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Abstract—Graph states form an important class of mul-
tipartite entangled quantum states. We propose a new
approach for distributing graph states across a quantum
network. We consider a quantum network consisting of
nodes—quantum computers within which local operations
are free—and EPR pairs shared between nodes that can
continually be generated. We prove upper bounds for
our approach on the number of EPR pairs consumed,
completion time, and amount of classical communication
required, all of which are equal to or better than that of
prior work [10]. We also reduce the problem of minimizing
the completion time to distribute a graph state using our
approach to a network flow problem having polynomial
time complexity.

I. INTRODUCTION

A. Motivation

Graph states form an important class of multipartite

entangled states. They are interesting both theoretically,

for their importance in one-way and measurement-based

quantum computing [6] [13], and practically, for their

applications such as to quantum metrology [15] and

secure multi-party computation [7].

The role of graph states in measurement-based quan-

tum computation makes them especially interesting as

a resource to distribute across a quantum network. A

classic result states that any quantum computation can

be done in a “one-way” fashion [13] by preparing a

graph state among a set of qubits, then performing

measurements and single-qubit operations based on the

measurement results. Preparing such graph states among

qubits in different network nodes allows the network

to perform these one-way computations in a distributed

manner, which can be especially useful if different

network nodes receive different parts of the input to

some quantum computation. This establishes distribution

of graph states across a quantum network as an important

service for it to provide.

B. Prior Work

There has been considerable work on the construction

of graph states at a single node [2], [9] and in the context

of photonic cluster computing [1]. Much of the work

on generation and distribution of graph states across a

quantum network has focused on providing robustness

and resilience to noise in the channels between network

nodes, and memories and gates in the nodes. For example

Cuquet and Calsamiglia [4] consider a similar graph state

distribution protocol to ours. However, they focus on a

network with a star topology as opposed to a network

having an arbitrary topology as in our work. They

optimize for both fidelity and fidelity decay rate given

the constraint of noisy channels, instead of optimizing

for EPR pair consumption and time required to distribute

the graph state given the network topology.

Pirker and Dür [11] [12] consider graph state distri-

bution protocols for more general network topologies

like our work. Their focus is on their placement in a

larger network protocol stack and how it can be modified

to work within an unreliable network rather than their

performance in terms of resource requirements and time

to complete entanglement distribution.

The work of Meignant et al. [10] is closest to ours

in spirit. They proposed an algorithm for constructing

an edge-decorated complete graph (EDCG) across a

network, which is then transformed into a desired graph

state. They then derived upper bounds on the number of

EPR pairs consumed and on time to complete the con-

struction, under the assumption that channels, memories,

and logic is perfect, and that Bell state measurements

are deterministic. We conduct a similar analysis of a

different algorithm to generate and distribute graph states

across a network. Our approach consists of constructing

the graph state at one node and transporting the qubits

to the appropriate nodes within the network. Henceforth,

we refer to the algorithm proposed in [10] as the EDCG

algorithm.

C. Overview of Results

In this work, we study the following Graph State

Transfer (GST) algorithm for distributing graph states

across a quantum network. Suppose a set of network

nodes desires to share a specific graph state, with one

qubit from the graph state in each network node. The

http://arxiv.org/abs/2009.10888v3


idea behind our algorithm is to first create a local copy

of the desired graph state at one node of the network and

then distribute the graph state to the relevant set of nodes.

This can be thought of as an extension of the bipartite A

protocol from [4] to the general network setting. Besides

introducing this generalization we make the following

contributions:

• We analyze the EPR pair consumption of our GST

algorithm through the derivation of an upper bound

as a function of the quantum network size. We

also show that the GST algorithm never consumes

more EPR pairs than the EDCG algorithm. For

some networks, such as those with a binary tree

topology, the difference in the numbers of EPR

pairs consumed can be significant.

• We derive an upper bound on the time needed

to distribute the graph state (henceforth referred

to as completion time). We present a polynomial

time algorithm that chooses paths in a network

that minimizes that completion time for the GST

algorithm. We also show that the completion time

of the GST algorithm is never more than that of the

EDCG algorithm.

• We analyze the quantum memory and classical

communication requirements for the GST algo-

rithm. The memory requirements are shown to be

considerably less for the GST algorithm and the

classical communication overheads are comparable.

Table I details these comparisons.

Our approach to distributing graph states naturally

leads to a new resource graph state: a graph state

that can be distributed among a set of network nodes

ahead of time that allows instantaneous distribution of

any other graph state among those nodes by consuming

the resource graph state, once that other graph state is

known. This is useful if one knows the set of nodes

that will request to share a graph in the future, but one

does not yet know the exact graph state that will be

requested. Our resource graph state requires maintaining

fewer qubits than that of prior work.

II. BACKGROUND

A. Graph States

A graph state [8] is a type of multiple-qubit state

that is useful for certain quantum computing operations

between multiple parties. We represent a graph state as

a graph G = (V,E) where the vertices correspond to

qubits. The graph state for G is initiated with all qubits

in the |+〉 state followed by the application of controlled

Z operations to all pairs of qubits corresponding to

pairs of vertices in E. More precisely, the graph state

corresponding to G is

|ψG〉 =





∏

(u,v)∈E

CZu,v



 |+〉|V |.

Note that CZ operations commute, so we can apply the

CZ operations in any order we want (or all at once).

The graph state class of multiparty entangled states

is useful because, among other reasons, there is a set

of quantum operations that affect the state (up to lo-

cal correction operations) graphically—ie, we can think

about simple, familiar graph operations instead of quan-

tum operators and measurements. We use the following

quantum operations (and their corresponding graphical

operations) in this paper:

• Local complementation of a vertex a ∈ V re-

places the subgraph corresponding to the neigh-

bors of a with its complement. This operation

requires O(|Na|) bits of classical communication

(O(1) communication between a and each of its

neighbors), where Na is the set of neighbors of a.

The quantum operations required to perform this

graphical operation are given in [8].

• Edge addition/deletion of an edge (u, v) creates an

edge if one does not exist, or deletes it if it does.

It corresponds to the CZu,v operation.

• Z-measurement of a vertex a deletes a and all of

its incident edges.

• Y -measurement of a vertex a has the effect of

deleting vertex a and all of its incident edges, and

locally complementing its neighbors. This operation

requires O(|Na|) bits of classical communication:

O(1) communication between a and each of its

neighbors.

A useful property of the edge addition/deletion and Y -

measurement operations (along with the local correc-

tion operations implicit to Y -measurement) is that any

sequence of edge addition/deletion operations and Y -

measurement operations can be rewritten into an equiv-

alent sequence of operations such that the edge addi-

tions/deletions occur first and all measurements come

next. All local correction operations (one per qubit) can

be executed concurrently [6] at the end. This allows us

to perform a sequence of O(n) edge creation and Y -

measurement operations in O(1) time.

B. Quantum Networks

A quantum network is a set of nodes and edges

(V ′, E′). Nodes correspond to routers and repeaters; they

are computers with unlimited numbers of qubits, the

capability to perform local operations and communicate

within their neighborhood in order to effect long dis-

tance entanglement. An edge represents a pair of nodes



Fig. 1: An example quantum network. Red circles rep-

resent nodes; blue edges represent connections between

nodes, which can be regenerated after being consumed

by quantum operations within nodes.

connected by a quantum channel that can generate EPR

pairs between them, and can regenerate EPR pairs as

necessary. The state of a quantum network at any point in

time is a graph state among all the qubits in all the nodes

of the network. We give an example quantum network

in Figure 1.

A natural task is to distribute a graph state across a

quantum network to a set of nodes. This means we alter

the network state such that each qubit in a graph state

exists in a specific node. Rather than preparing a graph

state from some other graph state among a specified set

of qubits via graphical operations, which is not always

possible (in fact, it is NP-complete to determine whether

transforming one graph state into another is possible

[5]), we only require that each qubit in the graph state

be part of a specified node. To achieve this, we can

use local operations within nodes (which are free in

our model), and link-level EPR pair regeneration. EPR

pair regeneration, an operation on qubits in different

nodes, is expensive—EPR pair consumption is one of the

performance metrics of a quantum networking algorithm

in this model.

For the problem of distributing an arbitrary graph state

among a network with n nodes, Meignant et al. [10] give

an algorithm that consumes at most
n(n−1)

2 EPR pairs

and has a completion time of at most n − 1 timesteps.

They also propose a “resource graph state” (see Figure 2)

that can be distributed among a network ahead of time in

order to enable instantaneous distribution of an arbitrary

graph state. Their resource graph state requires
n(n−1)

2
qubits. We present a graph state distribution algorithm

that uses at most
n(3n/2−1)

2 EPR pairs. This algorithm

naturally leads to an alternate resource graph state that

requires 2(n− 1) qubits.

III. CONNECTION TRANSFER

We start with a simple sequence of operations we refer

to as connection transfer. This operation starts with a

qubit a at a node A ∈ V ′ that is connected to other

qubits, which are possibly outside A. A also includes

(a) Complete graph
(b) Edge-decorated complete
graph (EDCG)

Fig. 2: A 4 node example of a resource graph state. (a) A

4-node network such that the network graph state is the

complete graph among 4 qubits, each qubit in a different

node. (b) A 4-node network such that the network graph

state is the edge-decorated complete graph: a complete

graph with additional vertices added to split each edge

into two. The additional vertices added can exist in

either of the nodes of the edge which that vertex split

in two. Z or Y measuring a decoration vertex deletes

or preserves the original edge, respectively. By Z or Y
measuring each decoration vertex (along with associated

local correction operations), any 4-qubit graph state can

be prepared among the 4 nodes.

c b a

(a) Setup.

c

(b) End result.

Fig. 3: The setup and end result of the connection

transfer process. We transfer the edges connected to a
to qubit c, by consuming the EPR pair between b and c.

a second qubit b that is entangled with a third qubit c
residing at another node. Connection transfer changes

the network graph state such that the edges between

qubit a and its neighborhood are connected to qubit c
instead of a. See Figure 3 for the setup and end result

of connection transfer. We present two approaches to

connection transfer: via graphical operations, and via

teleportation.

Figure 4 details connection transfer via graphical

operations. First we create an edge between a and b with

a local CZ operation. Then we Y -measure both a and

b. The successive Y -measurements locally complement

a’s neighborhood twice, but the second such local com-

plementation undoes the first, making the net effect of

the two Y -measurements to transfer a’s connections to

c. This process consumes one (non-local) EPR pair.

Connection transfer via teleportation is straightfor-

ward. Again, we start with a qubit a whose edges we

wish to transfer to a qubit c. Qubit c is connected to a

qubit b located in the same node as a. This situation is



c b a

(a) Starting configuration.

c b a

(b) Local quantum opera-
tion: CZa,b.

LC

c b

(c) Y -measure a. Results in
locally complementing a’s
(former) neighborhood.

c

(d) Y -measure b. This un-
does the local complementa-
tion of the neighborhood of
a.

Fig. 4: Connection transfer via graphical operations.

depicted in Figure 3(a). The initial state is

|ψG〉 =
1√
2

(

|+〉b|0〉c + |−〉b|1〉c
)

1√
2

(

|0〉a + |1〉a
∏

v∈Na

Zv

)

(

∏

(u,v)∈E′′

CZu,v

)

|+〉⊗|V \{a,b,c}|

where E′′ is the edge set of the network’s graph state

except for those incident to a, and except for (b, c).
We break this expression down term by term. The

|+〉⊗|V \{a,b,c}| term corresponds to all qubits except a,

b, and c prepared in the |+〉 state. The
∏

(u,v)∈E′′ CZu,v

operations create all the edges except for (b, c) and

those connected to a. The 1√
2

(

|0〉a + |1〉a
∏

v∈Na

Zv

)

term creates the qubit a and the edges between

a and the vertices in its neighborhood Na. The
1√
2
(|+〉b|0〉c + |−〉b|1〉c) term creates the qubits b and

c and the edge between them.

It is easy to see that measuring qubits a and b in the

basis
{

1√
2
(|0〉a|+〉b ± |1〉a|−〉b) ,

1√
2
(|0〉a|−〉b ± |1〉a|+〉b)

}

(1)

results in the desired transfer of a’s connections to c.
To see this, consider what happens when we obtain the

measurement result |φ〉 = 1√
2
(|0〉a|+〉b + |1〉a|−〉b):

〈φ|ψG〉 =
1

2
√
2

(

|0〉c + |1〉c
∏

v∈Na

Zv

)

(

∏

(u,v)∈E′

CZu,v

)

|+〉⊗|V \{a,b,c}|.

This is precisely the graph state depicted in Figure 3(b).

If the measurement result is another Bell state besides

|φ〉 then an X and/or Z gate correction will also need

→

Fig. 5: Example setup and end result of our GST

algorithm. A local copy of the final graph state (green)

is prepared within a node and distributed throughout the

network.

to be applied to qubit c, as is done with conventional

quantum teleportation of one qubit.

Note that the graphical and teleportation approaches to

connection transfer are essentially equivalent—the local

CZ operation of the graphical approach effects a change

of basis, allowing the 2 single-qubit Y -measurements to

achieve the same effect as the multi-qubit measurement

in the basis (1) used in teleportation. The graphical

approach requirement that each node be able to perform

local CZ operations and Y -measurements is no stricter

than the operation requirements of nodes considered in

prior work [10].

IV. GRAPH STATE DISTRIBUTION

We can transfer a qubit’s connections to a node not

connected to that qubit’s node through a sequence of

connection transfers along a path of edges in the network

running from the starting node to the desired node. This

suggests the following algorithm for generating a graph

state. First, generate a local copy of the graph state at

some node via local CZ operations, which are free in

our model. Next, transfer the connections (using either

of the aforementioned connection transfer methods) of

each qubit to its corresponding node. Figure 5 illustrates

the starting state and end result of this algorithm for an

example network and desired final graph state. We call

this algorithm the Graph State Transfer algorithm, or the

GST algorithm.

This requires the root node to maintain |S| qubits

(where S is the set of network nodes that will share

the final graph state) and prepare them in an entangled

state via local CZ operations. This may be a difficult

requirement to meet for large networks; however, it is

also required of the graph state distribution approach in

[10].

A. Resource Graph State

This approach to distributing graph states suggests

a resource graph state—a graph state that can be dis-

tributed among a set of nodes ahead of time that allows

any arbitrary graph state to be distributed among those



· · ·

root

other nodes that will

share the graph state

Fig. 6: A resource graph state that requires 2(n − 1)
qubits, where n is number of nodes that will share the

final graph state.

nodes in one timestep. Resource graph states are useful if

we know ahead of time that a set of nodes (or a superset

of nodes) will request a graph state, but we do not know

what that graph state will be. We choose one node in the

network (called the “root node”) and have the network

graph state be such that the root node shares an entangled

pair with every other node that will share the desired final

graph state, as in Figure 6. This allows us to generate an

arbitrary graph state in one time step by generating the

local copy at the root and distributing the graph state as

usual, using either connection transfer method.

This resource graph state requires 2(n − 1) qubits,

where n is the number of nodes that will share the graph

state. This is an improvement over the
n(n−1)

2 qubits

needed for the EDCG (Figure 2), the resource graph

state proposed in [10]. This improvement is significant

because long-term maintenance of memory qubits is,

and likely will continue to be, a challenging engineering

problem.

V. EPR PAIR CONSUMPTION

Each connection transfer operation consumes one EPR

pair. For each qubit in a graph state whose connections

are transferred to a relevant node, those connection

transfers consume a number of EPR pairs equal to the

length of the path in the network from the root node the

relevant node. Thus the total number of EPR pairs used

to distribute a graph state across a network depends on

the choice of paths from the root node to every other

node in the network (and also implicitly depends on

the choice of a root node). The number of EPR pairs

consumed equals the sum of the lengths of such paths.

Upper bounding the number of EPR pairs consumed

by this algorithm when distributing a graph state among

a set of nodes S is thus equivalent to upper bounding the

sum of minimum path lengths from some root node to

every node in S. We upper bound this sum by choosing

the root node to our advantage. For any connected graph

with n vertices and any vertex v, at most n− i vertices

can be distance i away from v. This means the sum of

minimum path lengths from v to all vertices in S, which

we call Ne(S), is at most

Ne(S) ≤ (n− 1) + (n− 2) + · · ·+ (n− |S|)

=
|S|(2n− |S| − 1)

2
.

In particular, if S = V ′ (ie. we are distributing a graph

state across the entire network) then we use at most

Ne(V
′) ≤ (n− 1) + (n− 2) + · · ·+ 1

=
n(n− 1)

2

(2)

EPR pairs. Note that this upper bound is achieved when

the network is a linear graph with the root at one end of

the line.

Suppose we have the flexibility to select any vertex

as the root. For any connected graph with n vertices

and maximum degree of at least two, basic graph theory

tells us that there exists a vertex v that is distance at

most
⌈

n−1
2

⌉

from any other vertex (see eg. [14] Theorem

4.1). Thus by choosing a root in the center of the graph,

we can replace every term in the above sum that is at

least
⌈

n−1
2

⌉

by
⌈

n−1
2

⌉

to get a better upper bound. We

compute this bound for even and odd n.

For even n, we replace every term in the sum from

(2) that is at least n
2 by n

2 to get

Ne(V
′) ≤ n

2
· n
2
+
(n

2
− 1

)

+
(n

2
− 2

)

+ · · ·+ 1

=
n2

4
+

n
2

(

n
2 − 1

)

2

=
3n2 − 2n

8
. (3)

For odd n, we replace every term in the sum from (2)

that is at least n−1
2 by n−1

2 to get

Ne(V
′) ≤ n+ 1

2
· n− 1

2
+

(

n− 1

2
− 1

)

+

(

n− 1

2
− 2

)

+ · · ·+ 1

=
n2 − 1

4
+

n−1
2

(

n−1
2 − 1

)

2

=
3n2 − 4n+ 1

8
. (4)

As n > 0, the even n bound from (3) is greater than the

odd n bound from (4), so in general Ne(V
′) ≤ (3n2 −

2n)/8.

This EPR pair consumption upper bound is lower

than that for the EDCG algorithm, [10], which uses up

to
n(n−1)

2 EPR pairs. However, we can also prove a

stronger result: that we always use less than or an equal

number of EPR pairs used by the EDCG algorithm.

The EDCG algorithm creates an edge-decorated com-

plete graph (EDCG) between the set of nodes S that



will share the final graph state (see Figure 2). To

create an EDCG among S = {s1, s2, · · · , sm}, the

EDCG algorithm creates an m-qubit GHZ state between

{s1, · · · , sm}, then an m− 1 qubit GHZ state between

{s2, · · · , sm}, then an m− 2 qubit GHZ state between

{s3, · · · , sm}, etc, until creating a 2 qubit GHZ state

(ie, just an EPR pair/edge in the network’s graph state)

between sm−1 and sm. These GHZ states are then

combined via local operations at each node to form an

EDCG. Then, each edge in the complete graph is either

deleted or kept, by Z-measuring or Y -measuring the

decoration vertex on that edge, respectively. See [10]

Figures 7 and 8 for more detail.

Theorem 1. The GST algorithm always uses less than

or an equal number of EPR pairs used by the EDCG

algorithm.

Proof. Creating a GHZ state between {sk, · · · , sm}
requires at least as many EPR pairs as performing

connection transfer from sm to sk, as the former will

use EPR pairs along a path in the network between sk
and sm (and possibly more EPR pairs). Thus, performing

connection transfer |S| − 1 times between sm and the

other nodes in S uses no more EPR pairs than generating

all the GHZ states required by the EDCG algorithm. So

by choosing sm as our root node, we use no more EPR

pairs than the EDCG algorithm does to distribute a graph

state among nodes in S.

A. An Example: Full Binary Tree

Here we provide an example where there is a large

gap in the numbers of EPR pairs consumed by the GST

algorithm and by the EDCG algorithm to distribute a

graph state among every node in a full binary tree.

Consider a full binary tree of height h (by convention

we consider the trivial tree with 1 vertex to have height

0); this graph has n = 2h+1− 1 vertices. We choose the

root of the tree as the root node of the network, and the

paths we use to transfer connections to every other node

of the network are obvious as there is only one choice

of path for each node since the network structure is a

tree. The number of EPR pairs consumed is the sum of

path lengths from the root node to every other node:

h
∑

i=1

i2i = 2h+1(h− 1) + 2 = Θ(n logn).

It is a straightforward calculation to show that the

EDCG algorithm requires
n(n−1)

2 EPR pairs to distribute

a graph state to every node in this network with the

EDCG algorithm. For this example, the EDCG algorithm

consumes Θ(n/ logn) more EPR pairs.

node A node B node C

Fig. 7: The setup for teleportation along two edges in

the network. The pair of qubits in node A and the pair

of qubits in node B will be measured in the basis in

Equation (1).

VI. MINIMIZING COMPLETION TIME

A. Parallelization

First, we show that any sequence of connection trans-

fers that does not require using any network edge more

than once can be done simultaneously in one timestep.

For the graphical connection transfer approach, note

that any sequence of connection transfers is a sequence

of controlled-Z operations, Y measurements (at most

one per qubit), and local correction operations required

by the measurement results. We can rearrange those

operations [6] (see Section 5.2 of [6] for details) into

a different sequence of operations with the same effect

such that the new sequence of operations consists first

of controlled-Z operations, followed by measurements,

and then local correction operations. The controlled-Z
operations will be done on the same qubit pairs as the

original sequence of operations, and the measurements

and local correction operations will also be done on the

same qubits as the original sequence.

This means any sequence of connection transfer op-

erations that does not use any edge in the network more

than once can equivalently be done as a sequence of (in

order):

1) Controlled-Z operations. These can all be done at

once as these operations commute.

2) Measurements. These can all be done at once

because the measurements are of different qubits.

3) Local correction operations based on the measure-

ment results.

The teleportation approach to connection transfer, like

the graphical approach, also allows connection transfers

among distinct edges in the network to be parallelized.

We can perform the necessary local correction operations

(X and/or Z gates) on the final qubit in the connection

transfer path based on the results of all the measurements

in the connection transfer path. The exact correction

operations on the final qubit are the correction operations

that would have been done on the qubits in the path, done

in reverse order of their appearance in the path.

To illustrate this rearrangement of operations from

multiple teleportations, we show exactly how it works

for the case of two teleportations in a row; see Figure



7 for the setup. When teleporting a state from node A
to node B and then from node B to node C, the usual

sequence of operations is:

1) Measure two qubits in node A in the basis in

Equation (1).

2) Based on the measurement result, perform a cor-

rection operation (X and/or Z gates) on a qubit in

node B.

3) Measure two qubits in node B in the basis in

Equation (1).

4) Based on the measurement result, perform a cor-

rection operation (X and/or Z gates) on a qubit in

node C.

Note that instead of correcting for the first measurement

result in step 2, we can teleport the uncorrected state

from node B to node C and then perform the correction

operations that we would have done in step 2 on the qubit

in node C. This results in the sequence of operations:

1) Measure two qubits in node A in the basis in

Equation (1).

2) Measure two qubits in node B in the basis in

Equation (1).

3) Based on the second measurement result, perform

a correction operation (X and/or Z gates) on the

qubit in node C.

4) Based on the first measurement result, perform a

correction operation (X and/or Z gates) on the

qubit in node C.

We can do both measurement operations at once since

they are performed on different qubits. The measurement

results can then be reported to node c, followed by all

local correction operations on node c.

This also easily generalizes to sequences of more

than two teleportations; we just continue teleporting

uncorrected states to the last qubit in the path and then

do all correction operations at that last qubit. This means

the only operations done at each node in a path of

teleportation connection transfers (except the last node

in the path) are the measurement operations, which can

all be done at once because they are measurements on

different qubits. Also, because the only local correction

operations are performed at the end of any chain of

connection transfers, the measurement results need only

be communicated to the last node of any path.

Even though the final qubit in a chain of n telepor-

tations may require up to 2n correction operations, that

sequence of operations will be equivalent to one of the

16 elements of the Pauli group on 1 qubit. So the up to

2n correction operations required can be accomplished

in O(1) time by applying the relevant element from the

Pauli group.

We refer to the time it takes to perform simulta-

neous CZ operations, measurements, local correction

operations, and generate any EPR pairs as needed, as

a timestep. Thus any sequence of connection transfer

operations that does not use any edge in the network

more than once, done via the graphical approach or

teleportation approach, can be executed in one timestep.

In general, distributing a graph state across an n node

network will take no more than n − 1 timesteps. This

is because the connection transfers on each path from

the root node to another node can be executed in one

timestep, and there are at most n − 1 such paths—one

per node that receives connections from the root node.

B. Optimization via Path Selection

We can often do better than n− 1 timesteps. We can

minimize the completion time by solving a network flow

problem (see eg. [3] chapter 26). Specifically, given a

network graph, a root node, and a set of vertices S of

the network graph that will share the final graph state,

we construct a network flow problem instance such that

its maximum flow is |S| iff there is a set of |S| paths

from the root to the vertices in S such that no edge in

the graph is used more than k times (which allows us to

distribute a graph state in k timesteps). A binary search

on k, as well as trying all possible root nodes, gives the

optimal time to distribute a graph state among the nodes

in S.

The construction is as follows. Start with the original

network graph with each edge having weight k. Add

a new vertex t. Finally, add edges from each vertex

in S to t with weight 1 (see Figure 8). This network

flow problem instance is related to completion time

minimization by the following theorem.

Theorem 2. In the network flow construction given in

Figure 8, the max flow from the root node to t is |S| iff

there exist |S| paths in the network, each from the root

to a different node in S, such that each edge is used at

most k times.

Proof. The ⇐= direction is obvious, as we can

construct a flow of value |S| by adding all of the |S|
paths, and setting the flow of the edges from S to t to

be one.

For the =⇒ direction, start with a maximum

flow of value |S| from the root node to t. The flow

decomposition theorem allows us to decompose a max

flow of value |S| into path flows (and cycle flows, which

we can ignore) that combine to form the max flow.

Because there are |S| edges going into t each with weight

one, those path flows must have value one and there must

be |S| of them. Those |S| path flows each with value

one from the root node to t give us |S| paths from the

root node to each node in S. Because each edge in the

network flow instance has capacity at most k, each edge
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(edges from S to t have weight 1)

network graph with edge weights k

Fig. 8: Let every edge in this graph (which is the network

graph, plus |S| edges from every node in S to an extra

vertex t) have weight k, except for the edges to t which

have weight 1. Then the max flow from v1 (the root) to

t is |S| iff there is set of |S| paths from the root to every

node in S such that every edge in the network is used

at most k times.

in the original network graph must be used at most k
times by all the paths.

Our completion time minimization algorithm is given

in Algorithm 1. See Figure 9 for an example of connec-

tion transfer paths found by our network flow approach.

Note that selecting connection transfer paths in the

network that minimize completion time may result in

more EPR pairs consumed than indicated by our pre-

viously derived upper bound. This is because the paths

found from the network flow problem may not be the

shortest paths from the root node to the nodes in S,

and the EPR pair consumption bound relies on using

the shortest paths in the network. Exploring the trade-

off between reducing completion time and reducing EPR

pair consumption is a subject for future work.

C. An Example: Full Binary Tree

In Section V.a, we computed the number of EPR pairs

consumed when distributing a graph state among every

node of a network with a full binary tree structure. If

we use the same root node (the root of the tree) and

paths as we introduced in Section V.a, then the two edges

connected to the root node will each be used n−1
2 times,

and every other edge in the network will be used fewer

times. Thus the completion time for the GST algorithm

to distribute a graph state to every node of that network

is n−1
2 timesteps. This is an improvement over the n−1

timesteps required by the EDCG algorithm.

VII. CLASSICAL COMMUNICATION REQUIREMENTS

Both graphical and teleportation based graph state

distribution require O(n2) bits of classical communi-

cation to distribute a graph state across a network of

size n. The classical communication requirement comes

from communicating measurement results so nodes can

perform the appropriate local correction operations.

For the graphical approach—if, for each qubit whose

connections we transfer to its destination node, we

root

S

(a) The network graph, in-
cluding the root and S.

root

t

2

2

2

22

2 2

1 1 1 S

(b) The network flow prob-
lem instance with k = 2.

root

t

2

1

1

21

1 1

1 1 1 S

(c) A maximum flow from
the root to t, with value 3 =

|S|. All flow directions are
upward.

root

S

(d) The paths from the root
to S found by the flow de-
composition theorem. Each
edge is used at most k = 2

times.

Fig. 9: An example of connection transfer paths found

by our network flow approach.

reorder the edge addition, Y -measurement, and local cor-

rection operations such that the local corrections come

last [6] (see Section VI for details on this process), then

we send O
(

n2
)

classical bits for measurement results.

This is because each time we transfer the connections

of a qubit to its destination node, we can transmit all

O(n) measurement results to the root node, which will

then transmit all O(n) correction operation requirements

(which require O(1) classical communication each) to

the nodes which require local correction. Thus we

require O(n) classical communication for each qubit

whose connections we transfer to a destination node, or

O
(

n2
)

communication total.



Algorithm 1 Our algorithm for minimizing the completion time of distributing a graph state in a network with

graph structure G, to some subset S of nodes in the network.

‘

1: procedure NETWORKFLOW(G, S, k, root)

2: Start with the network graph G and assign all edge weights k.

3: Add a vertex t.
4: Add |S| edges, from every vertex in S to t, with weight 1.

5: Let root be the source node of this network flow instance and let t be the sink node.

6: return the max flow of this network.

7: procedure MINIMIZECOMPLETIONTIME(G, S)

8: for all possible root nodes v ∈ V (G) do

9: Use binary search on k to find the minimum k ∈ {1, 2, · · · , |S|} such that NetworkFlow(G,S, k, v)
has max flow |S|.

10: Let kv be this minimum k value.

11: Let root = argminv∈V (G) kv .

12: Let k = minv∈V (G) kv .

13: Use the flow decomposition theorem to extract |S| paths from NetworkFlow(G,S, k, root).
14: Use these |S| paths to distribute the graph state among the network from the root node to the nodes in S.

For the teleportation approach—when transferring any

qubit’s connections to its destination node, the local

correction operation at the destination node depends on

the measurement results of all of the O(n) measurements

done at each node along the path in the network. Hence

each node that shares the final graph state requires O(n)
qubits of classical communication, for a total of O(n2)
bits of classical communication.

The EDCG algorithm for graph state distribution also

requires O(n2) classical communication. A star expan-

sion operation on a qubit with m neighbors requires

O(m) bits of classical communication. Distributing a

GHZ state across a graph with n vertices requires that

each node only be communicated with once, so only

O(n) bits of communication are required. The EDCG

algorithm requires distributing a GHZ state n times,

so O(n2) bits of classical communication are required.

Also, performing edge measurements and subsequent

local corrections to turn the EDCG state into the desired

graph state requires O(1) bits for each edge, for O(n2)
bits total.

Note that both of our connection transfer approaches

result in O(1) bits of classical communication required

for each measurement done—equivalently, O(1) bits of

classical communication for each EPR pair consumed.

Also, the EDCG algorithm requires Ω(1) bits of classical

communication per EPR pair consumed as that also

requires communicating measurement results of each

measurement that consumes an EPR pair. Thus Theorem

1 from Section V also extends from EPR pair consump-

tion to bits of classical communication—if the EDCG

algorithm for graph state distribution uses c(n) bits of

classical communication to distribute a graph state in a

network of size n, then the GST algorithm uses O(c(n))
bits.

Table I summarizes all the cost metrics of our graph

state distribution algorithm compared to the EDCG al-

gorithm [10].
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