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Abstract— Major obstacles remain to the implementation of 

macroscopic quantum computing: hardware problems of noise, 
decoherence, and scaling; software problems of error correction; 
and, most important, algorithm construction. Finding truly 
quantum algorithms is quite difficult, and many of these genuine 
quantum algorithms, like Shor’s prime factoring or phase 
estimation, require extremely long circuit depth for any practical 
application, which necessitates error correction. In contrast, we 
show that machine learning can be used as a systematic method to 
construct algorithms, that is, to non-algorithmically “program” 
quantum computers. Quantum machine learning enables us to 
perform computations without breaking down an algorithm into 
its gate “building blocks”, eliminating that difficult step and 
potentially increasing efficiency by simplifying and reducing 
unnecessary complexity. In addition, our non-algorithmic 
machine learning approach is robust to both noise and to 
decoherence, which is ideal for running on inherently noisy NISQ 
devices which are limited in the number of qubits available for 
error correction. We demonstrate this using a fundamentally non-
classical calculation: experimentally estimating the entanglement 
of an unknown quantum state. Results from this have been 
successfully ported to the IBM hardware and trained using a 
hybrid reinforcement learning method.  

Keywords— quantum algorithms, machine learning, 
reinforcement learning, entanglement, NISQ 

I. INTRODUCTION 
For several decades now the prospect of macroscopic 

quantum computers, able to solve large classes of difficult 
problems, has been “ten years away.” We do have thousand-
qubit size “quantum annealing” machines [1], to solve 
optimization problems through adiabatic evolution to the 
ground state of a designed Hamiltonian, but programmable 
quantum computers remain small and their applicability 
limited. One major obstacle is the construction of algorithms 
that take advantage of the fundamental quantum nature of 
reality. There are still only a very few. Most fall into one of 
three categories: those using a quantum Fourier transform, like 
Shor's algorithm [2]; those using amplitude amplification, like 
Grover's algorithm [3]; and those using quantum walks [4]. 
Speedup varies; Shor's, and some quantum walk algorithms, 
provide an exponential advantage over the best known classical 
algorithm in each case, but the speedup with Grover is only 
quadratic. We do not yet know whether there exists any 

quantum advantage for broad classes of problems [5] [6], much 
less, what it will be in each case. Nor do we have a general 
process to factor an arbitrary N-qubit unitary efficiently to 
generate the quantum machine language necessary, in the case 
of the gate model; or to design a Hamiltonian whose ground 
state will be the answer to an optimization problem, in the case 
of quantum annealing.  

 

Since the 1990s, our research group has been investigating 
the advantages of a marriage of machine learning and quantum 
computing to answer this need [7] [8] [9]. The basic idea is that 
a quantum system can itself act as a neural network: The state 
of the system at the initial time is the “input”; a measurement 
(observable) on the system at the final time is the “output”; the 
states of the system at intermediate times are the hidden layers 
of the network.  If we know enough about the computation 
desired to be able to construct a comprehensive set of input-
output pairs from which the net can generalize, then, we can use 
techniques of machine learning to bypass the algorithm-
construction problem. Moreover, this approach is scalable [10] 
as we are able to train iteratively in larger and larger stages and 
use knowledge of a smaller system to make systematic 
inferences about a larger one. In addition, our method promises 
to be generally robust to both noise and to decoherence [11] 
[12]. Machine learning may also be helpful in the factorization 
problem [13], and in the Hamiltonian design problem [14]. 

Entanglement estimation is a good example of a nontrivial, 
intrinsically quantum mechanical, calculation for which we 
have no general algorithm [15] [16]. Indeed, it has been shown 
that the quantum separability problem (determination of 
entanglement) is NP-hard [17]. In previous work we succeeded 
in mapping a function of a measurement at the final time to a 
witness of the entanglement of a two-qubit system in its initial 
state [9]. The “output” (result of the measurement of the witness 
at the final time) will change depending on the time evolution 
of the system, which is of course controlled by the Hamiltonian: 
by the tunneling amplitudes {K}, the qubit biases {ε}, and the 
qubit-qubit coupling ζ. Thus we can consider these functions 
{KA, KB, εA, εB, ζ} to be the “weights” to be trained. (Here A 
and B refer to the two qubits.) We then use a quantum version 
[9] of backpropagation [18] to find optimal functions such that 
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our desired mapping is achieved. Full details are provided in [8] 
[9]. From a training set of only four pure states, our quantum 
neural network successfully generalized the witness to large 
classes of states, mixed as well as pure [10]. Qualitatively, what 
we are doing is using machine learning techniques to find a 
“best” hyperplane to divide separable states from entangled 
ones, in the Hilbert space. 

Of course, this method is necessarily “off-line” training, 
since it is not possible to do backpropagation without knowing 
the state of the system at intermediate times (in the hidden 
layers); quantum mechanically, this is impossible without 
collapsing the wavefunction and thereby destroying the 
superposition, which rather obviates the whole purpose of 
doing quantum computation. That is, quantum backpropagation 
can only be done on an (auxiliary) classical computer, 
simulating the quantum computer, and this simulation will 
necessarily contain uncertainties and errors in modeling the 
behavior of the actual quantum computer. The results from off-
line quantum backprop, can, of course, be used as a good 
starting point for true online quantum learning, where 
reinforcement learning is used to correct for uncertainty, noise, 
and decoherence in the actual hardware of the quantum 
computer. Here, we present such a method, port it to the IBM 
hardware [19], and demonstrate its effectiveness.  

The next section is a brief overview of the theory of our 
Quantum Backprop technique, followed by Section III which 
contains the details of our Reinforcement Learning alternative 
for on-line learning with quantum hardware. In Section IV we 
port the method to Qiskit. We conclude in Section V. 

II. DYNAMIC LEARNING QUANTUM BACKPROP 
 

The density matrix, ρ, of a quantum system as a function of 
time obeys the Schrödinger equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 1

𝑖𝑖ℏ
[𝐻𝐻,𝜌𝜌] , where H is 

the Hamiltonian and ħ is Planck’s constant divided by 2π. The 
formal solution of the equation is 𝜌𝜌(𝑡𝑡) = 𝑒𝑒𝑖𝑖ℒ𝑡𝑡𝜌𝜌(𝑡𝑡0) where ℒ is 
the Liouville operator. Thus, the time evolution equation for the 
density matrix maps the initial state ρ(t0) (input data for the 
quantum computer) to the final state ρ(tf) (output). The mapping 
is accomplished by the exponential of the Liouville operator, 
𝑒𝑒𝑖𝑖ℒ𝑡𝑡 . Parameters in the system Hamiltonian H are physical 
interactions and fields in quantum hardware and can be adjusted 
experimentally as functions of time.  “Programming” this 
quantum computer involves finding the parameters using 
machine learning that yield the desired computation. Thus we 
can train the system to evolve in time initial (input) to target final 
(output) states; yielding a quantum system that accurately 
approximates a chosen function, such as logic gates, benchmark 
classification problems, or, since the time evolution is quantum 
mechanical, a quantum function like entanglement.  

If we think of the time evolution operator in terms of the 
Feynman path integral picture [20], the system can be seen as 
analogous to a neural network, yet quantum mechanical. That is, 
instantaneous values taken by the quantum system at 
intermediate times, which are integrated over, play the role of 
“virtual neurons” [9]. In fact, this system is a deep learning 

system, as the time dimension controls the propagation of 
information from the input to the output of the quantum system, 
and the depth is controlled by how finely the parameters are 
allowed to vary with time. The real time evolution of a multi-
qubit system can be treated as a neural network, because its 
evolution is a nonlinear function of the various adjustable 
parameters (weights) of the Hamiltonian. The goal of learning 
as applied to this quantum system is to “program” the system via 
adjusting the external parameters to force it to calculate target 
outputs in response to given inputs. This is done via a neural 
network supervised learning paradigm which we have extended 
to the quantum system. The method, derived below, follows the 
methodology of Yann LeCun's Lagrangian formulation 
derivation of backpropagation [21] and Paul Werbos's 
description of backpropagation through time [18],  and follows 
some of our earlier work [22] [23] on learning in non-linear 
optical materials and in training of quantum Hopfield networks. 
For as long as coherence can be maintained experimentally, it is 
a quantum neural network (QNN).  

Our learning rule for the quantum system based on dynamic 
backpropagation is derived as follows. Given an input (initial 
density matrix), ρ0, and a target output, d (a “training pair”), we 
develop a weight update rule based on gradient descent to adjust 
the system parameters, i.e., train the system “weights”, to 
reduce the squared error between the target, d, and the output, 
Output. While minimizing the squared error, the system's 
density matrix, ρ(t), is constrained to satisfy the Schrödinger 
equation for all time in the interval (t0,tf). 

   
We define a Lagrangian, L, to be minimized, as 

 𝐿𝐿 = 1
2

[𝑑𝑑−< 𝑂𝑂(𝑡𝑡𝑓𝑓) >]2 + ∫ 𝜆𝜆+(𝑡𝑡) �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑖𝑖
ℏ

[𝐻𝐻,𝜌𝜌]� 𝛾𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

 
 
where the Lagrange multiplier vectors are λ+(t) and γ(t) (row 
and column, respectively), and O is an output measure (or some 
function of a measure), which is chosen for the particular 
problem under consideration.  As an example, for our 
entanglement witness application, we defined the output as: 
 
 〈𝑂𝑂�𝑡𝑡𝑓𝑓�〉 = 𝑡𝑡𝑡𝑡�𝜌𝜌�𝑡𝑡𝑓𝑓�𝑂𝑂� = ∑ 𝑝𝑝𝑖𝑖�𝜓𝜓𝑖𝑖�𝑡𝑡𝑓𝑓��𝑂𝑂�𝜓𝜓𝑖𝑖�𝑡𝑡𝑓𝑓��𝑖𝑖  
 
where tr stands for the trace of the matrix, and where the density 
matrix is represented in terms of the chosen basis as 𝜌𝜌 =
∑ 𝑝𝑝𝑖𝑖|𝜓𝜓𝑖𝑖⟩⟨𝜓𝜓𝑖𝑖|𝑖𝑖 . We take the first variation of L with respect to ρ, 
set it equal to zero, then integrate by parts to give the following 
equation which can be used to calculate the vector elements of 
the Lagrange multipliers (“error deltas” in neural network 
terminology) that will be used in the learning rule: 
 𝛾𝛾𝑖𝑖

𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜆𝜆𝑖𝑖
𝜕𝜕𝜕𝜕
𝛾𝛾𝑗𝑗 −

𝑖𝑖
ℏ
∑ 𝜆𝜆𝑘𝑘𝐻𝐻𝑘𝑘𝑘𝑘𝛾𝛾𝑗𝑗 + 𝑖𝑖

ℏ𝑘𝑘 ∑ 𝜆𝜆𝑖𝑖𝐻𝐻𝑗𝑗𝑗𝑗𝛾𝛾𝑘𝑘 = 0𝑘𝑘 , which is 
solved backward in time, with the boundary conditions at the 
final time tf given by −[𝑑𝑑−< 𝑂𝑂(𝑡𝑡𝑓𝑓) >]𝑂𝑂𝑗𝑗𝑗𝑗 + 𝜆𝜆𝑖𝑖(𝑡𝑡𝑓𝑓)𝛾𝛾𝑗𝑗(𝑡𝑡𝑓𝑓) = 0.  
The gradient descent rule to minimize L with respect to w is 
𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜂𝜂 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 for each “weight” parameter w, where η is 

the learning rate, and where the derivative is given by 
 



 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑖𝑖
ℏ∫ 𝜆𝜆+(𝑡𝑡) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,𝜌𝜌�𝑡𝑡𝑓𝑓

0 𝛾𝛾(𝑡𝑡)𝑑𝑑𝑑𝑑 
 

=
𝑖𝑖
ℏ
� ��𝜆𝜆𝑖𝑖(𝑡𝑡)

𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

𝜌𝜌𝑘𝑘𝑘𝑘𝛾𝛾𝑗𝑗 − 𝜆𝜆𝑖𝑖(𝑡𝑡)𝜌𝜌𝑖𝑖𝑖𝑖
𝜕𝜕𝐻𝐻𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕

𝛾𝛾𝑗𝑗�
𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑑𝑑 

 
The above technique, since it uses the density matrix, is 
applicable to any state of the quantum system, pure or mixed.  

III. REINFORCEMENT LEARNING 

A. Reinforcement Learning of the Fourier Quantum 
Parameters 
Each of the quantum system parameters can vary with time 

as described earlier.  For reinforcement learning, each quantum 
parameter is represented as a Fourier expansion in time: 

 
𝑃𝑃(𝑡𝑡) = 𝑃𝑃0 + ∑ �𝑆𝑆𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑛𝑛

𝜋𝜋
𝑇𝑇
𝑡𝑡� + 𝐶𝐶𝑛𝑛 𝑐𝑐𝑜𝑜𝑠𝑠 �𝑛𝑛

𝜋𝜋
𝑇𝑇
𝑡𝑡��𝑛𝑛

𝑖𝑖=1  (1.1) 

where T is the end quantum system simulation time where the 
output measures are taken. This gives a limited population of 
Fourier coefficients to vary during the reinforcement learning 
and is motivated by the results shown in [11] where 
backpropagation is used to train the quantum parameters 
allowing any continuous functions of time but the resulting 
parameters have obvious simple frequency content.  In this 
paper we showed that fitting the parameters with Fourier series 
for sine and cosine gave equivalent computing results.  

Learning of each of the parameters is done via a hybrid 
method which uses small variations of the Fourier coefficients 
to calculate the gradient of the output error which is then used is 
a straightforward gradient descent learning rule. 

For a given training pair in the training set, the quantum 
system is presented with the input, the system runs (with the 
current parameters calculated from the current Fourier 
coefficients) until the final time tf where the output is calculated 
via the output measures on the final state.  The output is 
compared to the target value and an output error is calculated, 
Enom.  In the backprop method, this output error is then 
backpropagated via quantum backprop to calculate gradients at 
each time step.  In the hybrid reinforcement learning the 
following happens. 

Choosing a single quantum parameter and a single Fourier 
parameter in 1.1, this parameter is varied by a small amount. For 
example, for P0 the new parameter would be given by  

𝑃𝑃0,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃0 + Δ𝑃𝑃0 (1.2) 

The quantum system is again presented with the input; the 
system then runs with the parameters calculated using the 
modified Fourier coefficients; the output is calculated;  an output 
error Emod is calculated and compared to the error Enom;  a 
gradient is calculated 

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

𝛥𝛥𝑃𝑃0
 ; (1.3) 

and, finally, this gradient is used to update the parameter using 
a specified learning rate 

0Pη via 

𝑃𝑃0 = 𝑃𝑃0 − 𝜂𝜂𝑃𝑃0𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  (1.4) 

This is repeated for each Fourier coefficient and each quantum 
parameter, using the same input and target output.  Each 
successive training pair is then processed in the same way until 
the entire list of training pairs is exhausted, constituting one 
epoch of training. 

B. Reinforcement Learning Results 
Matlab code implements the learning algorithm above and 

calls a Simulink simulation of the quantum system. Compared 
to the quantum backprop method, reinforcement learning, in 
simulation, takes about from 25 times more computation time. 
The tunneling frequency is initialized to 2.5x10-3 GHZ, is 
changed by .02% to calculate the gradient and a learning rate of 
0.00000002 is used. The bias is initialized to 1.0x10-4 GHZ, is 
changed by .02% to calculate the gradient and a learning rate of 
zero (not trained) is used. The qubit coupling matrix off-
diagonal elements representing qubit to qubit coupling are 
initialized to 1.0x10-4 GHZ, is changed by .02% to calculate the 
gradient and a learning rate of 0.0000004 is used. The on-
diagonal coupling of a qubit to itself is, of course, zero. The 
entanglement witness calculation described above is the 
quantum “program” to be learned.  Three Fourier parameters in 
equation (1.1) are used, that is n=3.  Systems with 2, 3, 4 and 5 
qubits are trained.  A plot of the RMS error vs epoch is shown 
as well as plots of how each quantum parameter varies with time 
after training is completed. 

Results for the 2-qubit system are shown in Figures 1 
through 3, using reinforcement learning, and in Figures 4 
through 6, using our earlier quantum backprop technique. 

 

 

Fig. 1. RMS error vs Epoch for 2 qubit entanglement witness training 
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Fig. 2. Coupling parameter ζ as a function of time for 2 qubit entanglement 
witness training 

 

 

Fig. 3. Tunneling parameter K as a function of time for 2 qubit entanglement 
witness 

Comparing Figures 1 through 3 to Figures 4 through 6, we 
see that the reinforcement methods give a different set of 
quantum parameter functions, but the RMS errors are similar. 
Testing of each also produces equivalent results. Clearly, the set 
of functions that produces this entanglement witness is not 
unique; this is unsurprising as we have seen similar behavior in 
earlier work with entanglement witnesses [11].  While backprop 
is computationally much faster in simulation, it cannot be 
implemented on the IBM hardware, while the reinforcement 
learning method can. 

 

 

Fig. 4. RMS error vs Epoch for 2 qubit entanglement witness backprop 
training 

 

 
 

Fig. 5. Coupling parameter ζ vs time for 2 qubit enntanglement witness 
backprop training 

 

 

Fig. 6. Tunneling amplitude K for 2 qubit entanglement witness backprop 
training 

We now extend our results from the two-qubit system to a 
many-qubit system, using a method [10] [24] we call “iterative 
staging”, because we use knowledge of a smaller system to infer 
partial knowledge of a larger. Here, we use the trained 
parameters for the 2-qubit system to initialize a 3-qubit system 
as a starting point.  The tunneling parameters are simply copied 
to all three qubits.  The coupling ζ between the 2 qubits is copied 
onto the 3-qubit system to be the initial value for each of the 
three pairwise couplings. In prior work, we discovered that this 
initialization significantly reduces the number of epochs 
required to train systems with higher numbers of qubits [10]. 

Reinforcement learning for 3 qubits results are shown in 
Figures 7 through 9. Again, we see that the error rapidly 
decreases and the resulting parameters are a good “program” for 
the calculation. 
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Fig. 7. RMS error vs Epoch for 3 qubit entanglement witness training 

 

 

Fig. 8. Coupling parameter ζ as a function of time for 3 qubit entanglement 
witness 

 

 

Fig. 9. Tunneling parameter K as a function of  time for 3 qubit entanglement 
witness 

For the 4-qubit system initial parameters, we copy the 
trained results from the 3-qubit system. Results are shown in 
Figures 10 through 12.  

 

 

Fig. 10. RMS error vs Epoch for 4 qubit entanglement witness training 

 

 

Fig. 11. Coupling parameter ζ as a function of time for 4 qubit entanglement 
witness 

 

 

 

 

Fig. 12. Tunneling parameter K as a function of time for 4 qubit entanglement 
witness  

For the 5-qubit system initial parameters we copy the trained 
results from the 4-qubit system. Results are shown in Figures 13 
through 15. 
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Fig. 13. RMS error vs Epoch for 5 qubit entanglement witness training 

 

 

Fig. 14. Coupling parameter ζ as a function of time for 5 qubit entanglement 
witness 

 

 

Fig. 15. Tunneling parameter K as a function of time for 5 qubit entanglement 
witness 

IV. IMPLEMENTATION OF REINFORCEMENT LEARNING IN 
IBM QISKIT 

 
Implementing the pairwise entanglement witness in the IBM 

hardware requires some modifications.  The IBM Qiskit library 
utilizes a quantum gate model, so we must use a gate 
representation of the operator. The witness is constructed by first 
approximating the values of the tunneling, bias, and coupling 
parameters as piecewise constant, where the total evolution time 
is divided into 4 segments. These piecewise constant parameters 
are used to form the Hamiltonian for the time evolution operator, 
which is converted into a sequence of gates, a quantum circuit. 
Full details of the gate representation conversion and a 
comparison with the behavior of the continuum parameters are 
presented in [24]. 

The circuit representation results in 20 independent weights 
wj for the entanglement witness. For reinforcement learning, the 
training process is very similar to the Matlab implementation, 
with necessary changes for the IBM system. First, one of the 
training states is prepared, then the entanglement witness is 
applied to it and an expectation value for the witness is returned. 
Using the current weights, expectation values for each state in 
the training set are computed and subtracted from the target 
values to generate a RMS difference output error Enom. A single 
weight wj is adjusted by a small amount as in (1.2), and the 
output error is then computed with the modified wj, yielding 
Emod. Equations (1.3) and (1.4) are used to update wj according 
to the specified learning rate ηwj, and the process is repeated for 
each of the 20 weights, constituting one epoch of training.   

For training, the tunneling amplitude K was initialized to 
2.0x10-3 GHZ, bias ε initialized to 1.0x10-4 GHZ, and coupling 
ζ initialized to 1.0x10-4 GHZ, for all time segments. The learning 
rate of the tunneling was 1.0x10-2 and the other learning rates 
were set to 1.0x10-3 since experimentation revealed that the 
system was the most sensitive to changes in the tunneling 
parameter. Training was successful, but improvement stopped 
after approximately 2000 epochs where the RMS oscillated near 
0.02.  

 

 

Fig. 16. RMS Error  for training 2 qubits in IBM Qiskit system  

Parameter training for the tunneling, bias, and coupling all 
appear to have been completed due to each parameter set aside 
from the coupling showing clear asymptotic behavior.  
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Fig. 17. Bias parameter for the first qubit as a function of time training 2 qubits 
in IBM Qiskit system 

 
 

 

Fig. 18. Bias parameter for the second qubit as a function of time training 2 
qubits in IBM Qiskit system 

 

 

Fig. 19. Tunneling parameter for the first qubit as a function of time training 2 
qubits in IBM Qiskit system 

 

 

Fig. 20. Tunneling parameter for the second qubit as a function of time training 
2 qubits in IBM Qiskit system 

 

 

Fig. 21. Inter qubit coupling parameter as a function of time training 2 qubits 
in IBM Qiskit system 

 

Again, we see that in this  high dimensional parameter space 
the set of parameter functions that succeeds in the mapping we 
desire, is not unique. Of course, it would be very surprising if it 
were. The training methods are different. In Qiskit by necessity 
we used piecewise constant parameter functions instead of 
Fourier series; learning rates needed were very different; the 
functions produced were asymmetric; much noisier training 
meant training was much more computationally intensive. 

The quantum backprop and Matlab reinforcement learning 
produce symmetrical parameter functions for the two qubits: 
that is, the KA and KB functions are the same. This is probably 
related to the fact that we did not need to train the bias functions 
for our results; in the Qiskit runs, once the symmetry is (perhaps 
randomly) broken, there is no natural way to regain the 
symmetry, and the function evolution behaves rather as if it were 
on an unstable equilibrium. We also notice that training is much 
more difficult in the quantum simulator: it takes an order of 
magnitude more epochs to reduce the error to the single-percent 
range (where it is within machine error.) Also, the optimal  

  

  

  

  

  



learning rates (found by trial and error) were very different for 
the different methods.  

 

V. DISCUSSION AND CONCLUSIONS 
 

The major contribution of this paper is the demonstration of 
the feasibility of true online training of a quantum system to do 
a quantum calculation. It is a well-known theorem that a very 
small set of gates (e.g., the set {H, T, S, CNOT}) is universal. 
This means that any n-qubit unitary operation can be 
approximated to an arbitrary precision by a sequence of gates 
from that set. But there are many calculations we might like to 
do, for which we do not know an optimal sequence to use, or 
even, perhaps, any sequence to use. And there are many 
questions we might want to answer for which we do not even 
have a unitary, that is, an algorithm. Calculation of entanglement 
of an N-qubit system is a good example of such a question: we 
do not have a general closed form solution, much less know an 
optimal set of measurements to make on a system whose density 
matrix is unknown, to determine its entanglement.  

Quantum machine learning methods like the ones used here 
are systematic methods for dealing with these problems. Here 
we show that they are in fact directly implementable on existing 
hardware. Our iterative staging technique makes scaleup 
relatively easy, as most of the training for a system of N qubits 
has already been accomplished in the system for (N-1) qubits. 
And while training on actual quantum hardware does prove 
somewhat more challenging, that is all the more reason for a 
machine learning approach: in any physical implementation 
there are always sources of error that in general are unknown 
(interactions, flaws, incomplete and damaged data). With 
machine learning we can deal with all these problems 
automatically. 
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