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Abstract—The Quantum approximate optimization algo-
rithm (QAOA) is one of the most promising candidates for
achieving quantum advantage through quantum-enhanced
combinatorial optimization. In a typical QAOA setup, a
set of quantum circuit parameters is optimized to prepare
a quantum state used to find the optimal solution of a
combinatorial optimization problem. Several empirical ob-
servations about optimal parameter concentration effects for
special QAOA MaxCut problem instances have been made
in recent literature, however, a rigorous study of the subject
is still lacking. We show that convergence of the optimal
QAOA parameters around specific values and, consequently,
successful transferability of parameters between different
QAOA instances can be explained and predicted based on
the local properties of the graphs, specifically the types of
subgraphs (lightcones) from which the graphs are composed.
We apply this approach to random regular and general
random graphs. For example, we demonstrate how optimized
parameters calculated for a 6-node random graph can be
successfully used without modification as nearly optimal
parameters for a 64-node random graph, with less than
1% reduction in approximation ratio as a result. This work
presents a pathway to identifying classes of combinatorial
optimization instances for which such variational quantum
algorithms as QAOA can be substantially accelerated.

Index Terms—quantum computing, quantum optimization,
quantum approximate optimization algorithm

I. INTRODUCTION

Quantum computing seeks to exploit the quantum me-
chanical concepts of entanglement and superposition to
perform a computation that is significantly faster and
more efficient than what can be achieved using the most
powerful supercomputers available today. Demonstrating
quantum advantage with optimization algorithms [1] is
poised to have a broad impact on science and humanity
by allowing to solve problems of a global scale, including
energy, materials discovery, and environmental challenges.
Variational quantum algorithms are considered as primary
candidates for such tasks and consist of parameterized
quantum circuits with parameters updated in a classical
computation. The quantum approximate optimization al-
gorithm (QAOA) [2]–[5] is a variational algorithm for
solving classical combinatorial optimization problems. In
the domain of optimization on graphs, it is most often
used to solve such NP-hard problems as MaxCut [4],
community detection [6] and partitioning [7] by mapping
them onto a classical spin-glass model (also known as the
Ising model) and minimizing the corresponding energy,
which in itself is NP-hard.

In this work, we demonstrate that by analyzing the
distributions of subgraphs from two QAOA MaxCut in-

stance graphs, it is possible to predict how close the
optimized QAOA parameters for one instance are to the
optimal QAOA parameters for another. The measure of
transferability of optimized parameters between MaxCut
QAOA instances on two graphs can be expressed through
the value of the approximation ratio, which is defined as
the ratio of the energy of the corresponding QAOA circuit,
evaluated with the optimized parameters γ, β, divided by
the energy of the optimal MaxCut solution for the graph.
While the optimal solution is not known in general, for
relatively small instances (graphs with up to 64 nodes,
considered in this paper) it can be found using classical
algorithms. We first focus our attention on random regular
graphs of arbitrary degree and reveal that transferability of
optimized parameters MaxCut QAOA between two graphs
is directly determined by the transferability between all
possible permutations of pairs of individual subgraphs.
The relevant subgraphs of these graphs are defined by the
QAOA quantum circuit depth parameter p. In this work,
we focus on the case p = 1, however, our approach can
be extended to larger values of p. Higher values of p lead
to an increasing number of subgraphs to be considered,
however the general idea of the approach remains the
same. This question is beyond the scope of this paper and
will be addressed in our future work.

Based on the analysis of mutual transferability of opti-
mized QAOA parameters between all relevant for comput-
ing the MaxCut cost function subgraphs of random regular
graphs, we reveal good transferability within the classes of
odd- and even-regular random graphs of arbitrary size. We
also show that transferability is poor between the classes of
even- and odd-regular random graphs, in both directions,
based on the poor transferability of the optimized QAOA
parameters between the subgraphs of the corresponding
graphs. We then consider the most general case of arbitrary
random graphs, construct the transferability map between
all possible subgraphs of such graphs, with an upper limit
of node connectivity dmax = 6, and use it to demonstrate
that in order to find optimized parameters for a MaxCut
QAOA instance on a large 64-node random graph, under
specific conditions, it is possible to re-use the optimized
parameters from a random graph of a much smaller size,
N = 6, with only a 0.8% reduction in the approximation
ratio.

This paper is structured as follows. In Section II, we
present the relevant background material on QAOA and
tensor network simulation techniques relevant to this work.
In Section III, we consider optimized QAOA parameter
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transferability properties between all possible subgraphs
of random regular graphs of degree up to dmax = 8.
We then extend the consideration to arbitrary random
graphs, bounded by the maximum degree of connectivity
dmax = 6, and demonstrate the power of the proposed
approach for constructing three pairs of graphs, with 6
and 64-node nodes in each, such that the optimized QAOA
parameters found for the smaller graphs can be success-
fully used for the larger ones. Finally, in Section IV, we
conclude with a summary of our results and an outlook.

II. QAOA

The Quantum Approximate Optimization Algorithm is
a hybrid quantum-classical algorithm that combines a
parameterized quantum evolution with a classical outer-
loop optimizer to approximately solve binary optimization
problems [4], [8]. QAOA consists of p layers of pairs of
alternating operators (also known as a circuit depth), with
each additional layer increasing the quality of the solution,
assuming perfect noiseless execution of the corresponding
quantum circuit. With quantum error correction not cur-
rently supported by modern quantum processors, practical
implementations of QAOA are limited to p ≤ 3 due to
noise and limited coherence of quantum devices imposing
strict limitations on the circuit depth. Motivated by the
practical relevance of results, we focus on the case p = 1
in this paper.

A. QAOA background

Consider a combinatorial problem defined on a space
of binary strings of length N that has m clauses. Each
clause is a constraint satisfied by some assignment of
the bit string. The objective function can be written as
C(z) =

∑m
α=1 Cα(z), where z = z1z2 · · · zN is the bit

string, and Cα(z) = 1 if z satisfies the clause α, and
0 otherwise. QAOA maps the combinatorial optimization
problem onto a 2N dimensional Hilbert space with compu-
tational basis vectors |z〉, and encodes C(z) as an operator
C diagonal in the computational basis.

At each call to the quantum computer, a trial state is
prepared by applying a sequence of alternating quantum
operators

|~β,~γ〉p := UB(βp)UC(γp) . . . UB(β1)UC(γ1) |s〉 , (1)

where UC(γ) = e−iγC is the phase operator, UB(β) =
e−iβB is the mixing operator, with B defined as the
operator of all single-bit σx operators, B =

∑N
j=1 σ

x
j , and

|s〉 is some easy-to-prepare initial state, usually taken to be
the uniform superposition product state. The parameterized
quantum circuit (1) is called the QAOA ansatz. We refer
to the number of alternating operator pairs p as the QAOA
depth. The selected parameters ~β,~γ are said to define
a schedule, analogous to a similar choice in quantum
annealing.

Preparation of the state (1) is followed by a measure-
ment in the computational basis. The output of repeated
state preparation and measurement may be used by a clas-
sical outer-loop algorithm to select the schedule ~β,~γ. We
consider optimizing the expectation value of the objective
function

〈C〉p = 〈~β,~γ|p C |~β,~γ〉p ,

as originally proposed in [4]. The output of the overall
procedure is the best bit string z found for the given com-
binatorial optimization problem. We emphasize that the
task of finding good QAOA parameters is challenging in
general, e.g. due to encountering such challenges as barren
plateaus. Acceleration of the optimal parameters search for
a given QAOA depth p is the focus of many approaches
aimed at demonstrating the quantum advantage. Examples
include such methods as warm- and multi-start optimiza-
tion [9], [10], problem decomposition [11], and instance
structure analysis [12] and parameter learning [13].

B. MaxCut

For the purpose of studying transferability of optimized
QAOA parameters, we consider the MaxCut combinatorial
optimization problem. Given an unweighted undirected
simple graph G = (V,E), the goal of the MaxCut problem
is to find a partition of the graph’s vertices into two com-
plementary sets, such that the number of edges between
the two sets is maximized. To encode the problem in the
QAOA setting, the input is a graph with |V | = N vertices,
and |E| = m edges, and the goal is to find a bit string z
that maximizes

C =
∑
jk∈E

Cjk, (2)

where

Cjk =
1

2
(−σzjσzk + 1).

It has been shown in [4] that on a 3-regular graph,
QAOA with p = 1 produces a solution with an approxi-
mation ratio of at least 0.6924.

C. Tensor network QAOA simulator

There are two general approaches for classical simula-
tion of QAOA quantum circuits: state vector and tensor
network simulators. In this work, we perform all simula-
tions of QAOA quantum circuits using the QTensor tensor
network simulator [14], a large-scale quantum circuit
simulator with step-dependent parallelization.

In contrast to state vector simulators, which store the
full state vector of size 2N , tensor network simulators
do not have the notion of evolution of a state vector,
but rather view the whole calculation as a tensor network
contraction task. Numerical simulations for this type of
simulators can be executed in two ways: computation of
probability amplitudes, and evaluation of an expectation
value of some observable. These simulations correspond
to calculating elements of the output state |φ〉 = Û |ψ〉,
and the value of 〈φ|R̂|φ〉 = 〈ψ|Û†R̂Û |ψ〉, respectively.
Each of these expressions has a tensor network analog,
where the operator Û is represented by a tensor network
that is composed of elementary gates acting on subsets
of qubits. For more details on how a quantum circuit is
converted to a tensor network, see [14], [15].

When simulating an expectation value of some observ-
able operator R̂ that acts on a small subset of qubits, most
of the constituents of the Û operator cancel out. This is
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Fig. 1. Maximum contraction width for simulating energy using the
QTensor simulator. The x-axis shows the size of a random 3-regular
graph used to generate MaxCut QAOA circuits. The shaded region shows
the standard deviation over 16 random graphs for each size.

known as the lightcone simplification and introduces a
major improvement in the simulation cost, especially for
circuits with low connectivity and depth.

When applied to the MaxCut QAOA problem, the R̂
operator is a sum of smaller terms, as shown in Eq. 2.
The expectation value of the cost for the graph G and
QAOA depth p is then

〈C〉p (~β,~γ) = 〈~β,~γ|C|~β,~γ〉

= 〈~β,~γ|
∑
jk∈E

1

2
(1− ZjZk)|~β,~γ〉

=
|E|
2
− 1

2

∑
jk∈E

〈~β,~γ|ZjZk|~β,~γ〉

≡ |E|
2
− 1

2

∑
jk∈E

ejk(~β,~γ),

where ejk is an individual edge contribution to the total
cost function. Note that the observable in the definition of
ejk is local to only two qubits, therefore most of the gates
in the circuit that generates the state |~β,~γ〉 cancels out. The
circuit after the cancellation is equivalent to calculating
ZjZk on a subgraph S of the original graph G. These
subgraphs can be obtained by taking only the edges that
are incident from vertices at a distance p − 1 from the
vertices j and k. The full calculation of EG(~β,~γ) requires
evaluation of |E| tensor networks, each representing the
value ejk(~β,~γ) for jk ∈ E.

After the tensor network has been created, the simulator
has to determine the best way to contract it, which
can be done in multiple ways. QTensor uses the bucket
elimination approach, which contracts one index of the
tensor network at a time. The order in which the indices
are contracted determines the largest tensor size, which, in
turn, is the main contribution to the memory and time cost
for the simulation. The number of dimensions in the largest
tensor is commonly referred to as contraction width. The
size of the largest tensor is therefore determined as S = 2w

where w is the contraction width. QTensor is able to
simulate tensor networks with w < 30 in seconds using
several GB of RAM.
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Fig. 2. Maximum contraction width for simulating energy using the
QTensor simulator. The x-axis shows the size of a random d-regular
graph used to generate MaxCut QAOA p = 1 circuits. The shaded region
shows the standard deviation over 80 random graphs for each size.

In studying the complexity of MaxCut simulation, we
focus on three main parameters: degree d, size N of the
problem graph G, and the QAOA depth p. We first fix
d = 3, corresponding to 3-regular random graphs, and
study p-dependence of simulation cost, and then look at
d-dependence for fixed p = 1.

The tensor network simulations show that for p < 5, one
can simulate energy for any size of a graph, with linear
scaling in time. Fig. 1 shows the dependence of contraction
width as a function of graph size N for different QAOA
depths p. The experiments were done using QTensor with
the ordering algorithm rgreedy_0.01_10. The non-
monotonic behavior of the simulation complexity with
respect to the graph size is a result of the structure of
random 3-regular graphs. As size N grows, the probability
of large loops in the graph increases, and subgraphs
that generate tensor networks for ejk become more tree-
like. This results in a simpler tensor network structure
and a smaller contraction cost. Since the tractability of
simulation of energy extends far beyond p = 1 discussed
in this paper, there is a room for further research on this
topic.

The dependence of simulation cost at fixed p = 1 is
shown in Fig. 2. The subgraphs for p = 1 only include
edges incident from nodes jk for each ejk. Therefore, the
maximum contraction width is w = 5 for any N , and it
slowly decreases as more tree-like subgraphs occur in the
structure of the graph.

To perform the parameter optimization, QTensor uses
automatic differentiation with respect to the gate parame-
ters. Automatic differentiation uses the chain rule to propa-
gate the gradients over the calculation graph, which allows
calculating first-order derivatives with respect to any input
parameters in one shot. This approach is widely used
in the field of machine learning as the backpropagation
algorithm.

To optimize the parameters of the quantum circuit, we
use RMSProp, a common machine learning algorithm
which is an extension of the gradient descent technique.

D. Classical MaxCut solver

Calculating the approximation ratio for a particular
MaxCut problem instance, requires the optimal solution



of the combinatorial optimization problem. This problem
is known to be NP-hard, and classical solvers require
exponential time to converge. For our experiments, we
use the Gurobi solver [16] with the default configuration
parameters, running the solver until it converges to the
optimal solution.

III. PARAMETER TRANSFERABILITY

Solving a QAOA instance calls for two types of exe-
cutions of quantum circuits, iterative optimization of the
QAOA parameters, and the final sampling from the output
state prepared with the those parameters. While the latter
is known to be impossible to simulate efficiently for large
enough instances using classical hardware instead of a
quantum processor [4], the iterative energy calculation
for the QAOA circuit during the classical optimization
loop can be efficiently performed using tensor network
simulators for instances of a wide range of sizes [14],
as described in the previous Section. This is achieved
by implementing considerable simplifications in how the
expectation value of the problem Hamiltonian is calculated
by employing a mathematical reformulation based on the
notion of the reverse causal cone introduced in the seminal
QAOA paper [4]. Moreover, in some instances, the entire
search of the optimal parameters for a particular QAOA
instance can be circumvented by reusing the optimized
parameters from a different ‘related’ instance, e.g. for
which the optimal parameters are concentrated in the same
region.

Optimizing QAOA parameters for a relatively small
graph, called donor, and using them to prepare the QAOA
state that maximizes the expectation value 〈C〉p for the
same problem on a larger graph, called acceptor, is what
we define as successful optimal parameter transferability,
or just transferability of parameters, for brevity. The
transferred parameters can be either used directly without
change, as implemented in this paper, or as a ‘warm
start’ for further optimization. In either case, the high
computational cost of optimizing the QAOA parameters,
which grows rapidly as the QAOA depth p and the
problem size are increased, can be significantly reduced.
This approach presents a new direction for dramatically
reducing the overall runtime of QAOA.

Optimal QAOA parameter concentration effects have
been reported in the past for several special cases, mainly
focusing on random 3-regular graphs [17]–[19]. Brandao
et al. [17], observed that the optimized QAOA parameters
for the MaxCut problem obtained for a 3-regular graph
are also nearly optimal for all other 3-regular graphs.
In particular, it was noted that in the limit of large N ,
where N is the number of nodes, the fraction of tree
graphs asymptotically approaches 1. We note that, for
example, in the sparse Erdös–Rényi graphs, the trees are
observed in short distance neighborhoods with very high
probability [20]. As a result, in this limit, the objective
function is the same for all 3-regular graphs, up to order
1/N .

The central question of this manuscript is determining
under what conditions the optimized QAOA parameters for
one graph also maximize the QAOA objective function for
another graph. Because the expectation value of the QAOA

objective function is fully determined by the corresponding
subgraphs of the instance graph, to study transferability of
parameters between graphs, we study the transferability
between their subgraphs.

A. Subgraph transferability analysis

It was shown in the seminal QAOA paper [4] that
the expectation value of the QAOA objective function,
〈C〉p, can be evaluated as a sum over contributions from
subgraphs of the original graph, provided its degree is
bounded and diameter is larger than 2p (otherwise, the
subgraphs cover the entire graph itself). The contributing
subgraphs can be constructed by iterating over all edges
of the original graph and selecting only the nodes that are
p edges away from the edge. Through this process, any
graph can be deconstructed into a set of subgraphs for a
given p, and only those subgraphs contribute to 〈C〉p, as
also discussed in Section II.

We begin by analyzing the case of MaxCut instances on
3-regular random graphs for QAOA circuit depth p = 1,
which have three possible subgraphs [4], [17]. Fig. 3
(top row) shows the landscapes of energy contributions
from these subgraphs, evaluated for a range of γ and
β parameters. It is apparent that all maxima are located
in approximate vicinity of each other. As a result, the
parameters optimized for either of the three graphs will
also be near-optimal for the other two. Because any ran-
dom 3-regular graph can be decomposed into these three
subgraphs, for QAOA with p = 1, this guarantees that
optimized QAOA parameters can be successfully trans-
ferred between any two 3-regular random graphs, which
is in full agreement with [17]. The same effect is observed
for subgraphs of 4-regular, see Fig. 3 (middle row). The
optimized parameters are mutually transferable between
all four possible subgraphs of 4-regular graphs. Notice,
however, that the locations of exactly a half of all maxima
for the subgraphs of 4-regular graphs do not match with
those for 3-regular graphs. This means that one cannot
expect good transferability of optimized parameters across
MaxCut QAOA instances for 3- and 4-regular random
graphs. Focusing now on all five possible subgraphs of
5-regular graphs, Fig. 3 (bottom row), we notice that,
again, good parameter transferability is expected between
all instances of 5-regular random graphs. Moreover, the
locations of the maxima match well with those for 3-
regular graphs, indicating good transferability across 3-
and 5-regular random graphs.

By considering energy contribution landscaped of sub-
graphs of random regular graphs for p = 1 we make the
following three conjectures:

1) Optimized parameters can be successfully trans-
ferred between any random d-regular graphs, d ∈ N.

2) Optimized parameters can be successfully trans-
ferred from any a random d1-regular graph to any
random d2-regular graph, assuming that d1 and d2
are either both odd or both even.

3) Optimized parameters cannot be successfully trans-
ferred between d1- and d2-regular graphs, if d1 is
odd and d2 is even, or vice versa.

A rigorous study of the question of transferability between
random regular graphs is necessary to confirm the above



Fig. 3. Landscapes of energy contributions for individual subgraphs of 3- (top row), 4- (middle row), and 5-regular (bottom row) random graphs, as
a function of QAOA parameters β and γ. All subgraphs of 3- and 5- regular graphs have maxima located in the relative vicinity from one another.
Subgraphs of 4-regular graphs also have closely positioned maxima between themselves, however only half of them match with the maxima of
subgraphs of odd-regular random graphs.

conjectures, and is outside of the scope of this paper.
This question, together with the generalization to p > 1
and the method of rescaling the optimized parameters
for improved transferability between d1- and d2- regular
random graphs (for odd or even d1 and d2), with will be
considered in a separate paper.

Mutual transferability of optimized parameters between
all possible subgraphs of 3-regular graphs is what guar-
antees that optimized parameters found for some QAOA
MaxCut instance on a 3-regular graph are also nearly
optimal for any other 3-regular graph. In this work, we
provide a significant extension of this result and present
the following three conditions as the sufficient conditions
for optimal parameter transferability for general donor-
acceptor pairs of random graphs (see a schematic example
in Fig 4):
• optimal QAOA parameters are mutually transferable

between all subgraphs of the donor graph;
• optimal QAOA parameters are mutually transferable

between all subgraphs of the acceptor graph;
• optimal QAOA parameters are transferable from ev-

ery subgraph of the donor graph to every subgraph
of the acceptor graph.

For the case of parameter transferability between 3-
regular graphs of arbitrary size, the above three conditions
are automatically satisfied based on a single fact that
optimal parameters are mutually transferable between all
three possible subgraphs of 3-regular graphs, as discussed
above. To test numerically the three conjectures postulated

above regarding transferability of optimized parameters
between different random regular graphs, we evaluate
the subgraph transferability map between all possible
subgraphs of d-regular graphs, d ≤ 8, see Fig. 5. The
top panel shows the colormap of parameter transferability
coefficients between all possible pairs of subgraphs of d-
regular graphs (d ≤ 8, 35 subgraphs total). Each axis is
split into groups of d subgraphs of d-regular graphs, and
the color values in each cell represent the transferability
coefficient computed for the corresponding directional
pair of subgraphs, defined as follows. For every donor

Donor                                                 Acceptor

Fig. 4. Schematic representation of the sufficient condition for successful
transferability of optimal QAOA parameters from a donor to an acceptor
graph. Each graph, represented by a stadium, consists of a number of
subgraphs, represented by circles. The arrows indicate the directions in
which optimal parameters need to be transferable between individual
subgraphs in order to guarantee transferability from the donor to the
acceptor graph.



Fig. 5. Transferability map between all subgraphs of random regular graphs with maximum node degree dmax = 8, for QAOA depth p = 1.
High (blue) and low (red) values represent good and bad transferability, correspondingly. Good transferability among even-regular and odd-regular
random graphs, and poor transferability across even- and odd-regular graphs, in both directions, is observed.

subgraph, from which the optimized γ , β parameters are
being transferred, we performed numerical optimization
with 200 steps, repeated 20 times with random initial
points. Each of the obtained (γ, β) pairs was then used
to evaluate the QAOA energy contribution of the central
edge of the corresponding acceptor subgraph. The trans-
ferability coefficient was then calculated as the average
energy contribution of the acceptor subgraph, evaluated
using each of the 20 optimized parameters from the donor
subgraph, divided by the maximum energy contribution
of the acceptor subgraph found by the same optimization
procedure. All considered subgraphs are shown on the
bottom panel of Fig. 5. Note that parameter transferability
is a directional property between (sub)graphs, and good
transferability from (sub)graph A to (sub)graph B does not

guarantee good transferability from B to A. This general
fact can be easily understood by considering two graphs
with commensurate energy landscapes, for which every
energy maximum corresponding to graph A also falls onto
the energy maximum for graph B, but some of the energy
maxima for graph B do not coincide with those of graph
A.

The regular pattern of alternating clusters of high and
low transferability coefficients in Fig. 5 illustrates that
the parameter transferability effect extends from 3-regular
graphs to the entire family of odd-regular graphs, as well
as to even-regular graphs (Conjectures 1 and 2), with poor
transferability between the two classes (Conjecture 3).
For example, the established result for 3-regular graphs is
reflected at the intersection of columns and rows with the



Fig. 6. Transferability map between all subgraphs of random graphs with maximum node degree dmax = 6, for QAOA depth p = 1. Subgraphs
are visually separated by dashed lines into groups of subgraphs with the same degrees of the nodes forming the central edge. Solid black rectangles
correspond to optimized parameter transferability between subgraphs of random regular graphs (Fig. 5).



label ‘(3)’ for both donor and acceptor subgraphs. The fact
that all cells in the 3x3 block in Fig. 5, corresponding to
parameter transfer between subgraphs of 3-regular graphs,
have high values, representing high mutual transferability,
explains the observation of optimal QAOA parameter
transferability between arbitrary 3-regular graphs [17].

B. General random graph transferability

Having considered optimal MaxCut QAOA parameter
transferability between random regular graphs, we now
focus on general random graphs. Subgraphs of an arbitrary
random graph differ from subgraphs of random regular
graphs in that the two nodes connected by the central edge
can have a different number of connected edges, making
the set of subgraphs of general random graphs much more
diverse. The upper panel of Fig. 6 shows the transferability
map between all possible subgraphs of random graphs with
node degrees d ≤ 6, a total of 50 subgraphs, presented in
the lower panel. The transferability map can serve as a
lookup table for determining whether optimized QAOA
parameters are transferable between any two graphs.

Fig. 6 reveals another important fact about parame-
ter transferability between subgraphs of general random
graphs. Subgraphs labeled as (i, j), where i and j represent
the degrees of the two central nodes of the subgraph,
are in general transferable to any other subgraph (k, l),
provided that all {i, j, k, l} are either odd or even. This
result is a generalization of the transferability result for
odd- and even-regular graphs described above. However,
Fig. 6 shows that there exist a number of pairs of sub-
graphs with mixed degrees (not only even or odd) that
also transfer well to other mixed degree subgraphs, e.g.
subgraph#20 (3, 4) → subgraph#34 (4, 5). The map
of subgraph transferability provides a unique tool for
identifying smaller donor subgraphs, the optimized QAOA
parameters for which are also nearly optimal parameters
for the original graph. It can also be used to define the
likelihood of parameter transferability between two graphs
based on their subgraphs. Below we demonstrate how it
can explain the optimized QAOA parameter transferability
between seemingly unrelated different 6- and 64-node
graphs.

C. Parameter transferability examples

We will now demonstrate that the parameter transfer-
ability map from Fig. 5 can be used to find small-N donor
graphs from which the optimized QAOA parameters can
be successfully transferred to a MaxCut QAOA instance
on a much larger acceptor graph. We consider three 64-
node acceptor graphs to be solved and three 6-node donor
graphs, see Fig. 7. Table I contains the details of the donor
and acceptor graphs, including the total number of edges,
the list of all subgraph components (labeled using the
notations from Fig. 6), optimized γ and β parameters and
the corresponding energy, energy of the optimal solution,
and the approximation ratio. Graphs ##1–3, 5, and 6
consist of nodes with degrees 3 and 5, while the graph
#4 has nodes with degrees 1, 3, and 5. The optimized
QAOA parameters for the donor and acceptor graphs
were found by performing numerical optimization with 20
restarts, 200 iterations each. Table II shows the results of

the corresponding transfer of optimized parameters from
the donor graphs ##1–3 to the acceptor graphs ##4–6,
correspondingly. The approximation ratios obtained as a
results of the parameter transfer in all three cases show
only a 1–2% decrease, compared to the ones obtained by
optimizing the QAOA parameters for the corresponding
acceptor graphs directly. These examples demonstrates the
power of the approach introduced in this paper.

Donor (N = 6)                  Acceptor (N = 64)
#1

#2

#3

#4

#5

#6

Fig. 7. Demonstration of optimized parameter transferability between
N = 6 donor and N = 64 acceptor random graphs. Using optimized
parameters from the donor graph for the acceptor leads to the reduction
in approximation ratio of 0.8%, 2.0%, and 2.1% for the three examples,
top to bottom, compared to optimizing the parameters for the acceptor
graph directly, for p = 1.

IV. CONCLUSIONS AND OUTLOOK

Finding optimal QAOA parameters is a critical step in
solving combinatorial optimization problems by using the
QAOA approach. Several existing techniques to accelerate
the parameter search are based on the advanced optimiza-
tion and machine learning strategies. However, in most
works, various types of global optimizers are employed.
Such a straightforward approach is highly inefficient for
exploration due to complex energy landscapes for hard
optimization instances.

An alternative effective technique presented in this
paper is based on two intuitive observations, namely, (a)
the energy landscapes of small subgraphs exhibit “well
defined” areas of extrema that are not anticipated to be
an obstacle for optimization solvers (see Fig. 3), and (b)
structurally different sub-graphs may have similar energy
landscapes and optimal parameters. A combination of
these observations is important because in the QAOA
approach, the cost is calculated by summing the contribu-
tions at the sub-graph level, where the size of a subgraph
depends on the circuit depth p.

With this in mind, the overarching idea of our ap-
proach is solving the QAOA parameterization problem
for large graphs by optimizing parameterization for much
smaller graphs and reusing it. We started with studying
the transferability of parameters between all subgraphs
of random graphs with the maximum degree of 8. Good
transferability of parameters was observed among even-
regular and odd-regular subgraphs. In the same time,



TABLE I

Graph Nodes Edges Subgraphs γ β Energy Energy (opt) Approx. ratio

#1 6 10 (17, 24) 2.22762 0.31316 6.26729 7.0 0.89533
#2 6 11 (18, 24, 44) 2.24098 1.861 6.67106 8.0 0.83388
#3 6 12 (24, 44) 2.24677 0.28448 7.18433 9.0 0.79826
#4 64 102 (2, 4, 16, 17, 22, 23, 40, 41) 1.70967 1.9566 67.81171 89.0 0.76193
#5 64 144 (8, 12, 22, 23, 40, 41, 42) 2.47656 2.7577 92.76621 122.0 0.76038
#6 64 128 (8, 12, 16, 17, 22, 23, 40, 41) 2.48427 1.18309 83.85389 111.0 0.75544

TABLE II

Transfer Energy Approx. ratio

#1 → #4 66.99604 0.75276 (-0.8%)
#2 → #5 90.90949 0.74516 (-2.0%)
#3 → #6 82.12825 0.73989 (-2.1%)

poor transferability was detected between even- and odd-
regular pairs of graphs, in both directions, as shown in
Figs. 5 and 6. This experimentally confirms the proposed
approach.

A remarkable demonstration on non-regular random
graphs that generalizes the proposed approach is the trans-
ferability of the parameters from 6-node random graphs (at
the sub-graph level) to 64-node random graphs, as shown
in Fig. 7. The approximation ratio loss of only 1–2% was
observed in all three cases.

One may notice that we studied parameter transferabil-
ity only for p = 1, where the subgraphs are small and
transferability is straightforward. However, our prelimi-
nary work suggests that this technique will also work for
larger p which will require advanced subgraph exploration
algorithms and will be addressed in the following work.
Another promising future research direction is a general-
ization of parameter transferability for even-to-even and
odd-to-odd degree graphs of different sizes.

This work was enabled by the very fast and efficient
tensor network simulator QTensor developed at Argonne
National Laboratory [21]. Unlike state vector simulators,
QTensor can perform energy calculations for most in-
stances with p ≤ 3, d ≤ 6, and graphs with N ∼
1, 000 nodes very quickly, usually within seconds. For
the purpose of this work, we computed QAOA energy
for 64-node graphs with d ≤ 5 at p = 1, which took
a fraction of second per each execution on a personal
computer. However, with state vector simulators, even such
calculations would not have been possible due prohibitive
memory requirements to store the state vector.

As a result of this work, finding optimized parame-
ters for some QAOA instances will become quick and
efficient, removing this major bottleneck in the QAOA
approach and potentially removing the optimization step
altogether in some cases, eliminating the variational nature
of QAOA. Our method has important implications for
implementing QAOA on relatively slow quantum devices,
like neutral atom and trapped-ion hardware, for which
finding optimal parameters may take a prohibitively long
time. Thus, quantum devices will be used only to sample
from the output QAOA state to get the final solution to
the combinatorial optimization problem. Our work will

ultimately bring QAOA one step closer to the realization
of quantum advantage.
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