglement,” initialize the val-
ues supported by the parameter
num_qubits.

Inappropriately Modifi-
cation of Register Size

1 Changing the register size may
cause the program to report an er-
ror. Especially for building com-
plex circuits

Changing the size of a register may
change the hash value of the reg-
ister and its bits, thus prohibiting
it from being used as a key for
structures such as sets

It is possible to reinitialize the reg-
isters. Otherwise, it is not recom-
mended to modify the values of
the registers without changing the
variable names

Method
measure_all

3 The program outputs the results
of all measured qubits normally.
However, it also outputs the clas-
sical register values

When the measure_all
method is used, the program
automatically creates a classical
register to store all the qubits
being measured

If we want to call the
measure_all method to
measure all qubits, we do not need
to initialize the classical registers

state, it will be the bug pattern of “Incorrect Operations after

Measurement.”

Considering the code snippet in Figure 6 taken from

GitHub document [21], which realizes a quantum tele-

portation protocol. In the code, the last qubit’s state

should be changed according to the first two bits’ mea-

surement results. The wrong instructions in the exam-

ple are teleport.cx(tq[1],tq[2]) and teleport.cz

(tq[0],tq[2]), which entangle the measured qubit with the

unmeasured qubit, and therefore affect the result of the last

qubit. This mistake is quite common, and many programmers

inadvertently use measured qubits. In this program, the correct

code should be teleport.z(tq[2]).c_if(tc0,1) as well

as teleport.x (tq[2]).c_if(tc1,1).

Although these erroneous operations follow quantum mea-

surements, the reason for this lies in a poor understanding of

the effect of measurement operations on qubit states.

F. Unsafely Uncomputation

Qiskit is a compelling framework because it supports the

automatic management of qubits, i.e., there is no need to do

the work of unallocated qubits manually. However, as different

program languages (e.g. Q#) have their own implementations,

which can lead to exceptions in different backends and the

need to manually unallocated qubits. Considering other pro-

gramming languages and the commonality of bug patterns, we

need to include Unsafely Uncomputation in the scope of our

present study.

G. A Catalog of Bug Patterns in Qiskit

Quantum programming introduces new quantum-aware bug

patterns that differ from existing classical bug patterns. These

quantum bug patterns should be identified, and a catalog for

these patterns should be presented. Due to space limitation,

however, we cannot explain more bug patterns in this paper,

and in Table I we list the bug patterns in Qiskit we identified,

including those detail described in this section. To classify

the bug patterns listed, we summarize the description for each

pattern by pattern name, category, symptoms, causes, and cures

& preventions. Note that this is just a preliminary list of bug

patterns in Qiskit, and more bug patterns will be added to

the list as we get some new progress. In the current bug

pattern catalog in Table I, we classify these bug patterns by

initialization (1), gate operation (2), measurement (3), and

deallocation (4).

IV. RELATED WORK

The previous research on bug patterns is mainly focused on

classical programming languages. Allen [1] summarizes more

than 14 bug pattern categories in Java. Following Allen’s work,

Hovemeyer and Pugh [22] present a novel syntactic pattern

matching approach to detecting the bug patterns in Java and

implement a bug-finding tool called FindBugs [23]. Zhang and

Zhao [24] and Shen [25] present some bug patterns for AspectJ

and develop a tool called XFindBugs to detect bug patterns

in AspectJ. Our work extends the bug patterns research and

identification to the quantum programming languages using

the Qiskit language. The bug patterns presented in this pa-

per are different in nature from the existing bug patterns

in classical programming languages because they explicitly

involve the quantum programming language features such as

superposition, entanglement, and no-cloning.

Huang and Martonosi [11], [26] study the bugs for special

quantum programs to support quantum software debugging.

Based on the experiences of implementing several quantum

algorithms, several types of bugs specific to quantum com-

puting are identified. These bugs include incorrect quantum

initial values, incorrect operations and transformations, the

incorrect composition of operations using iteration, recursion,

or mirroring, incorrect classical input parameters, and incorrect

deallocation of qubits. The defense strategy for each bug type

is also proposed, which mainly uses some assertions to detect

the bugs in runtime. While Huang and Matonosi’s work targets

quantum software debugging, which mainly involves the run-

time execution of a program, our work targets identifying the

bug patterns to support bug detection through static analysis,

which may not need to execute the program and therefore

could be more efficient.

V. CONCLUDING REMARKS

This paper has identified some bug patterns in the quantum

programming language Qiskit to provide both researchers and

programmers a clear view of what kind of bugs may happen

in quantum programs and how to detect them. The study of

bug patterns mainly focuses on bug pattern symptoms, root

causes, and cures and preventions. These bug patterns are

the first result of our research and do not use every possible

quantum-related construct or cover all characteristics of a

quantum programming language. New research should cover

other remaining quantum-related constructs, as well as the

interactions between them.

In our future work, we plan to develop further our approach

to investigating more bug patterns in Qiskit programs. We

would also like to develop a bug detecting tool based on the

identified bug patterns in this paper to support bug finding in

Qiskit programs.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their sug-

gestions to improve the paper and to Shuhan Lan and Zhongtao

Miao for their valuable discussions.

REFERENCES

[1] E. Allen, Bug patterns in Java. APress LP, 2002.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns

Elements of reusable object-oriented sofware. Addison Wesley, 1995.

[3] I. Research, “Qiskit,” Accessed on: April, 2020. [Online]. Available:
https://qiskit.org

[4] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q#: Enabling
scalable quantum computing and development with a high-level dsl,”
in Proceedings of the 2018 Real World Domain Specific Languages

Workshop, 2018, pp. 1–10.
[5] P. Team, “Projectq,” Accessed on: April, 2020. [Online]. Available:

https://projectq.ch/
[6] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati,

C.-F. Chiang, S. Vanderwilt, J. Black, and F. Chong, “Scaffold: Quantum
programming language,” Department of Computer Science, Princeton
University, Tech. Rep., 2012.

[7] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: a scalable quantum programming language,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming language design

and implementation, 2013, pp. 333–342.
[8] J. Zhao, “Quantum software engineering: Landscapes and horizons,”

arXiv preprint arXiv:2007.07047, 2020.
[9] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Projection-

based runtime assertions for testing and debugging quantum programs,”
Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, pp. 1–29, 2020.

[10] J. Liu, G. T. Byrd, and H. Zhou, “Quantum circuits for dynamic runtime
assertions in quantum computation,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming

Languages and Operating Systems, 2020, pp. 1017–1030.
[11] Y. Huang and M. Martonosi, “Statistical assertions for validating patterns

and finding bugs in quantum programs,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 541–553.

[12] S. Honarvar, M. Mousavi, and R. Nagarajan, “Property-based testing of
quantum programs in q#,” in First International Workshop on Quantum

Software Engineering (Q-SE 2020), 2020.
[13] A. Miranskyy and L. Zhang, “On testing quantum programs,” in 2019

IEEE/ACM 41st International Conference on Software Engineering:

New Ideas and Emerging Results (ICSE-NIER). IEEE, 2019, pp. 57–60.
[14] A. Miranskyy, L. Zhang, and J. Doliskani, “Is your quantum program

bug-free?” arXiv preprint arXiv:2001.10870, 2020.
[15] S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the effectiveness

of input and output coverage criteria for testing quantum programs,” in
Proceedings of the IEEE International Conference on Software Testing,

Verification and Validation (ICST 2021), 2021.
[16] J. Wang, M. Gao, Y. Jiang, J. Lou, Y. Gao, D. Zhang, and

J. Sun, “Quanfuzz: Fuzz testing of quantum program,” arXiv preprint

arXiv:1810.10310, 2018.
[17] D. Koch, L. Wessing, and P. M. Alsing, “Introduction to coding

quantum algorithms: A tutorial series using pyquil,” arXiv preprint
arXiv:1903.05195, 2019.

[18] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucher, F. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,
C. Chen et al., “Qiskit: An open-source framework for quantum com-
puting,” Accessed on: Mar, vol. 16, 2019.

[19] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen,
J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp et al., “Qiskit backend
specifications for openqasm and openpulse experiments,” arXiv preprint

arXiv:1809.03452, 2018.
[20] I. Research, “Ibm quantum experience,” Accessed on: April, 2020.

[Online]. Available: https://quantum-computing.ibm.com/docs/
[21] M. Marques, “Qiskit community tutorials,” Ac-

cessed on: April, 2020. [Online]. Available:
https://github.com/qiskit-community/qiskit-community-tutorials

[22] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm sigplan notices,
vol. 39, no. 12, pp. 92–106, 2004.

[23] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings

of the 19th international symposium on Software testing and analysis,
2010, pp. 241–252.

[24] S. Zhang and J. Zhao, “On identifying bug patterns in aspect-oriented
programs,” in 31st Annual International Computer Software and Appli-
cations Conference (COMPSAC 2007), vol. 1. IEEE, 2007, pp. 431–
438.

[25] H. Shen, S. Zhang, J. Zhao, J. Fang, and S. Yao, “Xfindbugs: extended
findbugs for aspectj,” in Proceedings of the 8th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and en-

gineering, 2008, pp. 70–76.
[26] Y. Huang and M. Martonosi, “Qdb: From quantum algorithms towards

correct quantum programs,” arXiv preprint arXiv:1811.05447, 2018.

https://qiskit.org
https://projectq.ch/
https://quantum-computing.ibm.com/docs/
https://github.com/qiskit-community/qiskit-community-tutorials

	I Introduction
	II Background
	II-A Qiskit
	II-B Properties of Qubits
	II-C Error-Prone Features in Qiskit Programs

	III Bug Patterns in Qiskit
	III-A Unequal Classical Bits and Qubits
	III-B Custom Gates not Recognised
	III-C Insufficient Initial Qubits
	III-D Over Repeated Measurement
	III-E Incorrect Operations after Measurement
	III-F Unsafely Uncomputation
	III-G A Catalog of Bug Patterns in Qiskit

	IV Related work
	V Concluding Remarks
	References

