
A Numerical Study of Bravyi-Bacon-Shor and Subsystem Hypergraph Product Codes

Muyuan Li1, ∗ and Theodore J. Yoder2, †

1School of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332, USA

2IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, United States
(Dated: November 2019)

We provide a numerical investigation of two families of subsystem quantum codes that are re-
lated to hypergraph product codes by gauge-fixing. The first family consists of the Bravyi-Bacon-
Shor (BBS) codes which have optimal code parameters for subsystem quantum codes local in 2-
dimensions. The second family consists of the constant rate “generalized Shor” codes of Bacon and
Cassicino [1], which we re-brand as subsystem hypergraph product (SHP) codes. We show that any
hypergraph product code can be obtained by entangling the gauge qubits of two SHP codes. To
evaluate the performance of these codes, we simulate both small and large examples. For circuit
noise, a J21, 4, 3K BBS code and a J49, 16, 3K SHP code have pseudthresholds of 2×10−3 and 8×10−4,
respectively. Simulations for phenomenological noise show that large BBS and SHP codes start to
outperform surface codes with similar encoding rate at physical error rates 1 × 10−6 and 4 × 10−4,
respectively.

I. INTRODUCTION

Two-dimensional topological error-correcting codes are
extremely attractive models of quantum error-correction.
Structurally, low-weight stabilizers – just weight four for
the surface code and weight six for the most popular color
code – that are also local in the plane make for simple
fault-tolerant syndrome measurement circuits. In turn,
this simplicity leads to surprisingly high thresholds [2]
compared to, say, concatenated codes [3].

On the other hand, error-correction in two dimen-
sions is inherently limited by the Bravyi-Poulin-Terhal
bound [4], which states that a two-dimensional code us-
ing N qubits to encode K qubits with code distance D
must satisfy cKD2 ≤ N for some universal constant c.
In particular, two-dimensional codes with constant rate
K ∝ N must have constant distance, which precludes
error-correction with constant space overhead [5] in two
dimensions.

These constraints on two-dimensional codes explains
the recent surge of interest in quantum hypergraph prod-
uct codes [6, 7], which break the plane (i.e. are not lo-
cal in two dimensions) but in doing so achieve K ∝ N

and D ∝
√
N . Given the small-set flip decoder [7],

which is single-shot with an asymptotic threshold, hyper-
graph product codes promise quantum error-correction
with constant overhead [8].

However, hypergraph product codes also have a cou-
ple of undesirable properties from a practical standpoint.
First, the small-set flip decoder, although theoretically
satisfactory, is likely not practical due to low thresholds
even when measurements are perfect [9]. This is some-
what to be expected by analogy with classical expander
codes, where the classical flip decoder [10] is greatly out-

∗ mli97@gatech.edu
† ted.yoder@ibm.com

performed by heuristic decoders, such as belief propaga-
tion [11]. It is also unclear that the small-set flip decoder
works well at all on small examples suitable for near-
term implementation. Second, the stabilizer weights of
hypergraph product codes are relatively large, e.g. the
best performing codes in [9] have stabilizers with weight
11, which necessitates a corresponding increase in fault-
tolerant circuit complexity and a decrease in thresholds
with respect to circuit-level noise.

Here we take an empirical look at two families of sub-
system codes that, while related to hypergraph product
codes, may have some advantages for near-term imple-
mentation. Because these are subsystem codes, the op-
erators measured for error-correction are quite small – in
the cases we explore here they never exceed weight six.
We also demonstrate how the powerful technique of belief
propagation can be applied to decode these codes.

The first family consists of the Bravyi-Bacon-Shor
(BBS) codes [12]. BBS codes achieve K,D ∝

√
N

with just two-body measurements and are easily mod-
ified so that these measurements are local in two dimen-
sions. Furthermore, they can be gauge-fixed to hyper-
graph product codes [13]. The second family consists
of the “generalized Shor” codes of Bacon and Cassacino
[1]. We rename these codes subsystem hypergraph prod-
uct (SHP) codes, because we prove that any hypergraph
product code is two SHP codes with their gauge qubits
entangled. SHP codes can achieve K ∝ N and D ∝

√
N

just like hypergraph product codes. Compared to BBS
codes, they have higher weight gauge operators, weight
six in our instances.

We perform numerical experiments with these code
families in two regimes of operation. In the small-code
regime, we construct small, distance-3 codes in each class,
develop fault-tolerant circuits for measuring their stabi-
lizers, and calculate pseudothresholds for circuit noise.
We find pseudotresholds of 2× 10−3 for a J21, 4, 3K BBS
code and 8 × 10−4 for a J49, 16, 3K SHP code. These re-
sults suggest that the BBS code in particular is quite a

ar
X

iv
:2

00
2.

06
25

7v
1

 [
qu

an
t-

ph
]

 1
4

Fe
b

20
20

mailto:mli97@gatech.edu
mailto:ted.yoder@ibm.com

2

good candidate for protecting four logical qubits with a
small quantum computer.

In the large-code regime, we create BBS and SHP
codes from regular classical expander codes. We modify
belief propagation to include measurement errors and ap-
ply it to decode these codes under an error model includ-
ing data and measurement noise (but without circuit-
level noise). Despite no asymptotic thresholds, com-
pared to a single logical qubit of surface code with simi-
lar encoding rate, BBS and SHP codes do achieve better
logical error rates per logical qubit provided sufficiently
low physical error rates: p < 10−6 for BBS codes and
p < 4× 10−4 for SHP codes.

The paper is organized as follows. In Section II we re-
view the Bravyi-Bacon-Shor codes and present a circuit-
level simulation of the J21, 4, 3K code. In Section III we
look at the construction of the subsystem hypergraph
product codes, find their code parameters, and present a
circuit-level simulation of the J49, 16, 3K code. In Section
IV we show how to add measurement noise to a classical
belief propagation decoder so that it can then be used
to decode the BBS and SHP codes. In Section V we
present numerical results on large BBS and SHP codes
and compare them to surface codes.

II. REVIEW OF BRAVYI-BACON-SHOR
CODES

In this section, we review the Bravyi-Bacon-Shor
(BBS) codes that were introduced by Bravyi [4] and ex-
plicitly constructed in [13].

Let F2 denote the finite field with two elements 0,1.
A Bravyi-Bacon-Shor code is defined by a binary matrix
A ∈ Fn1×n2

2 , where qubits live on sites (i, j) of the matrix
A for which Ai,j = 1. As shown in [4, 13], given A we can
define two classical codes corresponding to its column-
space and row-space:

C1 = col(A), (1)

C2 = row(A), (2)

where C1 and C2 has code parameters [n1, k, d1],
[n2, k, d2], generating matrices G1 and G2, and parity
check matrices H1 and H2.

The notation for Pauli operators on the qubit lattice is
defined as follows. A Pauli X- or Z-type operator acting
on the qubit at site (i, j) in the lattice is written as Xi,j

or Zi,j . A Pauli operator acting on multiple qubits is
specified by its support S:

X(S) =
∏
ij

(Xi,j)
Sij , S ∈ Fn1×n2

2 , (3)

where Sij = 1 implies that Aij = 1, since qubits only
exist where Aij = 1. Similar notations will be used
throughout the rest of this paper. We let |A| =

∑
ij Aij

and |v| =
∑

i vi denote the Hamming weights of matrices
and vectors.

Definition 1. [4] The Bravyi-Bacon-Shor code con-
structed from A ∈ Fn1×n2

2 , denoted BBS(A), is an
JN,K,DK quantum subsystem code with gauge group
generated by 2-qubit operators and

N = |A|,
K = rank(A),

D = min{|~y| > 0 : ~y ∈ row(A) ∪ col(A)},

As CSS quantum subsystem codes, the gauge group of
BBS codes is generated by XX interactions between any
two qubits sharing a column in A and ZZ between any
two qubits sharing a row in A. The gauge group can be
more formally written as

G(bbs)X = {X(S) : GRS = 0, S ⊆ A}, (4)

G(bbs)Z = {Z(S) : SGT
R = 0, S ⊆ A}, (5)

where GR = (1, 1, . . . , 1) is the generating matrix of the
classical repetition code, and the subset notation S ⊆ A
means that S is a matrix such that, for all i, j, Sij = 1
implies Aij = 1.

For bare logical operators of the BBS code to commute
with all of its gauge operators, each bare logical X-type
operator must be supported on entire rows of the matrix
and each bare logical Z-type operator must be supported
on entire columns of the matrix. To express this similarly
to the gauge operators above, define the parity check
matrix of the classical repetition code HR. Then we have
the sets of X- and Z-type logical operators:

L(bbs)
X = {X(S ∩A) : SHT

R = 0}, (6)

L(bbs)
Z = {Z(S ∩A) : HRS = 0}. (7)

Consequently, the group of stabilizers for the BBS code
is the intersection of the group of bare logical operators
with the gauge group:

S(bbs)X = L(bbs)
X ∩ G(bbs)X (8)

= {X(S ∩A) : SHT
R = 0, G1S = 0}, (9)

S(bbs)Z = L(bbs)
Z ∩ G(bbs)Z (10)

= {Z(S ∩A) : HRS = 0, SGT
2 = 0}. (11)

A. Constructing BBS codes with classical linear
codes

In [13], the following method of constructing a BBS
code from classical codes was given.

Theorem 2. Given two classical linear codes C1 and C2
with parameters [n1, k, d1] and [n2, k, d2], and generating

matrices G1 ∈ Fk×n1
2 and G2 ∈ Fk×n2

2 , we can construct
the code BBS(A) by

A = GT
1QG2 ∈ Fn1×n2

2 , (12)

3

where Q ∈ Fk×k
2 can be any full rank k×k matrix. Then

BBS(A) is an JN,K,DK quantum subsystem code with

min(n1d2, d1n2) ≤ N ≤ n1n2, (13)

K = k, (14)

D = min(d1, d2). (15)

The matrix Q ∈ Fk×k
2 represents the non-uniqueness

of the generating matrices, and adjusting Q would only
affect the number of physical qubits in BBS(A). It is
easy to see that col(A) = row(G1) = C1, and row(A) =
row(G2) = C2, and the conclusions in the theorem about
the code parameters follow.

B. Example: A [[21, 4, 3]] Bravyi-Bacon-Shor Code

The [7, 4, 3] Hamming code is generated by

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 , H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .
Using Q =

(
0 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

)
we can construct a [[21, 4, 3]]

Bravyi-Bacon-Shor code A = GTQG:

A =

0 0 1 0 0 1 1
0 1 0 1 0 1 0
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 1 1 0 0
1 1 1 0 0 0 0
1 0 0 1 0 0 1

,

which minimizes the number of qubits used. We con-
struct a canonical set of bare logical operators for the
four logical qubits encoded in the J21, 4, 3K code along
with a set of stabilizers generators, as shown in TABLE
I. Note that while qubit 4 has high weight bare logical
operators due to the construction that we have chosen, it
can still suffer from weight three logical operators, such
as Z4Z13Z19, and so its error rate has the same slope as
the others.

We estimated the performance of this code by simu-
lating it under circuit level standard depolarizing noise,
where Pauli channels with Kraus operators

E1q = {
√

1− pI,
√
p

3
X,

√
p

3
Y,

√
p

3
Z},

E2q = {
√

1− pI,
√

p

15
IX, . . .

√
p

15
ZZ},

(16)

are applied after each 1- and 2-qubit gate in the circuit,
respectively. We call p ∈ [0, 1] the physical error rate.
Assuming the code is fault-tolerantly prepared into its
logical |0000〉 state, we simulated the circuit of error cor-
rection and destructive measurement of data qubits with

single qubit memory errors added before error correction.
The same error rate is used across the circuit for mem-
ory errors, gate errors, and measurement errors. Note
that idle errors are not considered in the circuit-level
simulations presented in this paper. When we consider
a trapped ion architecture where long-range interactions
required by these subsystem codes of interest can be eas-
ily implemented, idle errors have minimal effect to the
logical system when compared to gate errors [14].

The results are shown in FIG. 1. Note that since
the BBS codes can be considered a compass code in
2-dimensions [15], to create a fault-tolerant circuit for
syndrome extraction it suffices to use a single ancillary
qubit for each of the weight-12 stabilizers as listed in
TABLE I. Hence the total number of qubits required to
perform fault-tolerant syndrome extraction for this code
is 21+6 = 27. We perform the syndrome extraction once
and if the syndrome is trivial, we stop and no correction
is needed. If the syndrome is not trivial, we measure the
syndrome again and decode with the outcome.

From FIG. 1 we can see that qubit 4 performs
slightly worse than qubits 1-3, due to the fact that its
higher weight logical operators have more chance of anti-
commuting with dressed logical operators than qubits 1-
3.

Unencoded	Single	Qubit
Qubit	1
Qubit	2
Qubit	3
Qubit	4
Block	LE
Unencoded	4	Qubit	Block

Lo
gi
ca
l	E

rr
or
	R
at
e

10−6

10−5

0.01

0.1

Physical	Error	Rate
10−4 10−3 0.01

FIG. 1: Simulated performance of the [[21, 4, 3]] BBS
code under circuit level depolarizing error, with one
ancillary qubit per stabilizer for fault-tolerant syndrome
extraction. The block pseudothreshold for the code
block with 4 encoded logical qubits is 2.3× 10−3, while
the per logical qubit pseudothreshold for qubits 1-3 is
8.7× 10−4.

4

Qubits XL ZL Stabilizers

1 X0X1X2 Z0Z12Z17 X0X1X2X3X4X5X9X10X11X12X13X14

2 X3X4X5 Z3Z9Z16 X0X1X2X6X7X8X9X10X11X15X16X17

3 X6X7X8 Z6Z15Z18 X3X4X5X6X7X8X9X10X11X18X19X20

4 X3X4X5X6X7X8X9X10X11 Z3Z4Z9Z13Z16Z19 Z6Z15Z18Z3Z9Z16Z4Z13Z19Z7Z10Z14

Z6Z15Z18Z0Z12Z17Z4Z13Z19Z1Z5Z8

Z3Z9Z16Z0Z12Z17Z4Z13Z19Z2Z11Z20

TABLE I: Stabilizers and a set of canonical logical operators for the [[21, 4, 3]] Bravyi-Bacon-Shor code constructed
using the [7, 4, 3] Hamming code.

III. ANOTHER FAMILY OF SUBSYSTEM
HYPERGRAPH PRODUCT CODES

In this section we take a look at the “generalized Shor”
codes in Bacon and Casaccino [1] from a new perspective.
In particular, we find that these codes are in a sense the
most natural subsystem hypergraph product codes be-
cause two of them, without ancillas, can be gauge-fixed
to a hypergraph product code and, conversely, any hy-
pergraph product code can be gauge-fixed into two gener-
alized Shor codes. We therefore refer to generalized Shor
codes as subsystem hypergraph product (SHP) codes.

Contrast SHP codes with BBS codes, which can also
be gauge-fixed to hypergraph product codes [13]. Gauge-
fixing BBS codes requires ancillas and the result is only a
certain subset of all hypergraph product codes with less
than constant rate.

A. Hypergraph product codes

To facilitate our proofs, we review the hypergraph
product code construction briefly in this section.

Definition 3. [6] Let H1 ∈ {0, 1}n
T
1 ×n1 and H2 ∈

{0, 1}nT
2 ×n2 . The hypergraph product (HGP) of H1 and

H2 is a quantum code HGP(H1, H2) with stabilizers

S
(hgp)
X =

(
H1 ⊗ In2

, InT
1
⊗HT

2

)
, (17)

S
(hgp)
Z =

(
In1
⊗H2, H

T
1 ⊗ InT

2

)
. (18)

By Eq. (17) we mean that each vector v ∈ FN
2 in the

rowspace of the matrix on the righthand side indicates

an X-type Pauli operator Xv :=
∏N

i=1X
vi
i in the stabi-

lizer group. Likewise with Z-type operators in Eq. (18).
Similar notation will be used throughout this section.

Treating H1 and H2 as parity check matrices, we have
two classical codes C1 = ker(H1) and C2 = ker(H2) with
some parameters [n1, k1, d1] and [n2, k2, d2], respectively.
Likewise, treat HT

1 and HT
2 as parity check matrices of

the “transpose” codes CT1 = ker(HT
1) and CT2 = ker(HT

2)
with respective parameters [nT1 , k

T
1 , d

T
1] and [nT2 , k

T
2 , d

T
2].

Because of the rank-nullity theorem

ni − ki = nTi − kTi (19)

FIG. 2: The large and small lattices, L and l.

for i = 1, 2. The hypergraph product code HGP(H1, H2)
then has parameters [6]

Jn1n2 + nT1 n
T
2 , k1k2 + kT1 k

T
2 , DK, (20)

where

D =

{
min(d1, d2), kT1 = 0 or kT2 = 0
min(d1, d2, d

T
1 , d

T
2), otherwise

. (21)

Moving on, we notice that there are n1n2+nT1 n
T
2 qubits

in HGP(H1, H2) that we lay out on two square lattices,
an n1 × n2 lattice referred to as the “large” lattice, de-
noted L, and an nT1 ×nT2 lattice referred to as the “small”
lattice, denoted l. See Fig. 2. Despite the names, the
small lattice need not contain fewer qubits than the large
lattice, although typically (e.g. in random constructions
of classical LDPC codes [16]) nTi ≈ ni− ki < ni and this
is the case.

We label qubits in these lattices in row major fashion.
Thus, a (row) vector rT ⊗ cT for r ∈ {0, 1}n1 and c ∈
{0, 1}n2 indicates exactly the qubits that are both in the
rows indicated by r and in the columns indicated by c of
the large lattice. Qubits in the large lattice are labeled
first, i.e. 1, 2, . . . , n1n2, followed by qubits in the small
lattice, i.e. n1n2 + 1, . . . , n1n2 + nT1 n

T
2 .

For later purposes, we point out some subgroups of
the stabilizer group. For instance, certain stabilizers of
HGP(H1, H2) are supported entirely on the large lattice.

Because the rowspace of S
(hgp)
X represents all X-type sta-

bilizers, if x ∈ {0, 1}nT
1 , c ∈ ker(H2) = C2 ⊆ {0, 1}n2 ,

5

then

(xT ⊗ cT)S
(hgp)
X =

(
xTH1 ⊗ cT , 0

)
(22)

is a stabilizer supported entirely on the first n1n2 qubits,
i.e. entirely on the large lattice. Let G1 ∈ {0, 1}k1×n1 and
G2 ∈ {0, 1}k2×n2 be generator matrices for codes C1 and
C2. Then, we can provide a generating set of stabilizers
on the large lattice like

S
(hgp,L)
X = (H1 ⊗G2) , (23)

S
(hgp,L)
Z = (G1 ⊗H2) . (24)

Similarly, some stabilizers of HGP(H1, H2) are sup-

ported entirely on the small lattice. Let F1 ∈ {0, 1}k
T
1 ×n

T
1

and F2 ∈ {0, 1}k
T
2 ×n

T
2 be generating matrices for codes

CT1 and CT2 . The stabilizers on the small lattice have
generating sets

S(hgp,l)
x =

(
F1 ⊗HT

2

)
, (25)

S(hgp,l)
z =

(
HT

1 ⊗ F2

)
. (26)

Logical operators of HGP(H1, H2) are those that com-
mute with all stabilizers (we include the stabilizers them-
selves in this count). For instance, rows of the matrix
(In1
⊗G2, 0) indicate X-type logical operators, since

S
(hgp)
Z (In1

⊗G2, 0)
T

= 0. (27)

The complete generating sets of X-type and Z-type log-
ical operators are

L
(hgp)
X =

 H1 ⊗ In2
InT

1
⊗HT

2

In1 ⊗G2 0
0 F1 ⊗ InT

2

 , (28)

L
(hgp)
Z =

 In1
⊗H2 HT

1 ⊗ InT
2

G1 ⊗ In2
0

0 InT
1
⊗ F2

 . (29)

Nontrivial logical operators are logical operators that are
not stabilizers.

An alternative representation of stabilizers and logi-
cal operators is to specify them by their supports. For
instance X(L)(S) is an X-type Pauli supported on the
qubits specified by S ∈ {0, 1}n1×n2 in the large lattice.

Likewise for X(l)(T) with T ∈ {0, 1}nT
1 ×n

T
2 on the small

lattice. Of course, Z-type Paulis Z(L)(S), Z(l)(T) are
denoted analogously.

Using this support-matrix notation, we get alternative
descriptions of the stabilizer groups

S(hgp)X =
{
X(L)(S)X(l)(T) :SHT

2 = HT
1 T, (30)

G1S = 0, TFT
2 = 0

}
,

S(hgp)Z =
{
Z(L)(S)Z(l)(T) : H1S = TH2, (31)

SGT
2 = 0, F1T = 0

}
.

FIG. 3: A subsystem hypergraph product code. For
each column, X-type gauge operators are supported on
qubits indicated by the parity checks H1. For each row,
Z-type gauge operators are supported on qubits
indicated by the parity checks H2.

and the logical operators

L(hgp)
X = {X(L)(S)X(l)(T) : SHT

2 = HT
1 T}, (32)

L(hgp)
Z = {Z(L)(S)Z(l)(T) : H1S = TH2}, (33)

which are useful for discussing gauge-fixing later.

B. Subsystem hypergraph product codes

In this section, we define the generalized Shor codes
from [1] with notation similar to our description of HGP
codes. This makes the two code families easier to relate
later.

Definition 4. Let H1 ∈ {0, 1}nT
1 ×n1 and H2 ∈

{0, 1}nT
2 ×n2 . The subsystem hypergraph product (SHP)

code of H1 and H2 is the quantum subsystem code
SHP(H1, H2) with gauge operators

G
(shp)
X = (H1 ⊗ In2

) , (34)

G
(shp)
Z = (In1 ⊗H2) . (35)

It is worth noting that while the definition of
HGP(H1, H2) depends on the parity check matrices H1

and H2, the definition of SHP(H1, H2) depends only on
the codes C1 = kerH1 and C2 = kerH2. This is be-

cause the gauge groups G
(shp)
X and G

(shp)
Z are the same

for SHP(H1, H2) and SHP(H ′1, H
′
2) whenever row(H1) =

row(H ′1) and row(H2) = row(H ′2).
Let us calculate the parameters JN,K,DK of the SHP

code. There are clearly N = n1n2 qubits in the code,
which we place on a lattice like in Fig. 3.

To calculate K, begin by noticing that certain X-type
operators, the bare X-type logical operators, commute
with the entire group of gauge operators. These are gen-
erated by

L
(shp)
X = (In1

⊗G2) , (36)

because L
(shp)
X

(
G

(shp)
Z

)T
= 0. Likewise, the bare Z-type

logical operators are

L
(shp)
Z = (G1 ⊗ In2

) . (37)

6

The stabilizers of a subsystem code are those gauge op-
erators that also commute with all elements of the gauge
group, i.e. the center of the gauge group. These are gen-
erated by

S
(shp)
X = (H1 ⊗G2) , (38)

S
(shp)
Z = (G1 ⊗H2) , (39)

matching those stabilizers of HGP(H1, H2) that are sup-
ported entirely on the large lattice (see Eqs. (23), (24)).

Next, the number of encoded qubits can be calculated

by comparing the ranks of L
(shp)
X and S

(shp)
X (or, equiva-

lently of L
(shp)
Z and S

(shp)
Z).

K = rank(L
(shp)
X)− rank(S

(shp)
X) (40)

= n1k2 − (n1 − k1)k2 (41)

= k1k2. (42)

What does the description of SHP(H1, H2) look like
in support-matrix notation? Writing down the relevant
groups, we have

G(shp)X = {X(S) : G1S = 0}, (43)

G(shp)Z = {Z(S) : SGT
2 = 0}, (44)

L(shp)
X = {X(S) : SHT

2 = 0}, (45)

L(shp)
Z = {Z(S) : H1S = 0}, (46)

S(shp)X = {X(S) : G1S = 0, SHT
2 = 0}, (47)

S(shp)Z = {Z(S) : SGT
2 = 0, H1S = 0}. (48)

Dressed logical operators are denoted L̂(shp)
X =

L(shp)
X G(shp)X and L̂(shp)

Z = L(shp)
Z G(shp)Z .

To compute the distance D of the subsystem hyper-
graph product code, we need to find the minimum weight

of an element of L̂(shp)
X − G(shp)X or of L̂(shp)

Z − G(shp)Z .

Let us suppose M ∈ L̂(shp)
X − G(shp)X . Then, M can be

written as M = X(S)X(T) where X(S) ∈ L(shp)
X and

X(T) ∈ G(shp)X , so SHT
2 = 0 and G1T = 0. Also, since

M is not in G(shp)X , there is some M ′ corresponding to a

row of L
(shp)
Z that anticommutes with M . Glancing at

Eq. (37), this means M ′ = X(S′) where S′ is the outer
product S′ = ~c êTj for some ~c ∈ C1 and some j such that

tr(((S + T)TS′)) = êTj (S + T)T~c = 1. (49)

This trace being 1 (modulo two) expresses the anticom-

mutation of M and M ′. Clearly, it implies (S+T)T~c 6= ~0.
Because ~c ∈ C1, there is a vector ~x such that ~c = GT

1 ~x
and accordingly,

(S + T)T~c = ST~c+ TTGT
1 ~x = ST~c (50)

using G1T = 0. Moreover, H2S
T~c = 0 using SHT

2 = 0
and so (S + T)T~c is a nonzero vector in ker(H2) = C2.

Unencoded 16 Qubit Block
Encoded 16 Qubit Block
Unencoded Single Qubit
Qubits 1-16

L
og

ic
al

 E
rr

or
 R

at
e

10−5

10−4

0.01

0.1

Physical Error Rate
10−4 10−3

FIG. 4: Simulated performance of the J49, 16, 3K SHP
code under circuit level depolarizing noise, with one
ancillary qubit per stabilizer for fault-tolerant syndrome
extraction. The block pseudothreshold for the single
code block with 16 encoded logical qubits is 8× 10−4,
while the per logical qubit pseudothreshold ranges
between 10−4 to 2× 10−4.

Thus, by definition of the classical code distance |M | =
|S + T | ≥ |(S + T)T~c | ≥ d2.

Likewise, if we suppose M ∈ L̂(shp)
Z − G(shp)Z we find

|M | ≥ d1. Thus, we have shown D ≥ min(d1, d2) and

it is not hard given the form of L
(shp)
X and L

(shp)
Z to see

that this in fact holds with equality D = min(d1, d2).
Therefore, the subsystem hypergraph product code is a
Jn1n2, k1k2,min(d1, d2)K code.

Quantum subsystem codes generalize quantum sub-
space codes because their stabilizers and logical qubits
do not fix all the available degrees of freedom. The re-
maining degrees of freedom are counted as gauge qubits.
These can be thought of as extra logical qubits that are
not protected and thus not used to hold any meaningful
information. If we calculate the number of gauge qubits
in a subsystem hypergraph product code, we find it is

N−rank(S
(shp)
X)−rank(S

(shp)
Z)−K = (n1−k1)(n2−k2).

(51)

C. Example: A J49, 16, 3K subsystem hypergraph
product code

Using the classical [7, 4, 3] Hamming code for both the
X and Z part, we can construct a J49, 16, 3K subsys-
tem hypergraph product code by following Definition 4.
We can construct a canonical set of logical operators of
weight 3 and 4 for the 16 logical qubits encoded in the

7

same code block, along with a set of 24 stabilizer gener-
ators. Note that similar to the BBS codes, for each of
the stabilizers it suffices to use a single ancillary qubit
to fault-tolerantly extract its syndrome, by performing
CNOT gates in the order of gauge operators and hence
directing propagated errors away from the direction of
logical errors.

Similar to the J21, 4, 3K BBS code, we study the
J49, 16, 3K SHP code under circuit level depolarizing noise
as shown in Eq. 16. The results are shown in FIG. 4.
Since the 4 encoded logical bits in the [7, 4, 3] Ham-
ming code have different performances and the con-
structed logical operators for the SHP code have differ-
ent weights, the performance of the 16 encoded logical
qubits varies and their pseudothreshold ranges between
10−4 and 2× 10−4.

D. SHP codes gauge-fix to HGP codes

To begin, we define gauge-fixing in general. See also
[13]. We use the notation that for gauge group G, its
stabilizer group (centralizer) is S(G) and it encodes K(G)
qubits.

Definition 5. We say that the gauge group G′ is a gauge-
fixing of the gauge group G if

1. S(G) ≤ S(G′) ≤ G′ ≤ G, and

2. K(G) = K(G′).

We also say that a code is a gauge-fixing of another code
if their gauge groups are related in this way.

We noted below Eq. (39) that the stabiliz-
ers of SHP(H1, H2) are exactly those stabilizers of
HGP(H1, H2) that are supported entirely on the large
lattice. Similarly, one can check that the stabilizers
of SHP(HT

2 , H
T
1) are those of HGP(H1, H2) supported

entirely on the small lattice (i.e. Eqs. (25,26)). Also,
Eq. (51) says that SHP(HT

2 , H
T
1) has (nT2 −kT2)(nT1 −kT1)

gauge qubits, which is the same number as SHP(H1, H2)
by Eq. (19).

These two facts suggest the following theorem.

Theorem 6. Q′ = HGP(H1, H2) is a gauge-fixing of
Q = SHP(H1, H2)SHP(HT

2 , H
T
1).

Proof. We employ Definition 5. It should be clear that

K(Q) = K(SHP(H1, H2)) +K(SHP(HT
2 , H

T
1)) (52)

= k1k2 + kT1 k
T
2 = K(Q′), (53)

therefore satisfying part (2) of the definition.
For part (1), it is important to associate (via a 1-1

map) the physical qubits of Q and Q′. Recall, qubits of
Q′ are placed on the two lattices L and l. A qubit at site
(i, j) in SHP(H1, H2) is associated with the qubit at (i, j)
in L. On the other hand, qubit (i, j) of SHP(HT

2 , H
T
1)

is associated instead with the qubit at (j, i) on the small
lattice l. Now, taken as a whole, this code Q has gauge
operators and stabilizers that can be written as

G(Q)
X =

{
X(L)(S)X(l)(T) : G1S = 0, TFT

2 = 0
}
, (54)

G(Q)
Z =

{
X(L)(S)X(l)(T) : SGT

2 = 0, F1T = 0
}
, (55)

S(Q)
X = {X(L)(S)X(l)(T) : SHT

2 = 0, HT
1 T = 0, G1S = 0, TFT

2 = 0}, (56)

S(Q)
Z = {Z(L)(S)Z(l)(T) : H1S = 0, TH2 = 0, SGT

2 = 0, F1T = 0}. (57)

It should now be clear that we have

SQX ≤ S
hgp
X ≤ GQX , (58)

SQZ ≤ S
hgp
Z ≤ GQZ , (59)

thereby satisfying part (1) of Def. 5.

In essence, the two SHP codes live on the large and
small lattices in Fig. 2, respectively, and gauge-fix to the
HGP code by placing their gauge qubits in (n1−k1)(n2−
k2) maximally entangled two-qubit states.

IV. DECODING BBS AND SHP CODES

Both the BBS codes and SHP codes can be decoded by
directly running a classical decoder on the corresponding
classical code used to construct the quantum code. In
this section we review the decoding of BBS codes, as
discussed in [13], and show that similar arguments can
be applied to SHP codes. We review the classical belief
propagation decoder for expander codes, and show how it
can be used to tolerate measurement errors and therefore
decode BBS and SHP codes.

8

A. Decoding the BBS codes

To decode the BBS codes, we have to establish as-
sociations between the stabilizers of the quantum code
and the parity checks of the classical code. For conve-
nience, we assume that A is an n× n symmetric matrix
constructed as A = GTQG, where G is the generating
matrix of a [n, k, d] classical code C, so there is only one
classical code C = row(A) = col(A) under consideration.
We let H be the parity check matrix of C.

Given Eq. 8, let S be the support of a X-type stabilizer

of BBS(A), X(S ∩ A) ∈ S(bbs)X . Since SHT
R = 0, rows of

S are codewords of CR, either all 1s or all 0s. Because
GS = 0, columns of S are parity checks of C. Therefore,
S ∩A = diag(~r)A for some ~r ∈ row(H). Hence we have

S(bbs)X = {X(diag(~r)A) : ~r ∈ row(H)}. (60)

Similarly,

S(bbs)Z = {Z(Adiag(~c)) : ~c ∈ row(H)}. (61)

Thus, the parity checks of the classical code indicate
which sets of rows or columns constitute a stabilizer, and
give us a one-to-one correspondence between the quan-
tum stabilizers and the classical parity checks.

Since single qubit Pauli X errors within a column are
equivalent up to gauge operators, each column is only
sensitive to an odd number of Pauli X error. The even
or oddness of a column corresponds to the 0 or 1 state
of an effective classical bit in the code C. Similarly, the
symmetry of A indicates that the same correspondence
holds for Pauli Z errors in rows and the even or oddness
of rows in A.

Algorithm 1 (The Induced Decoder for BBS(A)).
Given a symmetric binary matrix A = GTQG where
C = row(G) = row(A) = col(A) is a classical [n, k, d]
code, we can decode the Bravyi-Bacon-Shor code
BBS(A) by:

• Collect the X- or Z-type syndrome ~σ for the quan-
tum code BBS(A).

• Run the classical decoder to obtain a set of correc-
tions for the classical code ~c = D(~σ).

• For each bit in the correction ~c, apply a Pauli Z-
or X-type correction to a single qubit in each row
or column corresponding to the classical bit.

The time complexity of the induced decoder consists of
the time to construct the stabilizer values and the time
to run the classical decoder D. Given an [n, k, d] classical
code C, for a weight-w parity check of the classical code
the corresponding stabilizer of the BBS(A) code is the
sum of O(wn) two-qubit gauge measurement. There are
m such stabilizers and suppose the classical decoder runs
in time at most t, then the induced decoder of BBS(A)

takes time O(mwn + t). When classical expander codes
are used to construct BBS(A) and the belief propagation
decoder is used as classical decoder D, m = O(n), w =
O(1), t = O(n), so the induced decoder runs in time
O(mwn+ t) = O(n2 + n) = O(N), which is linear in the
size of the quantum code.

B. Decoding the SHP codes

Similar to what we have done for the BBS codes, to
decode the SHP codes we have to associate the stabilizers
of the quantum code to the parity checks of the classical
codes. To illustrate the idea most easily, we assume that
the X and Z part of the SHP code are generated by the
same [n, k, d] classical code C with generating matrix G ∈
Fk×n

2 and parity check matrix H ∈ Fm×n
2 , SHP(H1, H2)

= SHP(H). From Eq. (38) and Eq. (39) we have

S
(shp)
Z = Z(G⊗H) (62)

= {Z(gT ⊗ h) : g ∈ row(G), h ∈ row(H)}, (63)

S
(shp)
X = X(H ⊗G) (64)

= {X(hT ⊗ g) : h ∈ row(H), g ∈ row(G)}. (65)

Since rank(G) = k, the eigenvalues of the quantum sta-
bilizers correspond to exactly k sets of syndromes for the
classical code C. In the case of Z-type stabilizers, let gi
be the i-th row of G for each i such that 1 ≤ i ≤ k. A
set of syndromes for the classical code C is generated by
measuring the following set of stabilizers

{Z(gTi ⊗ hj) : hj ∈ row(H), 1 ≤ j ≤ m}. (66)

These k sets of syndromes are passed to the classical
decoder and results in k sets of n-bit corrections on C.
However, in order to apply these k sets of classical cor-
rections canonically onto independent sets of qubits in
the SHP code without affecting each other, we have to
make sure that the generating matrix G is in the reduced
row echelon form, so that the i-th set of corrections can
be applied on the i-th row of qubits lattice.

Algorithm 2 (The Induced Decoder of SHP(H)).
Given a [n, k, d] classical code C with generating matrix

G ∈ Fk,n
2 and parity check matrix H ∈ Fm,n

2 , the hyper-
graph subsystem code SHP(H) can be decoded by

• Reshape G into its reduced row echelon form
G = [Ik B].

• Collect the X- or Z-type syndrome ~σ of the quan-
tum code SHP(H).

• For each i ∈ {1, 2, . . . , k}, the syndrome corre-
sponding to the set of stabilizers {Z(gTi ⊗hj) : hj ∈
row(H), 1 ≤ j ≤ m} is passed to the classical de-
coder D, and a n-bit correction ~ci is obtained.

9

• For each set of corrections ~ci, Pauli Z- or X-
type corrections are applied to the qubits ~ei ⊗
[1, 1, . . . , 1], where ~ei is the i-th unit vector.

Hence when using the induced decoder on the quantum
code SHP(H) that is constructed by a [n, k, d] code, we
have to run the classical decoder D a total of k times.
The correction consists of k sets of n-qubit Paulis have
to be applied on the first k rows or columns of the qubit
lattice.

The time complexity of the induced decoder for SHP
codes again consists of the time to construct the stabi-
lizer values and the time to run the classical decoder D.
For a weight-w parity check of the classical code, the
corresponding stabilizer of the SHP code is the sum of
O(n) number w-qubit gauge measurements. There are
O(k ×m) stabilizers, and the classical decoder D needs
to be run k times where each run takes time at most
t, then the induced decoder takes time O(kmnw + kt).
When classical expander codes are used to construct the
SHP code and the belief propagation decoder is used
as the classical decoder D, m = O(n), k = O(n),
w = O(1), t = O(n), so the induced decoder runs in
time O(kmnw + kt) = O(n3 + nt) = O(N3/2).

C. Classical belief propagation decoder

In the previous two sections we have shown that de-
coding both the BBS codes and the SHP codes amount
to directly decoding the underlying classical code C that
was used to construct the quantum code, and apply the
resulting corrections to the appropriate set of qubits in
the quantum code. Therefore, in order to maximize the
performance of the induced decoding algorithm the best
classical decoder should be employed with modifications
to tolerate measurement noise. Sipser and Spielman have
analyzed the flip decoder [10, 17] for classical expander
codes and in the scenario that the parity checks are noisy
in addition to the bits. A quantum version of the classi-
cal flip decoder has been shown to decode the quantum
expander codes efficiently [7, 8, 18].

However, when classical LDPC codes and expander
codes are considered, various iterative message-passing
decoding algorithms have been shown to result in codes
with rate approaching the Shannon capacity together
with efficient decoding algorithm (see e.g. [19]). Message
passing algorithms get the name as information is trans-
mitted back and forth between variable and check nodes
along the edges of the graph that is used to define the
classical code. The transmitted message along an edge
is a function of all received messages at the node except
for a particular edge. This property ensures that the in-
coming messages are independent for a tree like graph.
Among these well-known decoding algorithms, the belief
propagation (BP) decoder, sometimes referred to as Gal-
lager’s soft decoding algorithm [16], have been shown to
out perform other message-passing algorithms for clas-
sical LDPC codes when the binary symmetric channel

(BSC) is considered. In this section we briefly describe
the BP decoder for classical LDPC codes. For a com-
prehensive discussion of this area, we point the reader to
the book by Richardson and Urbanke [20] and the notes
by Guruswami [21], which are excellent resources on this
topic.

In particular, here we present the modified BP decoder
that uses parity check values as input instead of bit val-
ues, in order to simulate the quantum case where data
qubit values are not known to decoders. In order to run
the BP decoder using parity check values, we add an-
other set of m “syndrome nodes” sj , 1 ≤ j ≤ m, that
have one-to-one correspondence to the check nodes: syn-
drome node sj and check node j are connected by edge
(sj , j). These syndrome nodes si are used to store the
measured parity check values. Without loss of generality,
we assume that the all 0s message is the correct message
to be received.

Algorithm 3 (Belief Propagation Decoding Algo-
rithm). Assuming the probability p for each bit of the
incoming message to be flipped is the same, then the
log-likelihood ratio mi of the i-th bit is

mi = log
1− p
p

. (67)

For the syndrome nodes si, we let msi = +∞ if the i-th
syndrome is 0 and msi = −∞ if the i-th syndrome is 1.
Do the following two steps alternatively:

1. Rightbound messages: For all edges e = (i, j),
i ∈ {1, 2, . . . , n}∪{s1, s2, . . . , sm}, do the following:

• if this is the zeroth round, gi,j = mi.

• Otherwise

gi,j = mi +
∑

k∈N (i)\j

hi,k (68)

where N (i) denotes the set of neighbors of
node i.

The variable node i sends the message gi,j to check
node j.

2. Leftbound messages: For edges e = (i, j), i ∈
{1, 2, . . . , n} do the following:

hi,j = f

 ∏
k∈N (j)\i

egk,j − 1

egk,j + 1

 , f(u) = log
1 + u

1− u
. (69)

The check node j sends the message hi,j to node i.

At each step we can determine the current variable node
values vi given their updated log-likelihood ratios: vi = 0
if mi > 0 and vi = 1 if mi < 0. The above iterative step
terminates when all check nodes are satisfied based on the
current vi, or the predetermined number of iterations is
reached. The variable node value vi at the final step is
used as correction for the noisy channel output bi.

10

If the graph considered has large enough girth when
compared to the number of iterations of the algorithm,
the messages at each iteration would approach the true
log-likelihood ratio of the bits given the observed values.
By applying expander graph arguments to message pass-
ing algorithms it has been shown that the BP decoding
algorithm can correct errors efficiently, with time linear
in the block size [22]. Therefore the belief propagation
decoder is a good candidate for decoding the BBS and
SHP codes constructed using classical LDPC codes.

D. Handling measurement errors with BP decoder

As we mentioned previously, decoding algorithms for
classical codes usually do not consider the problem of
measurement noise. In previous studies of the BP de-
coder, no explicit proposals have been made regarding
handling measurement noise when decoding classical ex-
pander codes. In order to use the BP decoder to decode
the BBS and SHP codes as part of the induced decoder,
modifications have to be made in order to tolerate mea-
surement errors on parity check measurements.

When given a classical code C with n variable nodes
and m check nodes, in addition to what we have done
in Algorithm 3 we add m variable nodes to the graph
so that each of them has a one-to-one correspondence
with the m check nodes: variable node n+j is connected
to check node j via edge (n + j, j). These additional
variable nodes are used to represent measurement errors
on the parity checks. An example of the modified graph
for decoding a classical linear code of block length 6 is
shown in FIG. 5. In the binary symmetric channel, let p
be the probability that a bit is flipped and let q be the
probability that a measurement is flipped. We define the
log-likelihood ratio mi for the n+m variable nodes as:

• mi = log 1−p
p , 1 ≤ i ≤ n,

• mi = log 1−q
q , n+ 1 ≤ i ≤ n+m.

For the syndrome nodes si, we let msi = +∞ if the i-th
syndrome is 0 and msi = −∞ if the i-th syndrome is 1.

When executing the belief propagation decoding algo-
rithm, the normal message passing process is executed as
described in Algorithm 3. For the added syndrome node
si, they send their log-likelihood ratios mi to the asso-
ciated check node j with message gi,j = mi during the
rightbound messages phase in each iteration, but there
will be no incoming messages from the check nodes ci to
change their values. The algorithm terminates when all
check nodes are satisfied or a predetermined number of
iterations is reached, and the n-bit variable node values
at the final step are used as corrections for the noisy data
qubits.

By employing the above described modifications to the
BP algorithm, we can efficiently decode the classical ex-
pander codes while tolerating measurement errors.

V1

V2

V3

V4

V5

V6

V7

V8

V9

C1

C2

C3

S1

S2

S3

FIG. 5: The graph for decoding a classical code of
length 6 using the modified BP decoder that tolerates
measurement errors. The syndrome nodes s1, s2, s3 are
assigned log-likelihood values ±∞ given the input
parity check measurement values 0 or 1.

V. NUMERICAL SIMULATIONS AND
RESULTS

In this section we present numerical results of decod-
ing the BBS and SHP codes using the induced decoders
instantiated with the modified BP decoder that handles
measurement errors. All simulations are done under the
phenomenological error model, where given probability p,
random single-qubit bit or phase flip errors of the form
E1q = {

√
1− pI,√pX} or E1q = {

√
1− pI,√pZ} are

applied independently on qubits and measurements out-
put the wrong (opposite) value with probability p. There
is no circuit-level error propagation in the simulation.

In order to maximize the parameters and performance
of the quantum codes when decoded by the induced de-
coders, we construct the BBS and SHP codes with clas-
sical regular LDPC codes defined by biregular bipartite
graphs. To obtain symmetric performance for X- and Z-
type errors, both X and Z part of each quantum code are
constructed with the same classical LDPC code. Since
both the BBS and SHP codes are defined as CSS codes,
X- and Z-type errors can be decoded separately using the
induced decoder. Hence in the rest of the paper we as-
sume that each qubit independently suffers from Pauli X-
and Z-type errors as described in the previous paragraph,
and study the performance of these codes by plotting the
average logical error rate per logical qubit of the K-qubit
block versus the physical error rate of each qubit. Using
this metric allows us to directly compare the average per-

11

(3,6) Biregular Graphs
n = 100, K = 50, D = 6
n = 200, K = 100, D = 10
n = 300, K = 150, D=11
n = 400, K = 200, D = 18
n = 500, K = 250, D = 20

Lo
gi

ca
l E

rr
or

 R
at

e

10−12

10−9

10−6

10−3

Physical Error Rate
10−4 2×10−4 4×10−4 6×10−4 10−3

(a)

(5,6) Biregular Graphs
n = 180, K = 30, D = 22
n = 240, K = 40, D = 29
n = 300, K = 50, D = 35
n = 360, K = 60, D = 41

Lo
gi

ca
l E

rr
or

 R
at

e

10−21

10−18

10−15

10−12

10−9

10−6

10−3

Physical Error Rate
10−4 2×10−4 5×10−4

(b)

FIG. 6: Simulating the performance of
Bravyi-Bacon-Shor codes constructed using (a) (3, 6)-
and (b) (5, 6)-biregular bipartite graphs. BBS codes by
(5, 6) graphs outperforms BBS codes by (3, 6) graphs
due to superior performance of classical (5, 6) codes.

formance of quantum codes with different encoding rates
on an equal footing, instead of comparing large blocks
with vastly different numbers of encoded qubits. By do-
ing so we are taking into account both the performance
and encoding rate when comparing different codes, but
to some extent ignoring the potential correlation between
logical errors.

The classical regular LDPC codes that are used to con-
struct the BBS and SHP codes were randomly gener-
ated biregular bipartite graphs using the configuration
model [20]. It can be shown that asymptotically these
graphs will have a good expansion coefficient, making

surface 26, r = 1/676
BBS n = 240, r = 1/696
surface 30, r = 1/900
BBS n = 300, r = 1/873
surface 32, r = 1/1024
BBS n = 360, r = 1/1045

Lo
gi

ca
l E

rr
or

 R
at

e

10−72

10−60

10−48

10−36

10−24

Physical Error Rate
10−6 10−5 10−4

FIG. 7: Comparing the average error rate per logical
qubit of the BBS codes constructed with (5,6)-biregular
bipartite graphs of block size 240, 300, 360 to surface
codes of sizes 26× 26, 30× 30, 32× 32.

them classical expander codes with good performance.
For each of the selected block size, we randomly gener-
ated 1000 biregular bipartite graphs with specified node
degrees and simulated their performance under the bi-
nary symmetric channel. The best-performing classical
code is chosen to construct the quantum code. Since the
induced decoder for the quantum code directly decodes
on the underlying classical code, a relatively good classi-
cal code implies a relatively good quantum code.

We studied two classes of graphs for generating clas-
sical LDPC codes: the (3, 6)- and (5, 6)- biregular bi-
partite graphs, which we will refer to as the (3, 6) and
(5, 6) codes. By simulating the performance of these
two classical codes with the BP decoder, we observed
that the (5, 6) codes significantly outperform the (3, 6)
codes, which agrees with previous studies in classical cod-
ing theory [11, 23]. Given a (b, c) code of size n, the
number of encoded bits is k = c−b

b n and the encod-

ing rate for the classical code is c−b
b . Hence the BBS

codes constructed with (b, c) classical code have parame-
ters JNBBS ,KBBSK = JO(n2), c−bb nK, and the SHP codes

have parameters JNSHP ,KSHP K = Jn2, (c−b
b)2n2K.

In all plots, n is the number of bits/variable nodes
for the classical LDPC code, N is the number of phys-
ical qubits in the quantum code, K is the number of
encoded logical qubits in the quantum code, D is the av-
erage distance of the quantum code found through fitting
the simulated data to PL = ApD, and r is the encoding
rate of the quantum code. The numerical performance
of the BBS codes presented in Figures 6, 7 and 9 are ob-
tained using importance sampling to error rates as low
as 10−4, and best-fit lines are plotted in order to extrap-
olate the codes behavior to low error regimes. Details of
importance sampling can be found in [24]. The numeri-

12

surface 6, d = 6
SHP n = 60, K = 100, d = 10
SHP n = 120, K = 400, d = 16
SHP n = 180, K = 900, d = 20
SHP n = 240, K = 1600, d = 28

Lo
gi

ca
l E

rr
or

 R
at

e

10−7

10−6

10−5

10−4

10−3

Physical Error Rate
3×10−4 4×10−4 5×10−4 6×10−4

FIG. 8: Simulating the performance of the SHP codes
constructed using (5, 6)-biregular bipartite graphs.
Their average performance per logical qubit are
compared to the size 6× 6 surface code. All codes in
this plot have encoding rate 1/36.

cal performance of the SHP codes presented in Figures 8
and 9 are obtained through Monte Carlo simulations at
various physical error rates.

From FIG. 6 we can see that the BBS codes con-
structed with (5, 6) codes have significantly better per-
formance than that with (3, 6) codes, as expected given
the results on the classical codes. It is clear from FIG. 6
that the BBS codes do not have a fault-tolerant thresh-
old, due to the fact that the weight-2 gauge operators in
the quantum code result in a superexponential scaling of
number of weight-D dressed logical operators. A similar
behavior is observed for the SHP codes constructed with
(5, 6) codes, as shown in 8, where the SHP codes also do
not exhibit a fault-tolerant threshold.

To benchmark the performance of the BBS codes and
SHP codes, we compare them to the surface codes as well
as to each other. As previously mentioned, in order to
obtain a reasonable comparison we compare the BBS and
SHP codes against surface codes of similar encoding rate
r by comparing the average error rate of single logical
qubits within the same code block to the logical error rate
of the surface code. In FIG. 7 we are comparing the av-
erage logical error rate per logical qubit of the BBS codes
constructed with (5, 6) codes of sizes n = 240, 300, 360 to
surface codes of sizes 26× 26, 30× 30, 32× 32. Note that
the surface code results are simulated using the Union
Find decoder [25], so that we are comparing a linear time
decoding algorithm of the BBS codes to a linear time de-
coding algorithm of the surface code. The BBS codes
have better distances than surface codes of similar en-
coding rates, but they only outperform the surface codes
for physical error rates below 10−6. Similar results for
SHP codes are shown in FIG.8. Since the SHP codes

BBS n = 180, N = 15684, K = 30
SHP n = 180, N = 32400, K = 900
BBS n = 240, N = 27832, K = 40
SHP n = 240, N = 57600, K = 1600

Lo
gi

ca
l E

rr
or

 R
at

e

10−21

10−18

10−15

10−12

10−9

10−6

10−3

1

Physical Error Rate
10−45×10−5 2×10−4 5×10−4

FIG. 9: Comparing the average performance per logical
qubit of the BBS codes to the SHP codes. The BBS
and SHP codes with the same n are constructed using
the same (5, 6)-biregular bipartite graph.

have constant encoding rates and when the (5, 6) codes
are used, the resulting encoding rate is r = 1/36, so we
are comparing the average error rate for single logical
qubits in the SHP codes to a single 6×6 block of surface
code. The SHP codes can have significantly better dis-
tance than surface code of the same encoding rate, but
they do not outperform the surface code until physical
error rates p ≤ 4× 10−4.

Finally, we compare the average performance per logi-
cal qubit of the BBS and SHP codes, as shown in 9. The
comparison is made between BBS and SHP codes con-
structed using the exact same (5, 6)-biregular bipartite
graph. While it seems that the SHP codes’ average log-
ical qubit performance is slightly worse than that of the
BBS codes, bear in mind that the SHP codes have much
higher encoding rate.

VI. CONCLUSION

We studied two different constructions of quantum
subsystem error-correcting codes using classical linear
codes: the Bravyi-Bacon-Shor (BBS) codes and the sub-
system hypergraph product (SHP) codes. We reviewed
the BBS codes that was introduced in a previous paper
[13], and presented a construction of the SHP codes that
can be viewed similar to the hypergraph product codes
[6]. We proposed efficient algorithms to decode the BBS
and SHP codes while handling measurement errors by
using a modified belief propagation decoder for classical
expander codes. We studied the numerical performance
of the BBS and SHP codes, and showed that while these
codes do not have a fault-tolerant threshold, they have
very good distance scaling and encoding rates.

13

When constructed using classical expander codes, the
BBS codes have encoding rates O(1/

√
N) and the SHP

codes have constant encoding rates dependent on the
expander code parameters. Suppose the same classical
expander code is used, the resulting SHP codes have
even higher encoding rates than the hypergraph product
codes. Hence for large block sizes these codes could offer
significant savings in terms of resource overhead when
trying to achieve a specific logical error rate. It is worth
noting that while we are already observing very good log-
ical performance by simulating codes constructed with
small biregular bipartite graphs, classical LDPC codes
asymptotically become better expander codes and the
belief propagation decoder will give a much better per-
formance for expander codes of larger block sizes.

Therefore, the BBS and SHP codes are worth studying
for the purpose of large scale quantum error correction.
Future studies on these codes could include investigat-
ing the potential of using large irregular LDPC codes to

construct the BBS and SHP codes in order to achieve
better logical performances, tailoring the quantum code
for biased noise models by using two different classical
codes to construct asymmetric BBS and SHP codes, and
methods to apply fault-tolerant logical operations within
the same code block.

VII. ACKNOWLEDGEMENT

The authors gratefully acknowledge Andrew Cross,
Leonid Pryadko, Ken Brown, Michael Newman and
Dripto Debroy for helpful discussions. T. Yoder also
thanks the IBM Research Frontiers Institute for partial
support. M. Li thanks the IBM graduate internship pro-
gram and the National Science Foundation Expeditions
in Computing award 1730104 for support.

[1] D. Bacon and A. Casaccino, arXiv preprint quant-
ph/0610088 (2006).

[2] D. S. Wang, A. G. Fowler, and L. C. Hollenberg, Physical
Review A 83, 020302 (2011).

[3] P. Aliferis, D. Gottesman, and J. Preskill, Quantum Inf.
Comput. 6, 97 (2005).

[4] S. Bravyi, D. Poulin, and B. Terhal, Physical review
letters 104, 050503 (2010).

[5] D. Gottesman, Quantum Information & Computation
14, 1338 (2014).

[6] J.-P. Tillich and G. Zémor, IEEE Transactions on Infor-
mation Theory 60, 1193 (2013).

[7] A. Leverrier, J.-P. Tillich, and G. Zémor, in 2015 IEEE
56th Annual Symposium on Foundations of Computer
Science (IEEE, 2015) pp. 810–824.

[8] O. Fawzi, A. Grospellier, and A. Leverrier, in 2018 IEEE
59th Annual Symposium on Foundations of Computer
Science (FOCS) (IEEE, 2018) pp. 743–754.

[9] A. Grospellier and A. Krishna, arXiv preprint
arXiv:1810.03681 (2018).

[10] M. Sipser and D. A. Spielman, IEEE transactions on In-
formation Theory 42, 1710 (1996).

[11] T. J. Richardson and R. L. Urbanke, IEEE Transactions
on information theory 47, 599 (2001).

[12] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,
arXiv preprint arXiv:1207.1443 (2012).

[13] T. J. Yoder, Physical Review A 99, 052333 (2019).
[14] D. M. Debroy, M. Li, S. Huang, and K. R. Brown, arXiv

preprint arXiv:1910.08495 (2019).
[15] M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown,

Physical Review X 9, 021041 (2019).
[16] R. Gallager, IRE Transactions on information theory 8,

21 (1962).
[17] D. A. Spielman, IEEE Transactions on Information The-

ory 42, 1723 (1996).
[18] O. Fawzi, A. Grospellier, and A. Leverrier, in Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (ACM, 2018) pp. 521–534.

[19] T. Richardson, A. Shokrollahi, and R. Urbanke, in 2000
IEEE International Symposium on Information Theory
(Cat. No. 00CH37060) (IEEE, 2000) p. 199.

[20] T. Richardson and R. Urbanke, Modern coding theory
(Cambridge university press, 2008).

[21] V. Guruswami, arXiv preprint cs/0610022 (2006).
[22] D. Burshtein and G. Miller, IEEE Transactions on Infor-

mation Theory 47, 782 (2001).
[23] D. J. MacKay, IEEE transactions on Information Theory

45, 399 (1999).
[24] M. Li, M. Gutiérrez, S. E. David, A. Hernandez, and

K. R. Brown, Phys. Rev. A 96, 032341 (2017).
[25] N. Delfosse and N. H. Nickerson, arXiv preprint

arXiv:1709.06218 (2017).

http://dx.doi.org/ 10.1103/PhysRevA.96.032341

	A Numerical Study of Bravyi-Bacon-Shor and Subsystem Hypergraph Product Codes
	Abstract
	I Introduction
	II Review of Bravyi-Bacon-Shor Codes
	A Constructing BBS codes with classical linear codes
	B Example: A [[21,4,3]] Bravyi-Bacon-Shor Code

	III Another family of subsystem hypergraph product codes
	A Hypergraph product codes
	B Subsystem hypergraph product codes
	C Example: A "494A971 49, 16, 3 "594B979 subsystem hypergraph product code
	D SHP codes gauge-fix to HGP codes

	IV Decoding BBS and SHP codes
	A Decoding the BBS codes
	B Decoding the SHP codes
	C Classical belief propagation decoder
	D Handling measurement errors with BP decoder

	V Numerical Simulations and Results
	VI Conclusion
	VII Acknowledgement
	 References

