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Abstract—Variational quantum algorithms (VQAs) are promis-
ing methods that leverage noisy quantum computers and classical
computing techniques for practical applications. In VQAs, the
classical optimizers such as gradient-based optimizers are utilized
to adjust the parameters of the quantum circuit so that the
objective function is minimized. However, they often suffer from
the so-called vanishing gradient or barren plateau issue. On the
other hand, the normalized gradient descent (NGD) method,
which employs the normalized gradient vector to update the
parameters, has been successfully utilized in several optimization
problems. Here, we study the performance of the NGD methods
in the optimization of VQAs for the first time. Our goal is two-
fold. The first is to examine the effectiveness of NGD and its
variants for overcoming the vanishing gradient problems. The
second is to propose a new NGD that can attain the faster
convergence than the ordinary NGD. We performed numerical
simulations of these gradient-based optimizers in the context of
quantum chemistry where VQAs are used to find the ground
state of a given Hamiltonian. The results show the effective
convergence property of the NGD methods in VQAs, compared
to the relevant optimizers without normalization. Moreover, we
make use of some normalized gradient vectors at the past
iteration steps to propose the novel historical NGD that has a
theoretical guarantee to accelerate the convergence speed, which
is observed in the numerical experiments as well.

Index Terms—Variational Quantum Algorithms, Optimization,
Normalized Gradient Descent

I. INTRODUCTION

Along with the recent rapid advances in quantum informa-

tion processing devices, the increasing attention has been paid

to the possibility that quantum computers can outperform the

classical (conventional) computers in various research fields

such as machine learning, chemistry, and finance. However,

since the currently available quantum computers are not fault-

tolerant, their capabilities are limited [1]. This has led the

necessity to develop hybrid quantum-classical approaches that

enable those noisy quantum devices to work, with the help

of classical computers. The variational quantum algorithm

(VQA) is one such strategy [2]–[4]. The VQA runs a param-

eterized quantum circuit (PQC) on a quantum computer, with

variationaly updating the parameters by a classical optimizer

to find a global minimum of the objective function. This

approach is expected to show some quantum advantages,

because PQCs with even short depth potentially have bigger

expressibility than classical models such as the neural network.

To date, a variety of VQAs has been proposed; the variational

quantum eigensolver (VQE) for quantum chemistry [5]–[7],

the quantum approximate optimization algorithm (QAOA)

for combinatorial optimizations [8]–[10], and quantum circuit

learning algorithms for machine learning problems [11]–[13].

Of course the performance of VQAs heavily depends on

the power of classical optimizer, particularly the convergence

speed of the optimization. Actually various optimizers have

been tested in VQAs; the gradient-based optimizers such

as adaptive moment estimation (ADAM) [14], the conjugate

gradient (CG) [15], the simultaneous perturbation stochastic

approximation (SPSA) [16] and the natural gradient [17], as

well as the gradient-free optimizers such as Nelder-Mead [18]

and COBYLA [19]. In this work, we study the gradient-based

approach, with special attention to the serious issue recently

recognized in this method. That is, it has been demonstrated

that the VQA has the so-called vanishing gradient or the

barren plateau issue, where the gradient vector of the objective

function becomes exponentially small with the increase of

the number of qubits [20], [21]. This makes the gradient-

based optimizer inefficient for the optimization of VQAs.

So far, several circumventing approaches have been proposed

to remedy this issue, such as the initialization-engineering

technique and the tailored PQCs [22]–[26].

Note that the similar vanishing gradient issue can generally

occur for non-convex optimization problems. Additionally, in

such non-convex optimization problems, the so-called explod-

ing gradient issue is also observed, meaning that the norm

of the gradient vector takes a huge value and as a result the

training becomes unstable. These detrimental issues, however,

can be circumvented via rather a simple method that uses the

normalized gradient vector to update the parameter through

the learning process. This method is called the normalized

gradient descent (NGD) [27]. Though the vanishing or ex-

ploding gradient issues never happen, the NGD could be

disadvantageous in view of the convergence properties because

it does not have a norm-dependent flexibility to search the

optimal parameter. Nonetheless, under some conditions, the

NGD is proven to evade the saddle points faster than the

ordinary gradient descent method in the setting of continuous-
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time dynamics [28].

Here, we study the performance of the NGD method in the

optimization of VQAs. To the best of our knowledge, this work

is the first to investigate the NGD methods in regards to the

VQAs. This paper focuses on two objectives. The first objec-

tive is to examine the effectiveness of NGD and its variants

for resolving the vanishing gradient issues. We applied those

optimizers to several VQE problems, where the ground state

of a given Hamiltonian is variationally sought. The numerical

simulations show the good convergence property of the NGD

methods, in comparison with the relevant optimizers that do

not use the normalized gradient vector. As the second ob-

jective, we exploit the normalized gradient vectors at the past

iteration steps to propose the historical NGD. In particular, we

derive a set of proper learning rates of the historical normalized

gradient vectors, under the assumption of the strictly-locally-

quasi-convex (SLQC) objective functions. Hence the historical

NGD is guaranteed to show the faster convergence than the

ordinary NGD, which is also demonstrated in the numerical

experiments.

The rest of the paper is organized as follows. In Section II,

we show some gradient-based optimizers studied in this work.

We then describe our historical NGD method that utilizes the

normalized gradient vectors at the previous iteration step. Sub-

sequently, Section IV demonstrates the numerical simulation

of these optimizers for several VQE problems. At last, we

conclude the paper in Section V.

II. PRELIMINARIES

The gradient-based optimizers use the gradient vector of a

objective function to update the parameters, for finding the

global minimum of the function. The straightforward method

is the gradient descent (GD), which is expressed as follows:

xt+1 = xt − ηgt, (1)

where xt represents the set of parameters, gt = ∇f(xt)
is the gradient vector of the differentiable function f(xt),
and η ∈ R is the learning rate. GD can effectively find

the global minimum when the objective function is convex.

However, when the objective function is non-convex, GD often

poorly perform owing to the trainability problems, typically

the vanishing gradient issue caused by the plateau landscape

of the objective function and the exploding gradient one due

to the steep cliffs.

To date, numerous variants of GD have been proposed

to circumvent those drawbacks. In this section, we briefly

describe some gradient-based optimizers used in this paper.

A. Normalized Gradient Descent

NGD is a simple method that resolves the aforementioned

vanishing or exploding gradient issues by normalizing the

gradient vector. NGD updates the parameters according to the

following formula:

xt+1 = xt − ηĝt, (2)

where ĝt = ∇f(xt)/‖∇f(xt)‖ is the normalized gradient

vector. Because ‖ĝt‖ = 1 for all t, NGD of course neither

vanishes nor explodes. Hence we can expect NGD will show

good convergence property as well as stable learning. Actually,

it has been proven in the framework of continuous-time

dynamics that NGD can escape the saddle point faster than

GD [28]. Also, Ref. [27] proved that NGD can converge to a

global minimum for a wider class of functions, assuming the

strictly-locally-quasi-convex (SLQC) property of the objective

function, which we will explain later on.

B. Nesterov’s Accelerated Gradient Method

Nesterov’s Accelerated Gradient (NAG) method [29] is a

simple modification of the momentum method [30], which is

also a variant of GD. In the momentum method, a moving

average of the past gradients are taken into account to realize

faster convergence and alleviate the oscillation along the ridges

of the canyon in the landscape of the objective function. The

momentum method updates the parameters in the following

way;

mt = βmt−1 − η∇f(xt), xt+1 = xt +mt,

where β and η are positive scalars.

As for NAG method, the update rule is represented as

xt+1 = yt − η∇f(yt), (3)

yt = xt + γt(xt − xt−1), (4)

γt =
ρt−1 − 1

ρt
, (5)

ρt =
1 +

√

1 + 4ρ2t−1

2
. (6)

Here, ρt and γt at each iteration step are recursively calculated

so that the optimal convergence rate for the smooth convex

function is achieved [29]. In our experiment, similar to [31]

we set the initial value of ρ as 1, i.e. ρ0 = 1.

Note that the NAG method is rewritten as

mt = βmt−1 − η∇f(xt−1 + βmt−1), xt+1 = xt +mt,

which shows that the only difference between the momen-

tum method and NAG is the point at which we calculate

the gradient [31]. The NAG method recently attracts much

attention in the convex optimization community due to its good

convergence property in some situations.

C. Adaptive Moment Estimation

ADAM [14] is a widely-used optimizer in the field of

machine learning, particularly for deep neural networks. In

a broad sense, ADAM utilizes the advantages of both the

momentum method and RMSprops [32]; ADAM not only

keeps the moving average of the past gradients, but also



computes the adaptive learning rate to reduce the oscillation.

The update rule of ADAM is described as follows;

m̄t = β1m̄t−1 − (1− β1)∇f(xt), (7)

v̄t = β2v̄t−1 − (1− β2)∇f(xt)
2, (8)

mt =
m̄t

1− βt+1
1

, (9)

vt =
v̄t

1− βt+1
2

, (10)

xt+1 = xt − η
mt√
vt + ǫ

, (11)

where ǫ is a small constant introduced for numerical stability.

In [14], the hyperparameters are set as β1 = 0.9, β2 = 0.999
and ǫ = 10−8, which we also choose in our experiments.

Note that we can take another type of gradient-based

optimizer, which utilizes higher-order derivative information

such as the Hessian of an objective function. Typically used are

Newton’s method and quasi Newton method (e.g., the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [33] and

a sequential least squares programming (SLSQP) algorithm

[34]). While they are computationally expensive compared to

the variants of GD, these methods show faster convergence.

However, this work focuses on the effectiveness of the optimiz-

ers with the normalized gradient vectors for VQAs, and thus

we will not consider the higher-order gradient-based optimizer.

III. HISTORICAL NGD

As mentioned before, the possible drawback of NGD is

that it could be slower compared to GD due to the restricted

norm condition. The historical NGD described here may be

used to mitigate this issue; note that this method can also be

applied to general optimization problem other than VQAs. The

basics of this method is the provable convergence property

of NGD under the assumption of the strictly-locally-quasi-

convex (SLQC) objective function [27]. A particularly useful

result is that, according to [27], NGD can converge to an ǫ-
optimal minimum of the SLQC objective function with the

rate O(1/ǫ2); in fact we will make use of the lemmas related

to this fact, to derive the proper learning rates of NGD with

historical gradients.

In this section, we firstly introduce the relationship between

the SLQC and NGD shown in [27], which is followed by

deriving lemmas used to prove our result. Then we show

that the one-step historical NGD can indeed accelerate the

convergence speed. This method is further generalized to the

historical NGD based on arbitrary m normalized gradient

vectors used in the past iteration steps.

A. NGD for the Strictly-Locally-Quasi-Convex Function

In a broad sense, the SLQC function is the generalization of

unimodal (or quasi-convex) functions with multi-dimensions,

which can take even a plateau shape. The definition of the

SLQC is as follows [27].

Definition III.1. (Local-Quasi-Convexity) Let x, z ∈ R
d with

the dimension d. Also let κ and ǫ be positive constants. We

consider a differentiable function f : R
d 7→ R. Then f is

called (ǫ, κ, z)-Strictly-Locally-Quasi-Convex (SLQC) at x, if

at least one of the following conditions holds:

1) f(x)− f(z) ≤ ǫ.
2) ‖∇f(x)‖ > 0, and for every y ∈ B(z, ǫ/κ) it holds that

〈∇f(x),y − x〉 ≤ 0,

where B(x, r) denotes a ball of radius r around x.

In [27], the authors proved that NGD converges to the global

minimum of a SLQC objective function, by taking the learning

rate η = ǫ/κ in Eq. (2). Note that the SLQC condition is not

too strict; some intriguing SLQC functions are studied in [27],

such as the generalized linear model with certain setups.

Now we consider a SLQC function f(x), and assume that

it has a local or global minimum point x∗. Also recall that

ĝt = ∇f(xt)/‖∇f(xt)‖ is a normalized gradient vector, and

the NGD policy is given by xt+1 = xt−ηĝt with the learning

rate η = ǫ/κ. Then the following three lemmas hold [27].

Note that, the first lemma is proved in [27] and we obtain the

remaining lemmas by following a similar proof.

Lemma III.1.

〈ĝt,xt − x∗〉 ≥ ǫ/κ.

Using this lemma, Ref. [27] showed that at every update of

xt in NGD, the distance between xt and x∗ is reduced by at

least (ǫ/κ)2.

Lemma III.2. Define δ = 〈ĝt+1, ĝt〉. Then,

〈ĝt+1,xt − x∗〉 ≥ (ǫ/κ) (1 + δ) .

Proof. Using Lemma III.1, we have

〈ĝt+1,xt+1 − x∗〉 ≥ (ǫ/κ)

⇔ 〈ĝt+1,xt − (ǫ/κ)ĝt − x∗〉 ≥ (ǫ/κ)

⇔ 〈ĝt+1,xt − x∗〉 − (ǫ/κ) 〈ĝt+1, ĝt〉 ≥ (ǫ/κ)

⇔ 〈ĝt+1,xt − x∗〉 ≥ (1 + δ)(ǫ/κ).

Lemma III.3. Define δa,b = 〈ĝt+a, ĝt+b〉. Then, for a natural

number m ∈ N,

〈ĝt+m,xt − x∗〉 ≥ (ǫ/κ)

(

1 +

m−1
∑

i=0

δm,i

)

.

Proof. Using Lemma III.1, we have

〈ĝt+m,xt+m − x∗〉 ≥ (ǫ/κ)

⇔ 〈ĝt+m,xt − (ǫ/κ)

m−1
∑

i=0

ĝt+i − x∗〉 ≥ (ǫ/κ)

⇔ 〈ĝt+m,xt − x∗〉 − (ǫ/κ)

m−1
∑

i=0

〈ĝt+m, ĝt+i〉 ≥ (ǫ/κ)

⇔ 〈ĝt+m,xt − x∗〉 ≥
(

1 +
m−1
∑

i=0

δm,i

)

(ǫ/κ).



B. One step historical NGD

Here we show that the historical NGD, which updates the

variable using ĝt+1 in addition to ĝt, helps accelerating the

convergent speed of NGD compared to the ordinary NGD.

Note that the inner product δt = 〈ĝt, ĝt+1〉 used in the

following result satisfies −1 < δt ≤ 1 because ĝt and ĝt+1

are normalized.

Corollary III.1. Let δt = 〈ĝt, ĝt+1〉, satisfying −1 < δt ≤ 1.

Consider the following update policy:

xt+2 = xt + η1ĝt + η2ĝt+1,

where the learning rate η1, η2 are determined as follows:

• When −1 < δt ≤ (
√
5− 1)/2,

η1 = −
( ǫ

κ

) 1− δt − δ2t
1− δ2t

, η2 = −
( ǫ

κ

) 1

1− δ2t
.

• When (
√
5− 1)/2 < δt ≤ 1,

η1 = 0, η2 = −
( ǫ

κ

)

(1 + δt) .

Then it holds that

‖xt+2 − x∗‖2 < ‖xt − x∗‖2 − c (ǫ/κ)
2
,

for c ≥ 2.

Proof. By simple algebra, we can obtain

‖xt+2 − x∗‖2 = 〈xt+2 − x∗,xt+2 − x∗〉
= ‖xt − x∗‖2 + ‖η1ĝt + η2ĝt+1‖2

+ 2 〈xt − x∗, η1ĝt + η2ĝt+1〉
= ‖xt − x∗‖2 + η21 + η22 + 2η1η2δt

+ 2η1 〈ĝt,xt − x∗〉+ 2η2 〈ĝt+1,xt − x∗〉
≤ ‖xt − x∗‖2 + η21 + η22 + 2η1η2δt

+ 2η1 (ǫ/κ) + 2η2(ǫ/κ)(1 + δt).
(12)

Here, we substitute xt+ η1ĝt+ η2ĝt+1 for xt+2 in the second

equality. Also, the last inequality is due to Lemmas III.1 and

III.2 as well as η1, η2 ≤ 0. The proof follows by substituting

the values of η1 and η2 to obtain:

• When −1 < δt ≤ (
√
5− 1)/2,

‖xt+2 − x∗‖2 ≤ ‖xt − x∗‖2 − 2− δ2t
(1− δ2t )

(ǫ/κ)
2
.

• When (
√
5− 1)/2 < δt ≤ 1,

‖xt+2 − x∗‖2 ≤ ‖xt − x∗‖2 − (1 + δt)
2
(ǫ/κ)

2
.

Note that, when the ordinary NGD is successively applied

twice, we have

‖xt+2 − x∗‖2 ≤ ‖xt − x∗‖2 − 2 (ǫ/κ)
2
,

meaning that the historical NGD can show better convergence

than the ordinary NGD.

C. Multi-step historical NGD

In the previous subsection, we consider the historical NGD

based on the gradient information at one past iteration step.

Here we generalize the idea to NGD with arbitrary m normal-

ized gradient vectors in the past iteration steps.

Note that, in the previous case, the key to have the result is

the proper choice of learning rates η1 and η2, and this can be

done by quadratic programming. Actually, the learning rates

can be obtained by minimizing the second and subsequent

terms in the right hand side of the last inequality in Eq. (12),

which can be expressed as the quadratic function (denoted as

h(η1, η2)) in the following way;

h(η1, η2) = η21 + η22 + 2η1η2δt + 2η1 (ǫ/κ) + 2η2(ǫ/κ)(1 + δt)

=
[

η1 η2
]

[

1 δt
δt 1

] [

η1
η2

]

+
[

2ǫ/κ 2ǫ/κ(1 + δt)
]

[

η1
η2

]

= yTAy + Cy.
(13)

The learning rates are obtained by solving the minimum of the

above quadratic function, under the constraint η1, η2 ≤ 0. We

can apply this strategy to the case using m previous gradient

vectors for the historical NGD, which we call NGDm. The

update rule of the NGDm is given by

xt+m = xt +

m
∑

i=1

ηiĝt+i−1, (14)

where ĝt+m is the normalized gradient vector at t+m iteration

step. Then we determine the learning rates {ηk}mk=1 so that

xt+m is closer to x∗ than that via the ordinary NGD. More

precisely, we derive the inequality connecting ‖xt+m − x∗‖2
to ‖xt − x∗‖2, like Eq. (12). Consequently, the problem for

determining the proper learning rates reduces to the one to

find the minimum of the following quadratic function h(y)
with y = [η1, . . . , ηm]:

h(y) = yTAy + Cy,

A =











1 δ0,1 . . . δ0,m−1

δ0,1 1 . . . δ1,m−1

...
...

. . .
...

δ0,m−1 δ1,m−1 . . . 1











,

C = 2ǫ/κ
[

1 1 + δ0,1 . . . 1 +
∑m−2

i=0 δi,m−1

]

,
(15)

under the constraint y ≤ 0, where δi,j = 〈ĝt+i, ĝt+j〉.
Here we utilize Lemma III.3 to derive C in h(y). Since the

quadratic programming can be efficiently solved, our method

can compute the proper learning rates at each iteration step

quickly. However there is a caveat for this method in terms

of numerical calculation; that is, the computation process can

become unstable. For instance, when we use NGD2 (which

is exactly the same as the one-step historical case), δ = −1
results in the divergence of η1 and η2. This is because the



minimization of the function h(η1, η2) in Eq. (13) is reduced

to lowering η2 as small as possible, as shown below;

h(η1, η2) = η21 + η22 − 2η1η2 + 2η1 (ǫ/κ)

= (η1 − η2 + ǫ/κ)
2
+ 2η2(ǫ/κ)− (ǫ/κ)2.

Hence, in the numerical simulation shown in the next section,

we add extra constraint y ≥ k with a negative constant k to

avoid the computational instability.

Lastly note that the proposed NGD is somehow similar

to the momentum method in the sense that both use the

past gradient information. However, our proposal differs with

respect to the update rule, which is derived based on SLQC

property where NGD can converge to the global minimum.

IV. NUMERICAL SIMULATIONS

In this section, we show numerical simulations for several

optimization problems appearing quantum chemistry, to test

the performance of NGD. The goal is to find the ground state

of a given Hamiltonian H , using VQE. The basic procedure

of VQE is as follows; given a PQC U(θ) with np tunable

parameters θ = {θ1, . . . , θnp
}, θ is repeatedly updated by a

classical optimizer so that the energy (the objective function)

f(θ) = 〈Φ(θ)|H |Φ(θ)〉 is reduced to its minimum, where

|Φ(θ)〉 = U(θ) |0〉 with an initial state |0〉. We study five

VQE problems; we begin with a toy problem and then move

to four quantum chemistry problems studying H2, LiH, H4,

and the transverse field Ising model.

All numerical simulations are performed using the statevec-

tor simulator which does not introduce a statistical error due

to the measurement process, on Qiskit [35] (version 0.24). As

for the classical optimizers, we consider GD, NAG, ADAM

(i.e., gradient-based optimizers without normalization), NGD,

and the normalized NAG. Note that we use the parameter shift

rule [13], [36] to calculate the gradient vector of the objective

functions. Also the learning rate of each optimizer is fixed to

0.05. As for the historical NGD, we also set η = ǫ/κ = 0.05.

To solve the quadratic programming problem discussed in

Section III C, we use CVXOPT [37], a package for convex

optimization; in particular we choose the negative constant

k = −1000, for the purpose of mitigating the computational

instability.

A. Toy narrow gorge problem

We begin with a toy narrow gorge problem, which was

studied in [38]. The narrow gorge is a type of the energy

landscape, such that the well around the minimum shrinks

as the number of qubits increases. As a result, the vanishing

gradient issue can be well observed in this problem. That

is, the norm of the gradient vector rapidly decreases in all

the parameter space except at around the minimum, as the

number of qubits increases. Hence we expect to see the

informative difference by comparing the convergence speed of

the optimizers with and without normalization of the gradient,

depending on the number of qubits. We take the same problem

setting as [21]. The Hamiltonian is H =
∑n

k=1 σ
(k)
X , whose

ground state is |0〉 = |0〉⊗n
, where σX is the Pauli X

operator and n is the number of qubits. The PQC is chosen as

U(θ) = ⊗n
k=1e

−iθkσ
(k)
X . The goal is to optimize the parameters

θ = {θk}nk=1 so that U(θ) |0〉 = |0〉.
In this work, we perform the simulation with different

number of qubits n = 2, 4, 8, to see that NGD indeed resolves

the vanishing gradient issue and, at the same time, to evaluate

the convergent speed of NGD. Note that the number of qubits

is equal to that of parameters, due to the tensor-product

structure of the aforementioned PQC. The optimal parameters

of this task are all zeros, i.e. θk = 0 for all k. Hence we set

the initial parameters as θk = π/2 for all k, to avoid that the

initial point would immediately get close to the optimal point.

Also the total number of iterations for the optimization is fixed

to 100.

In Fig. 1 we show the energy of the narrow gorge potential,

against the iteration steps for each optimizer, where the blue,

orange, and green lines in each figure show the case of

n = 2, 4, and 8, respectively. The upper three panels show

the results for the optimizers without the normalized gradient

vector, and the lower three show the optimizers with the

normalized gradient vector. From these figures, we observe

that the optimizers without normalization crucially suffer from

the vanishing gradient issue, except for ADAM. On the other

hand, the optimizers with normalization can still decrease

the energy even when n = 8. Note that the performance of

optimizers appears to be degraded as n increases, because the

distance between the initial and the optimal points gets larger.

Moreover, Fig. 1 (f) shows that the one-step historical

NGD converges faster than the ordinary NGD, as proven in

Corollary III.1. Here, we study if the convergence speed can

be further improved by increasing the number of gradient

information at the previous iteration steps. Fig. 2 shows the

energy of narrow gorge potential for the case of n = 8,

for NGD, NGD2, NGD3, and NGD4. Recall that NGDm
means the historical NGD with m past normalized gradient

vectors. Clearly, Fig. 2 shows that NGDm with bigger m
converges faster. However, this result also shows the issue of

computational instability of NGDm, as indicated in Section

III. In particular, this issue seems more likely to occur, as

we utilize more normalized gradient vectors. Thus, there is

a room for improvement in our method, to fully exploit the

past normalized gradient vectors without suffering from this

computational instability issue. Yet, we underscore that NGD4

(as well as the Normalized NAG) is the first to reach within

an error of 10−2 from the minimum energy.

B. H2 molecule

We next examine the problem of finding the ground state of

H2 molecule. The simplified Hamiltonian of H2 is expressed

as

H = α(σZ ⊗ I + I ⊗ σZ) + β(σX ⊗ σX),

where σZ represents Pauli Z operator and (α, β) = (0.4, 0.2).
It was reported [25] that the VQE using GD with learning

rate η = 0.05 gets stuck in a plateau for a while and then

escapes later, when a single depth Ry ansatz with initial



(a) GD (b) NAG (c) ADAM

(d) NGD (e) The normalized NAG (f) NGD2

Fig. 1. Energy of the narrow gorge potential in the case of n = 2 (blue), 4 (orange), and 8 (green) against the iteration steps for each optimizer. The upper
three panels (a, b, c) and lower three panels (d, e, f) show the results for the optimizers without normalized gradient vector and those for the optimizers with
normalization, respectively.

Fig. 2. Energy of the narrow gorge potential in the case of n = 8, against
the iteration steps for NGD, NGD2, NGD3, and NGD4.

parameters (θ1, θ2, θ3, θ4) = (7π/32, π/2, 0, 0) are used. This

phenomenon arises because GD first arrives in the vicinity

of the first excited state, where the gradient vector vanishes.

Here we test GD, NAG, ADAM, NGD, the normalized NAG,

and NGD2 with the same Ry anzats, to see if they would be

trapped in this plateau and, when trapped, how fast they can

escape from it.

Figure 3 shows that all optimizers get stuck at the first

Fig. 3. Energy of H2 molecule against the iteration steps for each optimizer

excited state with energy −0.2. But notably, the optimizers

with the normalized gradient vector evade the plateau faster

than the others without normalization. For example, NGD can

get out of the first excited state around 50 iteration steps,

while GD requires 450 iterations. Moreover, we can also see

the normalized NAG method outperforms the ordinary NAG.

Importantly, NGD2 is the first to reach the minimum, while

ADAM can get out of the plateau the fastest.



Fig. 4. Energy of LiH molecule against the iteration steps for each optimizer

C. LiH molecule

The next case-study is on the LiH molecule; we consider

the case where the interatomic distance is 1.5 Å, resulting that

two unoccupied orbitals are removed and the core is frozen.

The Hamiltonian of LiH is constructed in the following way;

the fermionic Hamiltonian is first constructed by the Hartree-

Fock calculation with STO-3G basis [39] using the PySCF

package [40], which is then converted by the parity encoding

method [41] to the Hamiltonian. We apply VQE with two-

depth Ry ansatz, where the initial parameters are all zeros.

The optimizers are GD, NAG, ADAM, NGD, the normalized

NAG, NGD2, and NGD3.

The result is shown in Fig. 4. In terms of the convergence

speed, NGD and the normalized NAG are superior to GD

and NAG, respectively. Also, NGD2 and the Normalized NAG

reach the minimum the fastest, while NGD3 and ADAM are

competitive with them at the beginning of the optimization

process. Notably, NGD3 falls behind NGD2 to converge to the

minimum, despite the fact that NGD3 utilizes more gradient

information at the past iteration step. The reason may be the

computational instability that occurs when the learning rates

are computed. In fact, NGD3 shows the fastest convergence

at first, but the energy begins to fluctuate at certain timestep.

D. H4 molecule

We here consider the H4 molecule with square configuration

with interatomic distance 1.277 Å. The Hamiltonian of H4 is

constructed in the same way to the LiH case. We use the five-

depth Ry ansatz as PQC, where the initial parameters are all

zeros, and the same set of optimizers.

In this case, all optimizers cannot arrive at the minimum

within 600 iterations. However, we still observe the better

convergence property of the optimizers that use the nor-

malized gradient vector. Namely, NGD and the normalized

NAG method quickly converge to the local minimum about

-1.95, in comparison with GD and NAG method, respectively.

Moreover, NGD3 reaches the lowest value the fastest. Note

that the reason of not achieving the exact minimum may not

be attributed to the optimizers, but other factors such as the

insufficient expressibility of the PQC ansatz.

Fig. 5. Energy of H4 molecule against the iteration steps for each optimizer

Fig. 6. Energy of the transverse field Ising model, against the iteration steps
for each optimizer

E. Transverse field Ising model

Lastly, we focus on the transverse field Ising model studied

in [42], whose Hamiltonian is expressed as

H =
n−1
∑

i=1

σ
(i)
Z σ

(i+1)
Z +

n
∑

i=1

σ
(i)
X .

Here we set n = 8. Again we use the two-depth Ry ansatz

with all initial parameters given by π/2.

Unlike the previous problems, Fig. 6 shows the opposite

results at the beginning of the optimization process; GD

converges faster than NGD. This is because the chosen initial

parameter is so far from the optimal point in the parameter

space and the norm of the gradient vector is much bigger

than one at around the initial point. This is actually seen in

Fig. 7, showing the norm of the gradient vector against the

optimization iterations for GD. However, this does not mean

that NGD is inferior to GD. In fact, Fig. 6 shows that GD gets

stuck in a plateau, while NGD can escape from the plateau

after roughly 500 iterations despite the poor convergence in the

beginning. This different behaviors can be, again, explained

by Fig. 7, showing that the norm of the gradient vector

quickly decreases as the optimization proceeds. This reflects



Fig. 7. The norm of the gradient vectors against the iteration steps of GD
for the VQE calculation of the transverse field Ising model. For comparison,
we also show the norm of the gradient vector for NGD, which is always one.

the effectiveness of the optimizers with normalized gradient

vector for the convergence.

V. CONCLUSION

In this paper, we apply the NGD method to VQAs, to

overcome the vanishing gradient issue. Several numerical sim-

ulations actually show that the optimizers with the normalized

gradient vector have good convergence property, compared to

the optimizers without normalization. Moreover, we proposed

a new NGD that uses some normalized gradient vectors

computed in the past optimization steps; this historical NGD

is guaranteed to have a faster convergence property compared

to the ordinary NGD, and actually we have demonstrated that

this indeed accelerates the convergence speed of NGD.

We hope this work will pave a new way to deal with

the vanishing gradient problem, that often appears in the

optimization process of the VQAs. Note also that, since the

application of the historical NGD is not limited to VQAs, we

hope that our method might be useful in e.g., machine learning.
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