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Abstract—The quantum approximate optimization algorithm
(QAOA) has numerous promising applications in solving the
combinatorial optimization problems on near-term Noisy In-
termediate Scalable Quantum (NISQ) devices. QAOA has a
quantum-classical hybrid structure. Its quantum part consists
of a parameterized alternating operator ansatz, and its classical
part comprises an optimization algorithm, which optimizes the
parameters to maximize the expectation value of the problem
Hamiltonian. This expectation value depends highly on the
parameters, this implies that a set of good parameters leads to
an accurate solution. However, at large circuit depth of QAOA,
it is difficult to achieve global optimization due to the multiple
occurrences of local minima or maxima. In this paper, we propose
a parameters fixing strategy which gives high approximation ratio
on average, even at large circuit depths, by initializing QAOA
with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of
graphs such as the 3-regular graphs and the Erdös-Rényi graphs.

I. INTRODUCTION

Since the introduction of QAOA by Farhi et al. [1], it is
widely known for its efficiency and universality in solving
combinatorial optimization problems on quantum comput-
ers [2], [3]. Among the problems, the Max-cut problem is
heavily studied for its simple formulation and its deep relation
to the Ising model [4]. There exist some classes of graphs
which the Max-cut problem can be solved analytically, such as
the bipartite graphs, the 2-regular (ring) graphs and the fully-
connected graphs. However, for the other classes of graphs
there is no analytical solution, and they are NP-hard [5].

Although QAOA does not give the exact solution to the
Max-cut problem, the algorithm provides a heuristic ap-
proach for the problem. For classical heuristics, the Goemans-
Williamson algorithm (widely known as GW algorithm) is
able to achieve the approximation ratio of at least 0.878 on

the Max-cut problem through semidefinite programming [6].
Farhi et al. stated in [1] that QAOA is able to achieve the
approximation ratio of at least 0.6924 on 3-regular graphs
for p = 1, where p is the depth of the quantum circuit for
QAOA. Recently, Wurtz et al. [7] extends the result to p > 1,
with the lower bound of the approximation ratio as 0.7559
for p = 2 and 0.7924 for p = 3, for 3-regular graphs. It
is obvious that the lower bound for the approximation ratio
increases as p increase, and will surpass the lower bound for
the GW algorithm for large enough p. This agrees with [1] that
as p → ∞, the approximation ratio obtainable from QAOA
approaches 1, in which we obtain the true solution to the
problem.

However, several hurdles continue to exist in the practical
application of QAOA. One of them is obtaining a “good”
solution at large circuit depths. Solving large problems (graphs
with large number of nodes) often requires deep circuits. How-
ever, due to the existence of local maxima on the hypersurface
of the expectation function, local optimizers tend to be trapped
inside one of the local maximum, whilst the desired solution
are the global maxima. Many researches, for example [8]–
[16], have stated this problem as the limitation of QAOA at
large circuit depths. Some researches [12]–[18] discussed the
strategies to improve the performance of QAOA, which will
be discussed later. It is now clear that the performance of
QAOA heavily depends on its initial parameters, whether it
converges to a local maximum or a global maximum, and
hence its performance. This motivates our work to introduce a
strategy that aims to choose the QAOA parameters such that
they yield better performance overall.

In this paper, we discuss a straightforward, yet practically
effective, parameters fixing strategy to improve the average
performance of QAOA at large circuit depths. First, using
simulation results, we show that with random initial angles,
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QAOA will have a poor performance on average at large circuit
depths and large problems. With our strategy applied, the
average performances on the same problems are improved. We
choose our problems from the widely studied 3-regular graphs
and the Erdös-Rényi random graphs to verify the capability of
our strategy in solving those problem instances.

II. QAOA FOR MAX-CUT

QAOA originates from the Quantum Adiabatic Algorithm
(QAA) [19], which focuses on evolving the initial Hamiltonian
HB to the problem Hamiltonian HC , satisfying

H̃(s) = (1− s)HB + sHC , (1)

where s(t) → 1 as t → ∞. The evolution in Eq. (1) is then
discretized, which results in QAOA. In QAOA, the alternating
unitary operators involving HB and HC are applied to the
initial state to simulate the evolution of the system in Eq. (1):

|ψp(~γ, ~β)〉 = e−iβpHBe−iγpHC . . . e−iβ1HBe−iγ1HC |+〉
⊗
n,
(2)

where ~γ = (γ1, γ2, . . . , γp) and ~β = (β1, β2, . . . , βp) are the
2p variational parameters, with γi ∈ [0, 2π) and βi ∈ [0, π).
|+〉

⊗
n corresponds to n qubits in the ground state of the

Pauli-X basis. For the Max-cut problem of a graph G =
(V,E), HC and HB are given as

HC =
1

2

∑
(j,k)∈E

(I − ZjZk), (3)

HB =
∑
j∈V

Xj . (4)

Xj and Zj are the Pauli operators acting on the j-th qubit.
After applying the operators as in Eq. (2), we calculate the
expectation of the operator HC with respect to the ansatz state
|ψp(~γ, ~β)〉:

Fp(~γ, ~β) = 〈ψp(~γ, ~β)|HC |ψp(~γ, ~β)〉. (5)

Since Eq. (5) is parameterized by ~γ and ~β, we can use a
classical optimization algorithm to search for the angles which
maximize Fp:

(~γ∗, ~β∗) = arg max
~γ,~β

Fp(~γ, ~β). (6)

Fig. 1 shows the schematic diagram of such a routine for
QAOA. First, some initial parameters (~γ, ~β) is passed into the
quantum circuit of QAOA, which is characterized by Eq. (2),
(3) and (4). The results of the measurement are then used to
calculate Fp from (5), and the value of Fp is optimized using
a classical optimizer to obtain a better (~γ, ~β) to be passed into
the quantum circuit again. This continues until the optimizer
converges and the optimal parameters (~γ∗, ~β∗) is obtained.
The approximation ratio α is defined as

α =
Fp(~γ

∗, ~β∗)
Cmax

, (7)

where Cmax is the maximum cut value for the graph. The
approximation ratio indicates how near the solution given by
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Fig. 1: The routine of the Quantum Approximate Optimization Algorithm
(QAOA).

QAOA is to the true solution, ranging from 0 to 1, with 0
the furthest and 1 the nearest to the true solution. It will be
the performance measure throughout this paper as we aim to
approximate the solution of the Max-cut problem as accurate
as possible.

As the circuit depth p increases, maxFp(~γ, ~β) also in-
creases, and it will approach Cmax as p → ∞, thus the
approximation ratio α will approach 1 [1]. However, according
to our numerical experiments, the optimizers does not neces-
sarily succeed in finding the maximum value of Fp as p gets
larger. Apparently, which parameters are chosen as the initial
points to the optimizer plays an important role in whether the
optimizer converges to a global maximum. Hence, we would
prefer to have “good” initial points in order for the optimizer
to converge to the global maximum.

III. RELATED WORK

While many strategies of choosing good parameters for
QAOA are introduced and discussed, there is no strong ev-
idence that which strategy is more effective than the others.
Some [12], [13], [15], [20] found out that there is a linear
relationship between the parameters and the circuit depths,
which resembles the linear annealing scheme. As shown in
their work, the optimal parameters γi increases linearly and
βi decreases linearly, where i is the index of the parameters in
(~γ, ~β). However, besides the linearly increasing and decreasing
parameters, the landscape of the expectation function also has
multiple maximum points, which arguments are some sets of
parameters that do not follow the linear pattern. In fact, in most
cases of our simulations, the optimal parameters we obtain do
not follow the linear pattern.

Brandao et al. [17] found out that for the Max-cut problem,
the parameters for the typical instances of 3-regular graphs
concentrate. This results in similar expectation function for
different 3-regular graphs regardless the number of nodes, as
long as the structure of the graph is the same. They leverage
this property to reuse the optimal parameters obtained from
optimizing smaller graphs in the optimization of larger graphs,
which they call it the leapfrogging strategy. They state that this
allows them to find good solutions using QAOA with fewer



calls to the quantum computer. Their strategy also applies to
Erdös-Rényi graphs with edge probability 3/(n− 1), as they
have the expected graph degree of 3.

Zhou et al. [12] introduces two strategies for optimizing
the variational parameters. First, they discover the linear
relationship between the parameters and the circuit depth p
in solving the Max-cut problem on 16-vertex unweighted 3-
regular graphs using QAOA. They use the linear interpolation
method to extend the optimal parameters at depth p to make a
guess about the parameters at p+1. They call this the INTERP
heuristic strategy. The second strategy is the FOURIER heuris-
tic strategy, which uses the Discrete Sine/Cosine Transform to
determine the parameters at p+1 from the Fourier amplitudes
at p. They test the two strategies against the random initializa-
tion of the parameters on 40 instances of 16-vertex unweighted
and weighted 3-regular graphs, and their strategies outperform
the random initialization QAOA after p ≥ 5.

Shaydulin et al. [16] uses a multistart approach to improve
the performance of QAOA on graph clustering problems. They
combine two optimization algorithms, namely APOSMM [21],
[22] and BOBYQA [23]. APOSMM is an optimization al-
gorithm which coordinates multiple local optimization runs
to identify better local optima. They embed the classical
local optimizer BOBYQA in APOSMM, which they call the
APOSMM+BOBYQA, to improve the QAOA performance.
They apply this strategy to solve the modularity maximization
community detection problem with graphs between 10 and
12 vertices. They have shown, using simulations, that the
APOSMM+BOBYQA method performs better than typical
optimizers such as COBYLA [24], NELDER-MEAD [25], and
also the BOBYQA alone. They also apply the aforementioned
leapfrogging strategy in [17] to reuse optimal parameters as
initial points for different graphs.

A more recent work by Sack et al. [15] introduce the
initialization based on the Trotterized quantum annealing
(TQA) protocol to prevent the convergence to false local
minima. This parameter initialization method is inspired by the
connection between simulated quantum annealing and QAOA.
They suggest the initialization of the i-th parameter in depth
p as γi = (i/p)∆t and βi = (1 − i/p)∆t, which is derived
from the discretization of quantum annealing protocol using
Suzuki-Trotter decomposition. They also found out that there
exist optimal time steps ∆t which helps in the convergence
to a minima that is very close to the global minima. They
apply their strategy to solve the Max-cut problem for 12-
vertices over 50 random graphs. Others like [18] use machine
learning techniques to predict the initial parameters for higher
depth QAOA. After the models are trained, they demonstrate
an average improvement of 44.9% in run-time across various
local optimization algorithms such as L-BFGS-B, NELDER-
MEAD, SLSQP and COBYLA.

IV. NUMERICAL EXPERIMENT

In this paper, the performances of two initialization meth-
ods of QAOA are compared: the random initialization and
the parameters fixing strategy. We use QAOA simulation

to solve the Max-cut problem on the 3-regular graphs and
the Erdös-Rényi random graphs with edge probability of
0.5 with different problem sizes (number of nodes). The
simulation of the quantum circuits in QAOA is done by
using the Qiskit Aer simulator and the problem graphs are
generated using the NetworkX package. We solve the Max-
cut problem for the 3-regular graphs with the number of
nodes n = 6, 8, 10, 12, 16. We also solve for the Erdös-Rényi
graphs with n = 6, 7, 8, 9, 10. The graph instances are chosen
randomly so that they do not have biased structures.

With the parameters initialization methods aside, our com-
mon simulation procedure is as follows: first, we pass a set of
initial parameters (~γinit, ~βinit) into the quantum circuit shown
in Fig. 1. We then measure the quantum circuit to obtain the
probability distribution of the ansatz state. We calculate the
expectation value as

F (~γ, ~β) = 〈ψ(~γ, ~β)|HC |ψ(~γ, ~β)〉 (8)

=
∑
i

λipi, (9)

where λi is the eigenvalue (cut-value) of the problem Hamilto-
nian HC , and pi is the probability of measuring the eigenstate
correspond to λi. The expectation value is then passed into the
optimizer for a better set of parameters. This cycle continues
until the optimizer terminates and we have the maximized
expectation F (~γ∗, ~β∗) with its optimal parameters (~γ∗, ~β∗).
Hence, we can calculate the approximation ratio α for this set
of parameters from Eq. (7). In all of our simulations, we use
the NELDER-MEAD [25] optimizer provided by the SciPy
package, with the settings of 1000 maximum allowed function
evaluations and the absolute error tolerance of 10−4. As for the
metric to evaluate the performances of the initialization meth-
ods, we use the mean approximation ratio obtained from the
QAOA simulations initialized by different initial parameters,
for a fixed QAOA circuit depth p. Additionally, we investigate
how the distribution of the approximation ratios changes with
p.

A. Random Initialization Method

For the random initialization method, 20 sets of random
parameters (~γ, ~β) are passed into QAOA for each p and we
take the average of the 20 approximation ratios output by
QAOA. Then, we increase p and repeat. The same procedure
is done to different graph instances. This is the most naive
method used when solving problems using QAOA. The output
data will be the reference to which after our strategy is applied.
Fig. 2(a) and (b) show the results of the QAOA simulations
using random initialization method. We can observe that for
3-regular graphs, the mean approximation ratio given by 20
random initial parameters does not increase with the circuit
depth p overall. For small number of nodes like n = 6,
the mean approximation ratio increases with p and is able to
achieve mean α > 0.95 for p ≥ 7. However, as the number of
nodes increases (n ≥ 8), the mean α only increase for small
depths. As the depth gets larger (p ≥ 5), there is a decrease
in the mean α and most of them do not achieve α > 0.95
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Fig. 2: The comparison of the results produced by applying different parameters initialization methods. The Max-cut instances solved are the 3-regular graphs
(n = 6, 8, 10, 12, 16) and the Erdös-Rényi (or sometimes G(n, p)) graphs (n = 6, 7, 8, 9, 10) with edge probability of 0.5. The variation of the mean
approximation ratio against the circuit depth is plotted. (a) 3-regular graphs with random initialization, (b) Erdös-Rényi graphs with random initialization, (c)
3-regular graphs with parameters fixing strategy, (d) Erdös-Rényi graphs with parameters fixing strategy.

like the 6-node graphs did, even the depth is increased until
p = 10. For some n, the standard deviations of α increase
as p increases. This implies that at larger p, there exist some
initial parameters which converged to our desired real maxima,
giving high approximation ratio. On the other hand, there are
also some initial parameters which converged to some false
local maxima, giving low approximation ratio which dragged
down the mean α. For the Erdös-Rényi graphs, similar trend
is observed for n ≥ 7.

B. Parameters Fixing Strategy

At large circuit depth of QAOA, the optimizer does not
necessarily find the desired global maxima. Inspired by the
linear interpolation strategies in [12], [13], we attempt to make
better choices of parameters by extending them from depth p to
p+1. Starting from p = 1, we solve the problem with 20 sets of
random parameters. As the optimizer behaves well in shallow
depth of QAOA, we entrust it to find our desired solution
at p = 1. We then select the parameters with the highest
approximation ratio and treat it as the optimal parameters
for p = 1: (γ∗1 , β

∗
1). We fix this set of parameters and insert

another pair of random (γ2, β2) and pass (γ∗1 , γ2, β
∗
1 , β2) as

the initial parameters into solving p = 2. Again, to make sure
we find the true global maxima, instead of using one random
pair of (γi, βi), we use 20 random pairs of (γi, βi) and select
the one which gives us the highest approximation ratio. Hence,
we obtain the optimal parameters at p = 2 as (γ∗1 , γ

∗
2 , β
∗
1 , β
∗
2).

This procedure is repeated until p = 10. This is summarized
in Algorithm 1. We call this the parameters fixing strategy.

Fig. 2(c) and (d) shows the results of the QAOA simulation
with the parameters fixing strategy applied. The increasing
trend of the mean approximation ratio against the circuit
depth can be observed for both the 3-regular graphs and
the Erdös-Rényi graphs. The 3-regular instances are able to
achieve mean α > 0.95 at p ≥ 7 and the Erdös-Rényi
instances achieves mean α > 0.95 at p ≥ 8. This is in
contrast to the random initialization method, which the mean
α does not increase with increasing p. Since the mean α
given by fixing parameters is relatively high, this means
that the optimizer rarely converges to a false maxima. By
starting QAOA with the optimal parameters from shallower
depths, the problem of QAOA converging to a false local
minima can thus be subdued, as shown in the results. Hence,



Algorithm 1 Parameters Fixing

1: for q = 1...p do . Circuit depth p
2: for k = 1...n do . No. of trials n
3: γq ← rand(0, 2π)
4: βq ← rand(0, π)
5: if q = 1 then
6: (~γ, ~β)← (γ1, β1)
7: else
8: (~γ, ~β)← (γ∗1 , ..., γ

∗
q−1, γq, β

∗
1 , ..., β

∗
q−1, βq)

. New parameters (γq, βq) are inserted.
9: end if

10: Initialize QAOA with (~γ, ~β) and optimize to find
Fq(~γ

∗, ~β∗)k.
11: end for
12: Fq(~γ

∗, ~β∗)← maxk Fq(~γ
∗, ~β∗)k

13: (~γ∗, ~β∗)← arg maxk Fq(~γ
∗, ~β∗)k

. (~γ∗, ~β∗) = (γ∗1 , ..., γ
∗
q , β
∗
1 , ..., β

∗
q )

14: end for
15: Output: (~γ∗, ~β∗) and Fp(~γ∗, ~β∗).

we can conclude that this method is effective in obtaining
good results in QAOA, at least true for the graph instances
used in our work. Moreover, we also found that for the 3-
regular graphs with parameters fixing, the standard deviation
of the α’s decreases with increasing p as shown in Fig. 3.
This implies that as p increases, the significance of the new
random parameters (γi, βi) becomes less, as no matter what
the random value is, the value of α does not change much. The
dependence of α is stronger in those optimal parameters from
the shallower depths: (γ∗1 , ..., γ

∗
p−1, β

∗
1 , ..., β

∗
p−1). However, we

do not observe this pattern in the results of the Erdös-Rényi
graphs.

Although we call this the parameters fixing strategy,
in our actual simulation, we allow the optimal parame-
ters (γ∗1 , ..., γ

∗
p−1, β

∗
1 , ..., β

∗
p−1) to be further optimized as

they are passed into QAOA of depth p as the initial
parameters. Hence, the optimal parameters at p will be
(γ∗∗1 , ..., γ∗∗p−1, γ

∗
p , β
∗∗
1 , ..., β∗∗p−1, β

∗
p), where the optimal values

at p − 1: (γ∗i , β
∗
i ), is different from the optimal values at p:

(γ∗∗i , β
∗∗
i ). However, our simulation data in Fig. 4 shows that

this difference is actually subtle. As p increases, the optimal
parameter at the i-th position stays almost the same relative to
other optimal parameters. It is also seen that the parameters
tend to change more when they are first introduced, e.g. γ6 at
p = 6, and change less as the depth increases. This shows that
the optimal parameters at p stay optimum at p+ 1. If this was
not the case, the values of the optimal parameters at p would
have gone through more drastic changes in their values.

V. OPTIMIZATION LANDSCAPE

The optimization landscape (the landscape of the expec-
tation function Fp(~γ, ~β)) is the landscape traversed by the
optimizer. It is a crucial part in QAOA as its properties decide
the convergence of the local optimizers as mentioned in the
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Fig. 3: The variation of the standard deviation of the approximation ratio α
against the circuit depth p, for the 3-regular graphs. This is the same set of
approximation ratio as in Fig. 2(c).
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Fig. 4: Changes in the i-th position optimal parameters as they are passed
into the next depth of QAOA as the initial parameters. This is extracted from
the simulation data of a 8-node 3-regular graph.

previous sections. We investigate the optimization landscape to
find out the reason behind the effectiveness of the parameters
fixing strategy. We find out that as we fix different points in
depth p, the optimization landscape of depth p+1 is different,
depending on which points are fixed. Fig. 5(a) shows different
effects of fixing the parameters of the maximum points (high
expectation value) and fixing the parameters of the minimum
points (low expectation value) as the depth increases. When the
parameters of the maximum points are fixed, the optimization
landscape is covered with more red region, which correspond
to high expectation values. On the other hand, when we
fix the parameters of the minimum points, the optimization
landscape is covered with more blue region, which correspond
to low expectation values. Additionally, to observe the effect
of parameters fixing at large depths, we extract the optimal
parameters at p = 10 from our simulation data and plot
the optimization landscape they span. Fig. 5(b) shows the
landscape after parameters fixing is applied continuously until
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Fig. 5: (a) Heatmap showing the changes in the optimization landscape
when different parameters are fixed while the depth increases. Red regions
correspond to high expectation values and blue regions correspond to low
expectation values. On the left is the heatmap of the optimization landscape
for p = 1 in the (γ1, β1) space. On the right is the heatmap of p = 2 in the
(γ2, β2) space, while (γ1, β1) is fixed. (b) The landscape of p = 10 with
parameters fixing in the (γ10, β10) space. The optimal parameters up until
p = 9 are extracted from real simulation data. These are the optimization
landscapes of the 8-node 3-regular graph used in our simulation.

p = 10. The maximum points in the landscape slowly
transforms into maximum lines with increasing depth while
fixing the optimal parameters. We observe similar pattern
in the transformation of landscapes in other graph instances
as well. We hypothesize that the maximum lines causes the
optimizer becomes less likely to be trapped inside a local
maxima. Hence, the approximation ratio is higher on average
with the parameters fixing strategy applied.

VI. DISCUSSION AND CONCLUSION

We have introduced the parameters fixing strategy as an ini-
tialization method for QAOA and have shown its effectiveness
in practice. The strategy reuses optimal parameters from the
previous depths to obtain high approximation ratio on average
at large QAOA circuit depths, which has high practical impor-
tance. We show the effectiveness of this strategy using QAOA
simulations to solve the Max-cut problem for the 3-regular

graphs and the Erdös-Rényi graphs, and compare the results
with those obtained from random initialization. It is shown that
with this strategy applied, the average approximation ratios are
higher than those which are initialized randomly. For all the 3-
regular instances we considered, the mean approximation ratio
α > 0.95 is achieved when p ≥ 7. On the other hand, the
Erdös-Rényi instances achieves mean α > 0.95 when p ≥ 8.
Our results also show that for 3-regular graphs, the significance
of new parameters introduced at higher depths becomes less
when parameters fixing is applied. This implies that if the
parameters up until depth p are optimal, no matter what new
values we choose for p + 1, the value of α does not change
much. Also, we have shown how the optimization landscape
changes as the circuit depth increases during parameters fixing,
transforming from maximum points to maximum lines as p
increases.

Although the parameters fixing strategy shows good per-
formance in yielding high approximation ratios, it also has
apparent drawbacks. As shown in Algorithm 1, this strategy
requires O(np) time, where n is the number of trials to obtain
the maximum expectation, and p is the circuit depth for QAOA
to be solved. This strategy forces the user to start solving
QAOA from small depths like p = 1. However, some has
proposed the analytical solution for QAOA at small depths
for the 3-regular graphs [7], [26]. Therefore, it is possible to
obtain the optimal parameters for small depths analytically.
Also, the performance of our strategy is tested only with the
NELDER-MEAD optimizer. The performances of the other
optimizers are yet to be studied.

It is inevitable to solve QAOA at large circuit depths, as
large problem instances usually requires the circuit depth to
be increased to obtain a good approximation to the solution.
Since local optimizers perform badly at large circuit depths,
a workaround is needed for the optimizers to converge to the
desired global maxima. Although more rigorous proofs are
required, the strategy we propose is indeed practically useful,
as we have demonstrated its performance using simulation
results. We aim to obtain more rigorous proofs for the param-
eters fixing strategy, and extend our results to other classes
of graphs, or even other problems that can be solved using
QAOA.
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