
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A non-algorithmic approach to “programming”
quantum computers via machine learning

Nathan Thompson
Dept. of Math. Stat. and Phys.

Wichita State University
Wichita, KS USA

thompson@math.wichita.edu

James Steck
Dept. of Aerospace Engineering

Wichita State University
Wichita, KS, USA

james.steck@wichita.edu

Elizabeth Behrman
Dept. of Math. Stat. and Phys.

Wichita State University
Wichita, KS, USA

behrman@math.wichita.edu

Abstract— Major obstacles remain to the implementation of

macroscopic quantum computing: hardware problems of noise,
decoherence, and scaling; software problems of error correction;
and, most important, algorithm construction. Finding truly
quantum algorithms is quite difficult, and many of these genuine
quantum algorithms, like Shor’s prime factoring or phase
estimation, require extremely long circuit depth for any practical
application, which necessitates error correction. In contrast, we
show that machine learning can be used as a systematic method to
construct algorithms, that is, to non-algorithmically “program”
quantum computers. Quantum machine learning enables us to
perform computations without breaking down an algorithm into
its gate “building blocks”, eliminating that difficult step and
potentially increasing efficiency by simplifying and reducing
unnecessary complexity. In addition, our non-algorithmic
machine learning approach is robust to both noise and to
decoherence, which is ideal for running on inherently noisy NISQ
devices which are limited in the number of qubits available for
error correction. We demonstrate this using a fundamentally non-
classical calculation: experimentally estimating the entanglement
of an unknown quantum state. Results from this have been
successfully ported to the IBM hardware and trained using a
hybrid reinforcement learning method.

Keywords— quantum algorithms, machine learning,
reinforcement learning, entanglement, NISQ

I. INTRODUCTION
For several decades now the prospect of macroscopic

quantum computers, able to solve large classes of difficult
problems, has been “ten years away.” We do have thousand-
qubit size “quantum annealing” machines [1], to solve
optimization problems through adiabatic evolution to the
ground state of a designed Hamiltonian, but programmable
quantum computers remain small and their applicability
limited. One major obstacle is the construction of algorithms
that take advantage of the fundamental quantum nature of
reality. There are still only a very few. Most fall into one of
three categories: those using a quantum Fourier transform, like
Shor's algorithm [2]; those using amplitude amplification, like
Grover's algorithm [3]; and those using quantum walks [4].
Speedup varies; Shor's, and some quantum walk algorithms,
provide an exponential advantage over the best known classical
algorithm in each case, but the speedup with Grover is only
quadratic. We do not yet know whether there exists any

quantum advantage for broad classes of problems [5] [6], much
less, what it will be in each case. Nor do we have a general
process to factor an arbitrary N-qubit unitary efficiently to
generate the quantum machine language necessary, in the case
of the gate model; or to design a Hamiltonian whose ground
state will be the answer to an optimization problem, in the case
of quantum annealing.

Since the 1990s, our research group has been investigating
the advantages of a marriage of machine learning and quantum
computing to answer this need [7] [8] [9]. The basic idea is that
a quantum system can itself act as a neural network: The state
of the system at the initial time is the “input”; a measurement
(observable) on the system at the final time is the “output”; the
states of the system at intermediate times are the hidden layers
of the network. If we know enough about the computation
desired to be able to construct a comprehensive set of input-
output pairs from which the net can generalize, then, we can use
techniques of machine learning to bypass the algorithm-
construction problem. Moreover, this approach is scalable [10]
as we are able to train iteratively in larger and larger stages and
use knowledge of a smaller system to make systematic
inferences about a larger one. In addition, our method promises
to be generally robust to both noise and to decoherence [11]
[12]. Machine learning may also be helpful in the factorization
problem [13], and in the Hamiltonian design problem [14].

Entanglement estimation is a good example of a nontrivial,
intrinsically quantum mechanical, calculation for which we
have no general algorithm [15] [16]. Indeed, it has been shown
that the quantum separability problem (determination of
entanglement) is NP-hard [17]. In previous work we succeeded
in mapping a function of a measurement at the final time to a
witness of the entanglement of a two-qubit system in its initial
state [9]. The “output” (result of the measurement of the witness
at the final time) will change depending on the time evolution
of the system, which is of course controlled by the Hamiltonian:
by the tunneling amplitudes {K}, the qubit biases {ε}, and the
qubit-qubit coupling ζ. Thus we can consider these functions
{KA, KB, εA, εB, ζ} to be the “weights” to be trained. (Here A
and B refer to the two qubits.) We then use a quantum version
[9] of backpropagation [18] to find optimal functions such that

mailto:thompson@math.wichita.edu
mailto:james.steck@wichita.edu

our desired mapping is achieved. Full details are provided in [8]
[9]. From a training set of only four pure states, our quantum
neural network successfully generalized the witness to large
classes of states, mixed as well as pure [10]. Qualitatively, what
we are doing is using machine learning techniques to find a
“best” hyperplane to divide separable states from entangled
ones, in the Hilbert space.

Of course, this method is necessarily “off-line” training,
since it is not possible to do backpropagation without knowing
the state of the system at intermediate times (in the hidden
layers); quantum mechanically, this is impossible without
collapsing the wavefunction and thereby destroying the
superposition, which rather obviates the whole purpose of
doing quantum computation. That is, quantum backpropagation
can only be done on an (auxiliary) classical computer,
simulating the quantum computer, and this simulation will
necessarily contain uncertainties and errors in modeling the
behavior of the actual quantum computer. The results from off-
line quantum backprop, can, of course, be used as a good
starting point for true online quantum learning, where
reinforcement learning is used to correct for uncertainty, noise,
and decoherence in the actual hardware of the quantum
computer. Here, we present such a method, port it to the IBM
hardware [19], and demonstrate its effectiveness.

The next section is a brief overview of the theory of our
Quantum Backprop technique, followed by Section III which
contains the details of our Reinforcement Learning alternative
for on-line learning with quantum hardware. In Section IV we
port the method to Qiskit. We conclude in Section V.

II. DYNAMIC LEARNING QUANTUM BACKPROP

The density matrix, ρ, of a quantum system as a function of
time obeys the Schrödinger equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 1

𝑖𝑖ℏ
[𝐻𝐻,𝜌𝜌] , where H is

the Hamiltonian and ħ is Planck’s constant divided by 2π. The
formal solution of the equation is 𝜌𝜌(𝑡𝑡) = 𝑒𝑒𝑖𝑖ℒ𝑡𝑡𝜌𝜌(𝑡𝑡0) where ℒ is
the Liouville operator. Thus, the time evolution equation for the
density matrix maps the initial state ρ(t0) (input data for the
quantum computer) to the final state ρ(tf) (output). The mapping
is accomplished by the exponential of the Liouville operator,
𝑒𝑒𝑖𝑖ℒ𝑡𝑡 . Parameters in the system Hamiltonian H are physical
interactions and fields in quantum hardware and can be adjusted
experimentally as functions of time. “Programming” this
quantum computer involves finding the parameters using
machine learning that yield the desired computation. Thus we
can train the system to evolve in time initial (input) to target final
(output) states; yielding a quantum system that accurately
approximates a chosen function, such as logic gates, benchmark
classification problems, or, since the time evolution is quantum
mechanical, a quantum function like entanglement.

If we think of the time evolution operator in terms of the
Feynman path integral picture [20], the system can be seen as
analogous to a neural network, yet quantum mechanical. That is,
instantaneous values taken by the quantum system at
intermediate times, which are integrated over, play the role of
“virtual neurons” [9]. In fact, this system is a deep learning

system, as the time dimension controls the propagation of
information from the input to the output of the quantum system,
and the depth is controlled by how finely the parameters are
allowed to vary with time. The real time evolution of a multi-
qubit system can be treated as a neural network, because its
evolution is a nonlinear function of the various adjustable
parameters (weights) of the Hamiltonian. The goal of learning
as applied to this quantum system is to “program” the system via
adjusting the external parameters to force it to calculate target
outputs in response to given inputs. This is done via a neural
network supervised learning paradigm which we have extended
to the quantum system. The method, derived below, follows the
methodology of Yann LeCun's Lagrangian formulation
derivation of backpropagation [21] and Paul Werbos's
description of backpropagation through time [18], and follows
some of our earlier work [22] [23] on learning in non-linear
optical materials and in training of quantum Hopfield networks.
For as long as coherence can be maintained experimentally, it is
a quantum neural network (QNN).

Our learning rule for the quantum system based on dynamic
backpropagation is derived as follows. Given an input (initial
density matrix), ρ0, and a target output, d (a “training pair”), we
develop a weight update rule based on gradient descent to adjust
the system parameters, i.e., train the system “weights”, to
reduce the squared error between the target, d, and the output,
Output. While minimizing the squared error, the system's
density matrix, ρ(t), is constrained to satisfy the Schrödinger
equation for all time in the interval (t0,tf).

We define a Lagrangian, L, to be minimized, as

 𝐿𝐿 = 1
2

[𝑑𝑑−< 𝑂𝑂(𝑡𝑡𝑓𝑓) >]2 + ∫ 𝜆𝜆+(𝑡𝑡) �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑖𝑖
ℏ

[𝐻𝐻,𝜌𝜌]� 𝛾𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

where the Lagrange multiplier vectors are λ+(t) and γ(t) (row
and column, respectively), and O is an output measure (or some
function of a measure), which is chosen for the particular
problem under consideration. As an example, for our
entanglement witness application, we defined the output as:

 〈𝑂𝑂�𝑡𝑡𝑓𝑓�〉 = 𝑡𝑡𝑡𝑡�𝜌𝜌�𝑡𝑡𝑓𝑓�𝑂𝑂� = ∑ 𝑝𝑝𝑖𝑖�𝜓𝜓𝑖𝑖�𝑡𝑡𝑓𝑓��𝑂𝑂�𝜓𝜓𝑖𝑖�𝑡𝑡𝑓𝑓��𝑖𝑖

where tr stands for the trace of the matrix, and where the density
matrix is represented in terms of the chosen basis as 𝜌𝜌 =
∑ 𝑝𝑝𝑖𝑖|𝜓𝜓𝑖𝑖⟩⟨𝜓𝜓𝑖𝑖|𝑖𝑖 . We take the first variation of L with respect to ρ,
set it equal to zero, then integrate by parts to give the following
equation which can be used to calculate the vector elements of
the Lagrange multipliers (“error deltas” in neural network
terminology) that will be used in the learning rule:
 𝛾𝛾𝑖𝑖

𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜆𝜆𝑖𝑖
𝜕𝜕𝜕𝜕
𝛾𝛾𝑗𝑗 −

𝑖𝑖
ℏ
∑ 𝜆𝜆𝑘𝑘𝐻𝐻𝑘𝑘𝑘𝑘𝛾𝛾𝑗𝑗 + 𝑖𝑖

ℏ𝑘𝑘 ∑ 𝜆𝜆𝑖𝑖𝐻𝐻𝑗𝑗𝑗𝑗𝛾𝛾𝑘𝑘 = 0𝑘𝑘 , which is
solved backward in time, with the boundary conditions at the
final time tf given by −[𝑑𝑑−< 𝑂𝑂(𝑡𝑡𝑓𝑓) >]𝑂𝑂𝑗𝑗𝑗𝑗 + 𝜆𝜆𝑖𝑖(𝑡𝑡𝑓𝑓)𝛾𝛾𝑗𝑗(𝑡𝑡𝑓𝑓) = 0.
The gradient descent rule to minimize L with respect to w is
𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜂𝜂 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 for each “weight” parameter w, where η is

the learning rate, and where the derivative is given by

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑖𝑖
ℏ∫ 𝜆𝜆+(𝑡𝑡) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,𝜌𝜌�𝑡𝑡𝑓𝑓

0 𝛾𝛾(𝑡𝑡)𝑑𝑑𝑑𝑑

=
𝑖𝑖
ℏ
� ��𝜆𝜆𝑖𝑖(𝑡𝑡)

𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

𝜌𝜌𝑘𝑘𝑘𝑘𝛾𝛾𝑗𝑗 − 𝜆𝜆𝑖𝑖(𝑡𝑡)𝜌𝜌𝑖𝑖𝑖𝑖
𝜕𝜕𝐻𝐻𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕

𝛾𝛾𝑗𝑗�
𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑑𝑑

The above technique, since it uses the density matrix, is
applicable to any state of the quantum system, pure or mixed.

III. REINFORCEMENT LEARNING

A. Reinforcement Learning of the Fourier Quantum
Parameters
Each of the quantum system parameters can vary with time

as described earlier. For reinforcement learning, each quantum
parameter is represented as a Fourier expansion in time:

𝑃𝑃(𝑡𝑡) = 𝑃𝑃0 + ∑ �𝑆𝑆𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑛𝑛

𝜋𝜋
𝑇𝑇
𝑡𝑡� + 𝐶𝐶𝑛𝑛 𝑐𝑐𝑜𝑜𝑠𝑠 �𝑛𝑛

𝜋𝜋
𝑇𝑇
𝑡𝑡��𝑛𝑛

𝑖𝑖=1 (1.1)

where T is the end quantum system simulation time where the
output measures are taken. This gives a limited population of
Fourier coefficients to vary during the reinforcement learning
and is motivated by the results shown in [11] where
backpropagation is used to train the quantum parameters
allowing any continuous functions of time but the resulting
parameters have obvious simple frequency content. In this
paper we showed that fitting the parameters with Fourier series
for sine and cosine gave equivalent computing results.

Learning of each of the parameters is done via a hybrid
method which uses small variations of the Fourier coefficients
to calculate the gradient of the output error which is then used is
a straightforward gradient descent learning rule.

For a given training pair in the training set, the quantum
system is presented with the input, the system runs (with the
current parameters calculated from the current Fourier
coefficients) until the final time tf where the output is calculated
via the output measures on the final state. The output is
compared to the target value and an output error is calculated,
Enom. In the backprop method, this output error is then
backpropagated via quantum backprop to calculate gradients at
each time step. In the hybrid reinforcement learning the
following happens.

Choosing a single quantum parameter and a single Fourier
parameter in 1.1, this parameter is varied by a small amount. For
example, for P0 the new parameter would be given by

𝑃𝑃0,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃0 + Δ𝑃𝑃0 (1.2)

The quantum system is again presented with the input; the
system then runs with the parameters calculated using the
modified Fourier coefficients; the output is calculated; an output
error Emod is calculated and compared to the error Enom; a
gradient is calculated

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

𝛥𝛥𝑃𝑃0
 ; (1.3)

and, finally, this gradient is used to update the parameter using
a specified learning rate

0Pη via

𝑃𝑃0 = 𝑃𝑃0 − 𝜂𝜂𝑃𝑃0𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (1.4)

This is repeated for each Fourier coefficient and each quantum
parameter, using the same input and target output. Each
successive training pair is then processed in the same way until
the entire list of training pairs is exhausted, constituting one
epoch of training.

B. Reinforcement Learning Results
Matlab code implements the learning algorithm above and

calls a Simulink simulation of the quantum system. Compared
to the quantum backprop method, reinforcement learning, in
simulation, takes about from 25 times more computation time.
The tunneling frequency is initialized to 2.5x10-3 GHZ, is
changed by .02% to calculate the gradient and a learning rate of
0.00000002 is used. The bias is initialized to 1.0x10-4 GHZ, is
changed by .02% to calculate the gradient and a learning rate of
zero (not trained) is used. The qubit coupling matrix off-
diagonal elements representing qubit to qubit coupling are
initialized to 1.0x10-4 GHZ, is changed by .02% to calculate the
gradient and a learning rate of 0.0000004 is used. The on-
diagonal coupling of a qubit to itself is, of course, zero. The
entanglement witness calculation described above is the
quantum “program” to be learned. Three Fourier parameters in
equation (1.1) are used, that is n=3. Systems with 2, 3, 4 and 5
qubits are trained. A plot of the RMS error vs epoch is shown
as well as plots of how each quantum parameter varies with time
after training is completed.

Results for the 2-qubit system are shown in Figures 1
through 3, using reinforcement learning, and in Figures 4
through 6, using our earlier quantum backprop technique.

Fig. 1. RMS error vs Epoch for 2 qubit entanglement witness training

0

0.1

0.2

0.3

0.4

0.5

0.6

RM
S

Er
ro

r

Fig. 2. Coupling parameter ζ as a function of time for 2 qubit entanglement
witness training

Fig. 3. Tunneling parameter K as a function of time for 2 qubit entanglement
witness

Comparing Figures 1 through 3 to Figures 4 through 6, we
see that the reinforcement methods give a different set of
quantum parameter functions, but the RMS errors are similar.
Testing of each also produces equivalent results. Clearly, the set
of functions that produces this entanglement witness is not
unique; this is unsurprising as we have seen similar behavior in
earlier work with entanglement witnesses [11]. While backprop
is computationally much faster in simulation, it cannot be
implemented on the IBM hardware, while the reinforcement
learning method can.

Fig. 4. RMS error vs Epoch for 2 qubit entanglement witness backprop
training

Fig. 5. Coupling parameter ζ vs time for 2 qubit enntanglement witness
backprop training

Fig. 6. Tunneling amplitude K for 2 qubit entanglement witness backprop
training

We now extend our results from the two-qubit system to a
many-qubit system, using a method [10] [24] we call “iterative
staging”, because we use knowledge of a smaller system to infer
partial knowledge of a larger. Here, we use the trained
parameters for the 2-qubit system to initialize a 3-qubit system
as a starting point. The tunneling parameters are simply copied
to all three qubits. The coupling ζ between the 2 qubits is copied
onto the 3-qubit system to be the initial value for each of the
three pairwise couplings. In prior work, we discovered that this
initialization significantly reduces the number of epochs
required to train systems with higher numbers of qubits [10].

Reinforcement learning for 3 qubits results are shown in
Figures 7 through 9. Again, we see that the error rapidly
decreases and the resulting parameters are a good “program” for
the calculation.

0 50 100 150 200 250 300

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2
10 -4 Trained Zeta of2 qubits at RNP =0

0 50 100 150 200 250 300

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
10 -3 Trained K of2 at RNP =0

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
Er

ro
r

0 50 100 150 200 250 300

-1.5

-1

-0.5

0

0.5

1

1.5
10 -3 Trained Zeta of2 qubits at RNP =0

0 50 100 150 200 250 300

1.295

1.3

1.305

1.31

1.315

1.32

1.325
10 -3 Trained K of2 at RNP =0

Fig. 7. RMS error vs Epoch for 3 qubit entanglement witness training

Fig. 8. Coupling parameter ζ as a function of time for 3 qubit entanglement
witness

Fig. 9. Tunneling parameter K as a function of time for 3 qubit entanglement
witness

For the 4-qubit system initial parameters, we copy the
trained results from the 3-qubit system. Results are shown in
Figures 10 through 12.

Fig. 10. RMS error vs Epoch for 4 qubit entanglement witness training

Fig. 11. Coupling parameter ζ as a function of time for 4 qubit entanglement
witness

Fig. 12. Tunneling parameter K as a function of time for 4 qubit entanglement
witness

For the 5-qubit system initial parameters we copy the trained
results from the 4-qubit system. Results are shown in Figures 13
through 15.

0 50 100 150 200 250 300

-6

-4

-2

0

2

4

6
10 -5 Trained Zeta of4 qubits at RNP =0

0 5 10 15 20 25

Epoch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
R

M
S

Er
ro

r

0 50 100 150 200 250 300

-3

-2

-1

0

1

2

3

4

5

6
10 -5 Trained Zeta of3 qubits at RNP =0

0 50 100 150 200 250 300

1.2

1.3

1.4

1.5

1.6

1.7

1.8
10 -3 Trained K of3 at RNP =0

0 5 10 15

Epoch

3

4

5

6

7

8

9

R
M

S
 E

rr
or

10 -3

0 50 100 150 200 250 300

-6

-4

-2

0

2

4

6
10 -5 Trained Zeta of4 qubits at RNP =0

0 50 100 150 200 250 300
1.2

1.3

1.4

1.5

1.6

1.7

1.8
10 -3 Trained K of4 at RNP =0

10 -3 Trained K of3 at RNP =0

Fig. 13. RMS error vs Epoch for 5 qubit entanglement witness training

Fig. 14. Coupling parameter ζ as a function of time for 5 qubit entanglement
witness

Fig. 15. Tunneling parameter K as a function of time for 5 qubit entanglement
witness

IV. IMPLEMENTATION OF REINFORCEMENT LEARNING IN
IBM QISKIT

Implementing the pairwise entanglement witness in the IBM

hardware requires some modifications. The IBM Qiskit library
utilizes a quantum gate model, so we must use a gate
representation of the operator. The witness is constructed by first
approximating the values of the tunneling, bias, and coupling
parameters as piecewise constant, where the total evolution time
is divided into 4 segments. These piecewise constant parameters
are used to form the Hamiltonian for the time evolution operator,
which is converted into a sequence of gates, a quantum circuit.
Full details of the gate representation conversion and a
comparison with the behavior of the continuum parameters are
presented in [24].

The circuit representation results in 20 independent weights
wj for the entanglement witness. For reinforcement learning, the
training process is very similar to the Matlab implementation,
with necessary changes for the IBM system. First, one of the
training states is prepared, then the entanglement witness is
applied to it and an expectation value for the witness is returned.
Using the current weights, expectation values for each state in
the training set are computed and subtracted from the target
values to generate a RMS difference output error Enom. A single
weight wj is adjusted by a small amount as in (1.2), and the
output error is then computed with the modified wj, yielding
Emod. Equations (1.3) and (1.4) are used to update wj according
to the specified learning rate ηwj, and the process is repeated for
each of the 20 weights, constituting one epoch of training.

For training, the tunneling amplitude K was initialized to
2.0x10-3 GHZ, bias ε initialized to 1.0x10-4 GHZ, and coupling
ζ initialized to 1.0x10-4 GHZ, for all time segments. The learning
rate of the tunneling was 1.0x10-2 and the other learning rates
were set to 1.0x10-3 since experimentation revealed that the
system was the most sensitive to changes in the tunneling
parameter. Training was successful, but improvement stopped
after approximately 2000 epochs where the RMS oscillated near
0.02.

Fig. 16. RMS Error for training 2 qubits in IBM Qiskit system

Parameter training for the tunneling, bias, and coupling all
appear to have been completed due to each parameter set aside
from the coupling showing clear asymptotic behavior.

1 2 3 4 5 6 7 8 9 10

Epoch

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
R

M
S

 E
rr

or
10 -3

0 50 100 150 200 250 300

-8

-6

-4

-2

0

2

4

6
10 -5 Trained Zeta of5 qubits at RNP =0

0 50 100 150 200 250 300

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
10 -3 Trained K of5 at RNP =0

Fig. 17. Bias parameter for the first qubit as a function of time training 2 qubits
in IBM Qiskit system

Fig. 18. Bias parameter for the second qubit as a function of time training 2
qubits in IBM Qiskit system

Fig. 19. Tunneling parameter for the first qubit as a function of time training 2
qubits in IBM Qiskit system

Fig. 20. Tunneling parameter for the second qubit as a function of time training
2 qubits in IBM Qiskit system

Fig. 21. Inter qubit coupling parameter as a function of time training 2 qubits
in IBM Qiskit system

Again, we see that in this high dimensional parameter space
the set of parameter functions that succeeds in the mapping we
desire, is not unique. Of course, it would be very surprising if it
were. The training methods are different. In Qiskit by necessity
we used piecewise constant parameter functions instead of
Fourier series; learning rates needed were very different; the
functions produced were asymmetric; much noisier training
meant training was much more computationally intensive.

The quantum backprop and Matlab reinforcement learning
produce symmetrical parameter functions for the two qubits:
that is, the KA and KB functions are the same. This is probably
related to the fact that we did not need to train the bias functions
for our results; in the Qiskit runs, once the symmetry is (perhaps
randomly) broken, there is no natural way to regain the
symmetry, and the function evolution behaves rather as if it were
on an unstable equilibrium. We also notice that training is much
more difficult in the quantum simulator: it takes an order of
magnitude more epochs to reduce the error to the single-percent
range (where it is within machine error.) Also, the optimal

learning rates (found by trial and error) were very different for
the different methods.

V. DISCUSSION AND CONCLUSIONS

The major contribution of this paper is the demonstration of
the feasibility of true online training of a quantum system to do
a quantum calculation. It is a well-known theorem that a very
small set of gates (e.g., the set {H, T, S, CNOT}) is universal.
This means that any n-qubit unitary operation can be
approximated to an arbitrary precision by a sequence of gates
from that set. But there are many calculations we might like to
do, for which we do not know an optimal sequence to use, or
even, perhaps, any sequence to use. And there are many
questions we might want to answer for which we do not even
have a unitary, that is, an algorithm. Calculation of entanglement
of an N-qubit system is a good example of such a question: we
do not have a general closed form solution, much less know an
optimal set of measurements to make on a system whose density
matrix is unknown, to determine its entanglement.

Quantum machine learning methods like the ones used here
are systematic methods for dealing with these problems. Here
we show that they are in fact directly implementable on existing
hardware. Our iterative staging technique makes scaleup
relatively easy, as most of the training for a system of N qubits
has already been accomplished in the system for (N-1) qubits.
And while training on actual quantum hardware does prove
somewhat more challenging, that is all the more reason for a
machine learning approach: in any physical implementation
there are always sources of error that in general are unknown
(interactions, flaws, incomplete and damaged data). With
machine learning we can deal with all these problems
automatically.

VI. ACKNOWLEDGMENT
We all thank the entire research group for helpful

discussions: Nam Nguyen, Saideep Nannapaneni, William
Ingle, Henry Elliott, Ricardo Rodriguez, and Sima Borujeni.

VII. REFERENCES

[1] K. Karimi, N. G. Dickson, F. Hamze, M. H. Amin, M.
Drew-Brook, F. A. Chudak, P. I. Bunyk, W. G. Macready
and G. Rose, "Investigating the performance of an
adiabatic quantum optimization processor," Quantum Inf.
Process., pp. 77-88, 2012.

[2] P. Shor, "Algorithms for quantum computation: discrete
logarithms and factoring," in Proc. 35th Ann. Symp.
Found. Computer Science, 1994.

[3] L. Grover, "A fast quantum mechanical algorithm for
data base search," in Proc. 28th ACM Symp. Theory
Comput., 1996.

[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann
and D. Spielman, "Exponential algorithmic speedup by

quantum walk," in Proc. 35th Symp. Theory Comput.,
2003.

[5] S. Bravyi, D. Gosset and R. Konig, "Quantum advantage
with shallow circuits," arXiv:1704.00690, 2017.

[6] T. Ronnow, Z. Wang, J. Job, S. Boixo, S. Isakov, D.
Wecker, J. Martinis, D. Lidar and M. Troyer, "Defining
and detecting quantum speedup," Science 345, p. 420,
2014.

[7] E. Behrman, L. Nash, J. Steck, V. Chandrashekar and S.
Skinner, "Simulations of quantum neural networks," Inf.

Sci. 128, p. 257, 2000.
[8] E. Behrman, V. Chandrashekar, Z. Wang, C. Belur, J.

Steck and S. Skinner, "A quantum neural network
computes entanglement," arXiv: quant-ph/0202131,
2002.

[9] E. C. Behrman, J. E. Steck, P. Kumar and K. A. Walsh,
"Quantum algorithm design using dynamic learning,"
Quantum Inf. Comput. 8, pp. 12-29, 2008.

[10] E. Behrman and J. Steck, "Multiqubit entanglement of a
general input state," Quantum inf. Comput. 13, pp. 36-

53, 2013.
[11] E. C. Behrman, N. H. Nguyen, J. E. Steck and M.

McCann, "Quantum neural computation of entanglement
is robust to noise and decoherence," in Quantum Inspired
Computational Intelligence: Research and Applications,
Elsevier, 2016, pp. 3-33.

[12] N. H. Nguyen, E. C. Behrman and J. E. Steck, "Quantum
learning with noise and decoherence: a robust quantum
neural network," Quantum Machine Intelligence, 2020.

[13] M. Swaddle, L. Noakes, L. Salter, H. Smallbone and J.
Wang, "Generating 3 qubit quantum circuits with neural
networks," Phys. Lett. A 381, p. 3391, 2017.

[14] E. C. Behrman, J. E. Steck and M. A. Moustafa,
"Learning quantum annealing," Quantum Inf. Comput.
17, pp. 469-487, 2017.

[15] J. Preskill, "Quantum computing and the entanglement
frontier," arXiv:1203.5813v3, 2013.

[16] N. H. Nguyen, E. C. Behrman, M. A. Moustafa and J. E.
Steck, "Benchmarking neural networks for quantum
computations," IEEE Trans. Neural Networks and

Learning Systems, 2020.
[17] L. Gurvitz, "Classical deterministic complexity of

Edmonds problem and quantum entanglement," in Proc.
35th ACM Symp. Theory Comput., New York, 2003.

[18] P. Werbos, "Neurocontrol and supervised learning: an
overview and evaluation," in Handbook of Intelligent
Control, van Nostrand Reinhold, 1992, pp. 79-80 and
339-344.

[19] IBM, "The IBM Quantum Experience,"
https://quantumexperience.ng.bluemix.net/qx, 2018.

[20] R. P. Feynman, "An operator calculus having aplications
in quantum electrodynamics," Phys. Rev. 84, pp. 108-

128, 1951.

[21] Y. LeCun, "A theoretical framework for back-
propagation," in Proc. 1998 Connectionist Models
Summer School, 1998.

[22] A. A. Cruz-Cabrera, M. Yang, G. Cui, E. C. Behrman, J.
E. Steck and S. R. Skinner, "Reinforcement and

backpropagation training for an optical neural network
using self-lensing effects," IEEE Trans. Neural

Networks, vol. 11, p. 1450, 2000.

[23] R. Allauddin, K. Gaddam, S. Boehmer, E. C. Behrman
and J. E. Steck, "Quantum simultaneous recurrent

networks for content addressable memory," in
Quantum-Inspired Intelligent Systems, Springer Verlag,

2008.

.

	I. Introduction
	II. Dynamic Learning Quantum Backprop
	III. reinforcement Learning
	A. Reinforcement Learning of the Fourier Quantum Parameters
	B. Reinforcement Learning Results

	IV. Implementation of Reinforcement Learning in IBM Qiskit
	V. Discussion and conclusions
	VI. Acknowledgment
	VII. References

