
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Pseudo Quantum Random Number Generator with

Quantum Permutation Pad

Abstract— Cryptographic random number generation is critical

for any quantum safe encryption. Based on the natural

uncertainty of some quantum processes, variety of quantum

random number generators or QRNGs have been created with

physical quantum processes. They generally generate random

numbers with good unpredictable randomness. Of course,

physical QRNGs are costic and require physical integrations

with computing systems. This paper proposes a pseudo quantum

random number generator with a quantum algorithm called

quantum permutation pad or QPP, leveraging the high entropy

of quantum permutation space its bijective transformation.

Unlike the Boolean algebra where the size of information space

is 2n for an n-bit system, an n-bit quantum permutation space

consists of 2n! quantum permutation matrices, representing all

quantum permutation gates over an n-bit computational basis.

This permutation space holds an equivalent Shannon

information entropy log2(2n!). A QPP can be used to create a

pseudo QRNG or pQRNG capable integrated with any classical

computing system or directly with any application for good

quality deterministic random number generation. Using a QPP

pad with 64 8-bit permuation matrices, pQRNG holds 107,776

bits of entropy for the pseudo random number generation,

comparing with 4096 bits of entropy in Linux /dev/random. It

can be used as a deterministic PRNG or entropy booster of other

PRNGs. It can also be used as a whitening algorithm for any

hardware random number generator including QRNG without

discarding physical bias bits.

Keywords—QPP, quantum permutation pad, quantum

permutation gates, PRNG, QRNG, pQRNG, entropy booster

I. INTRODUCTION

Random number generations can be categoried into two

classes: hardware random number generators or TRNGs and

software/pseudo random number generators or PRNGs. A

HRNG is a device which generates random numbers from a

specific physical process such as noise sampling, free running

oscillators, chaos, and quantum effects. These processes are

generally considered to be unpredictable. Of HRNGs,

quantum random number generators are specifically referred

to optical devices. Rarity, Owens, and Tapster (1994) [1]

reviewed the early status of interferometry-based quantum

cryptography and compared photon-pair and faint-pulse

schemes. Stefanov, et al (2000) [2] reported their optical

quantum random number generator, a simple beam splitter.

The random events are realized from the choice of single

photons between two outputs of a beam splitter. Ma, et al

(2016) published their recent review of quantum random

number generators [3]. They classified QRNGs into three

categories: practical QRNG, self-testing QRNG, and semi-

self-testing QRNG. The practical QRNG is built on fully

trusted and calibrated devices and produce good randomness

at high speed. The self-testing QRNG generates verifiable

randomness without trusting the actual implementation. The

semi-self-testing QRNG provides a tradeoff between the

trustworthiness on the device and the generation speed.

Gehring, et al in 2020, reported their ultra fast quantum

random number generation at a speed 8 Gbps based on

quadrature measurements of vacuum fluctuations [4].

Gehring, et al in 2021, reported their homedyne-based

quantum random number generator at 2.9 Gbps. By using a

different technique for quantum random number generation

through measurements of laser phase fluctuations. Nie, et al

in 2015 [6], reported their extremely high generation speed at

68 Gbps.

Some commercially available QRNGs can be found in the

market. ID Quantique’s Quantis QRNG offers two form

factors of PCI card and USB [7], coming with generation

speed at 4 Mbps and 16 Mbps. Quintessence Labs offers their

QRNG qStream PCIe card with 8 Gbps quantum entropy

source, reduced to 1 Gbps unconditional entropy after the

whitening algorithm. Commercial QRNGs usually comes

with certaint whitening algorithm to remove biases in the

outputs of a physical generator.

Although QRNGs can produce truly unpredictable random

numbers, they are generally expensive and also not suitable

to integrate in certain computing systems such as user end

devices. The most common way to have a good randomness

generator is to use pseudo-random number generators. James

and Moneta (2020) [9] reviewed pseudo-random number

generators based on the Kolmogorov–Anosov theory of

mixing in classical mechanical systems. Orúe, et al (2017)

[10], reported their deep review on cryptographic secure

PRNGs for IoT devices. In 2019, Baldanzi, et al, presented

a cryptographically secure PRNG based on SHA2 hash

algorithm [11]. They analysised different cryptographic

algorithms such as SHA2, AES-256 CTR mode, and triple

DES to build deterministic random bit generators or DRBGs.

Randy Kuang
Quantropi Inc.

Ottawa, Canada

randy.kuang@quantropi.com

Dafu Lou
Quantropi Inc.

Ottawa, Canada

dafu.lou@quantropi.com

Alex He
Quantropi Inc.

Ottawa, Canada

alex.he@quantropi.com

Chris McKenzie
Quantropi Inc.

Ottawa, Canada

chris.mckenzie@quantropi.com

Michael Redding
Quantropi Inc.

Ottawa, Canada

michael.redding@quantropi.com

The highest security strength is 256 bits of entropy. Their

DRBG based on SHA256 cryptographic primitive has passed

NIST randomness testing with high pass rate. They has

implemented it on FPGA and ASIC standard-cell

technologies. With those hardware accelerations, their

cryptographic secure PRNGs demonstrate high throughput

pseudo-random number generations. Mandal, et al (2013)

[12] designed and analysised a new lightweight

cryptographic pseudo random number generator called

Warbler PRNG for smart devices, which demonstrates a good

randomness and passes NIST randomness testing suite.

However, it only has a security of 45-bit entropy.

Among all existing PRNGs, xorShift worthes a special

mention although it is generally among the non-

cryptographically secure random number generator.

Marsaglia created it in 2003 [13], there have been developed

multiple variations of improvements such as xorshift* to use

an invertible multiplication to its outputs, xorshift+ (64+ or

128+) to use addition for faster non-linear transformations,

xoshiro, and xoroshiro with rotations in addition to additions.

The unique benefit from xorshift family PRNGs is their fast

generation speed. They can simply generate pseudo random

numbers at a speed of Giga bytes per second. Vigna (2016)

[15] analysised xorshift PRNGs and found xorshift128+ to be

the fastest generator successfully passing BigCrush testing.

One of major issues from existing PRNGs is the limited

entropy injected with a seed. With our knowledge, the highest

entropy accepted by a PRNG algorithm is 1024 bits in

xorshift1024+/xorshift1024* where statistical tests are also

failed for linearity. That indicates that increasing the seed

length may not fix those failures.

Kuang and Bettenburg in 2020 [16] proposed a new

algorithm based on quantum permutation logic gates or

quantum permutation pad or QPP over quantum

computational basis. AbdAllah1, Kuang, and Huang also

applied QPP to generate Just-in-Time shared keys (JIT-SK)

for TLS 1.3 Zero roundtrip time (0-RTT) [17]. Kuang, et al

in 2021 [18], proposed a quantum safe lightweigh

cryptographic algorithm by replacing SubBytes and

AddRoundKey with the same QPP in AES algorithm and

achieved a round reduction by two-thirds. Kuang and

Barbeau (2021) [19] proposes a universal quantum safe

cryptography with QPP. This paper plans to build a pseudo

quantum random number generator or pQRNG with QPP,

based on a quantum computing algorithm.

 In the remaining parts, we will briefly introduce QPP in

section 2, then propose pQRNG and perform randomness

analysis in section 3, and a conclusion will be drawn at the

end.

II. QUANTUM PERMUTATION PAD

Classical computing systems are built on the Boolean algebra
with a set of basic Boolean logic gates such as AND, OR,
NAND, NOR, and XOR. They are bitwise operations.

Quantum computers are built on linear algebra over Hilbert
space, or called computational basis in quantum computing,
with operations represented by quantum logic gates such as
Hadamard gate and permutation gates. The mathemathical
expressions of quantum logic gates are all unitary and
reversable square matrices over the computational basis.
Quantum gates are classified into two categories: non-
classical behavior and classical behavior gates. The former
represents quantum superpositions and entanglements and the
later is deterministic transformation from an input state of the
system to an output state, or simply a state permutation. For a
n-qubit system with 2n information states represented by
Galois field GF(2n), the entire state permutations form the
symmetric group S

2n, with total 2n! unique permutations. A

generic permutation gate can be physically implemented with
an algorithm proposed by Shende et al in 2003 [20] using
quantum NOT, CNOT and TOFFOLI gates in a quantum
computing system and can be also mathematically expressed
with permutation matrix in classical computing systems.

A n-qubit permutation gate can be represented by a 2nx2n
permutation matrix P[2n, 2n] over a quantum computational
basis: {|0⟩, |1⟩, …., |2n-1⟩}, with only one element to be 1 on
each row and each column and all others to be 0. Each
permutation matrix represents a bijective mapping from input
information space to output space. There exist 2n! unique
bijective mappings between input and output information
space over the computational basis (note: only 2n mappings
under Boolean algebra). The entire permutation matrices form
a special space called permtation space of 2n! dimensions,
associated with an equivalent Shannon entropy e = log2(2n!) ≈
2n (n - 0.42) bits at a larger n. For n=8 bits, the corresponding
entropy is 1684 bits. Therefore, an n-bit permutation space can
be considered as an entropy expansion from the classical
Boolean information space or Galois field GF(2n) to quantum
permutation space or S

2n. This huge entropy from the quantum

permutation space paves a foundation for quantum safe
cryptography with the property of the Shannon perfect secrecy
[16].

An n-bit permutation matrix can be randomly selected through
the Fisher-Yates shuffling algorithm with a true random seed
of length n2n bits as shown in Algorithm 1 for n = 8. For a
QPP pad with M permutation matrices, we can repeat the
Algorithm 1 for M times to create the pad with nM2n bits of
random secrets. A typical QPP pad with M=64 and n=8 can
have an equivalent Shannon entropy = 107,744 bits. Such a
high entropy can be used to build pQRNG.

Algorithm 1. Pseudo code of QPP mapping from the secret key

-- only illustrate a single permutation matrix selection

-- state array S[256] → a permutation matrix P[256][256]
-- initialize P[256][256]to all zeros

for i from 0 to 255

 S[i] = i
-- input random key k[N] in bytes with N =256

for i from 255 down to 1 do

 j = k[i]
 swap S[j] and S[i]

for i from 0 to 255

 P[i][S[i]] = 1

https://arxiv.org/search/cs?searchtype=author&query=Vigna%2C+S

III. PSEUDO QUANTUM RANDOM NUMBER GENERATOR

As what we discussed in section II, QPP is a quantum

algorithm which can be implemented both in a quantum

computing system and a classical computing system. It has

been proven to be a quantum-based cryptographic algorithm

with the property of Shannon perfect secrecy [16]. It is our

motivation to build a new quantum algorithm-based pseudo

random number generator or pQRNG.

Figure 1 illustrates a deterministic pQRNG either with a input

seed or directly retrieve from the local system such as

/dev/random or /dev/urandom in a Linux system. The length

of the seed is 64x256 Bytes = 16KB. Therefore, a pQRNG

has a theoretical internal states 2131,072, amazing! The PRNG

is seeded with the input seed so it can deterministically

produce pseudo random numbers to control a dispatcher to

select specific permutation matrix in QPP. The Counter is

initialized by the supplied seed too. The feedback from the

output and is XORed then randomly dispatched to a certain

permutation matrix for transformation. A input byte is

dispatched to the permutation matrix with index = x >> 2 or

rigth shift 2 bits where x is a pseudo random byte produced

by the PRNG. The output from QPP is considered as pseudo

quantum random numbers or pQRN.

We use industry recognized randomness testing stuites NIST

800-22, Dieharder, and ENT to test pQRNs from pQRNG.

For NIST testing, here are the testing parameters:

• Block frequency: 20,000

• Non-overlapping Template Matching: 9

• Overlapping Template Matching: 9

• Approximate Entropy: 10

• Serial: 10

• Linear Complexity: 500

Table 1 displays the results with NIST 800-22 randomness

testing. We generate 1GB random numbers and store it into a

binary file and then supply to NIST 800-22 testing suite. For

comparisons, we also display testing results together with

pseudo random numbers generated from the system rand()

through C library and xorshift128+. It is clearly seen from

Table 1 that pseudo random numbers generated from both

pQRNG and xorshift128+ pass all 15 NIST testing cases. But

pseudo random numbers from C library rand() are failed. The

same testing results are appeared for Dieharder testing in

Table 2. Both xorshift128+ and pQRNG have zero failure but

rand() has 2 failures.

Table 1. NIST 800-22 testing reports are illustrated with other two

PRNGs. The firt PRNG is from the system standard C library, the

second PRNG is xorshift128+ and the third is pQRNG. pQRNG is

seeded with 16KB seed. The testing file size is 1GB.

Table 2. Dieharder testing is displayed with the same three PRNGs

as in Table 1.

ENT randomness testing suite can generally catch the byte

level bias from the supplied random data files. Hurley-Smith,

Patsakis and Hernandez-Castro [21] recently identified

biased QRNG random generations from a popular

commercial QRNG family called Quantis [7] with ENT,

where Chi square demonstrates a huge deviation from the

idea value 256. In ENT testing, Arithmetical Mean has an

ideal value to be 127.50 and Serial Correlation Coefficient

measures the extent to which each byte in the file depends

upon the previous byte and for true random it should be zero.

Monte Carlo 𝝅 indicates the Monte Carlo Value for PI to be

ideally 3.14159265. Chi Square should be around 256 with a

pvalue between 0.01 and 0.99 for good randomness data.

ENT test report with pQRNG is tabulated in Table 3. We

illustrate the testing result in Table 3. Again both

NIST 800-22 rand() xorshift128+ pQRNG

Frequency Success Success Success

Block Frequency Success Success Success

Cumulative Sums Success Success Success

Runs Success Success Success

Longest Run Success Success Success

Rank Success Success Success

FFT Failed Success Success

Non-Overlapping

Template

Success Success Success

Overlapping Template Failed Success Success

Universal Success Success Success

Approximate Entropy Success Success Success

Random Excursions Success Success Success

Random Excursions

Variant

Success Success Success

Serial Success Success Success

Linear Complexity Success Success Success

Dieharder rand() xorshift128+ pQRNG

Passes 109/114 113/114 108/114

Weeak 3/114 1/114 6/114

Failed 2/114 0 0

Init

PRNG
൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

……..

൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

Dispatcher

QPP

Seed /random

Counter

Figure 1. A deterministic pQRNG is illustrated. QPP consists of 64

8-bit permutation matrices to be randomly selected with an external

random seed of length up to 16KB.

xorshift128+ and pQRNG shows very good randomness,

especially for Chi square report. The Chi square is 231.04,

for pQRNG and 263 for xorshift128+ respectively.

However, rand() fails ENT testing with Chi square to be

107.35 and p-value to be 1.0 which indicates that the data

is not random for sure although three random generators

shows very close testing results for Arithematical Mean,

Monte Carlo 𝝅 and Serial Correlation. That is why Chi Square
testing can identify if the input data is random or not at byte
level.

Table 3. ENT testing is illustrated with the same three PRNGs as in

the Table 1.

One interesting point from Table 3 is the serial correlation

value. Of course, the ideal random data should have no

correlation to each other. That means, the smaller in the serial

correlation is better in randomness. Table 3 shows that the

serial correlation is 8x10-6 from pQRNG, 1.9x10-5 from

xorshift128+ and 5.2x10-5 from rand(), respectively.

It would be interesting to see the comparison between a

physical QRNG and pQRNG. We use a QRNG called

qStream from Quintessence Labs. qStream QRNG can

generate 1 Giga bits of good random numbers per second, one

of the highest throughput on the market. Although both

qStream and pQRNG pass NIST and Dieharder randomness

test suites, we would like to illustrate the test reports for ENT

because ENT randomness test is very sensitive to byte level

bias [21]. Table 4 lists three sets of reports, two from pStream

and one from pQRNG. For pStream QRNG, we perform ENT

randomness testing with 300 MB and 1 GB of random

numbers. All three reports pass ENT testing without visible

byte level bias. Chi square values are around the ideal value

256, with good p-values. But it is surpringly noticed that

testing results from pStream 300 MB show extremely close

report to pQRNG for all testing cases. It is hard to say wich

testing data set is more random within the acceptable p-value

between 0.01 and 0.99 of Chi Square. However, serial

correlation value is worth to a close look because it indicates

the correlation between each byte and its previous byte.

pStream’s serial correlation is -4.0x10-5 for 300 MB and

1.7x10-5 for 1 GB, but pQRNG’s serial correlaion is 8x10-6.

That means, pQRNG demonstrate slightly less serial

correlation than qStream QRNG in this comparison.

Table 4. ENT randomness testing is tabulated for comparisons

between physical QRNG from Quintessece Labs’ pStream and

pQRNG. We list testing reports from two data sizes from pStream.

ENT pStream

300MB

pStream

1GB

pQRNG

1GB

Entropy (bits) 8.000000 8.000000 8.000000

Chi Square 231.03 259.41 231.04

p-Value 0.86 0.41 0.86

Arith. Mean 127.5035 127.5016 127.4995

Monte Carlo 𝝅 3.14141912 3.14147598 3.141659557

Serial

Correlation

-0.00004 0.000017 0.000008

Figure 2 plots a slight variation of a deterministic pQRNG

shown in Figure 1, used to create a quantum entropy booster

or qeBooster. As an entropy booster, qeBooster injects the

entropy to improve input prng’s randomness. Linux

/dev/random is an HRNG taking entropy from the system

hardware. A typical Linux /dev/random has an entropy pool

of 4096 bits. If the pool is not full, any random number

request would be blocked utill the pool is full. In order to

allow non-blocking random number generation,

/dev/urandom is created. Based on that, urandom is a special

PRNG associated with /dev/random. If the entropy pool is

always full, then urandom would demonstrate excellent

randomness, but the situation would be extremely bad if the

pool is always nearly empty, which may be the case of cloud

servers. In the case of servers are extremely lacking of

entropy, they would generate keys with low entropy so reduce

security. In this case, /dev/urandom can be piped with

qeBooster to boost its entropy.

Other PRNGs can be also piped with qeBooster to boost its

entropy for cryptographic pseudo random number generation.

As an example, we take a popular fast PRNG created from C

library rand() as the input prng for qeBooster.

ENT rand() Xorshift128+ pQRNG

Entropy (bits) 8.000000 8.000000 8.000000

Chi Square 107.35 263.79 231.04

p-Value 1.00 0.34 0.86

Arith. Mean 127.5013 127.5023 127.4995

Monte Carlo 𝝅 3.141580069 3.141349333 3.141659557

Serial

Correlation

0.000052 0.000019 0.000008

Init

PRNG
൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

……..

൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

൥
⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩

Dispatcher

QPP

Seed /random

prng

Figure 2. qeBooster behaves as an entropy booster for a low

entropy pseudo random number generator.

 Table 5. NIST testing is tabulated for rand() with geBooster as its

entropy booster.

Tables 5 - 7 demonstrate the testing results with rand() and

rand() + qeBooster. After qeBooster, the boosted pseudo

random numbers from rand() demonstrate good randomness

improvements:

• one failure cases are disappeared in NIST testing;

• two failure cases in Dieharder are also disappeared, plus

one weak case is reduced;

• in ENT tests, the major improvement is the Chi square

from 190.91 with p-value = 1.00 to 284.43 with p-value

= 0.10; the byte level bias is significantly improved.

(note: in comparison wih Table 3, we notice that pseudo

random numbers generated by rand() at different time

show different randomness at different time.)

• in Dieharder test, rand() shows 6 weak and 2 failed. But

after qeBooster, 5 weak and 0 failed.

 Table 4. Dieharder testing is tabulated for rand() with qeBooster

as an entropy booster.

 Table 5. ENT testing is tabulated for rand() with qeBooster as an

entropy booster.

qeBooster comes with huge entropy, over 100Kb, and adapts

QPP as its entropy injection algorithm. It can be applied to

any input data, even with statistically biased plaintexts. We

want to demonstrate its capability with a 100MB of English

characters to see how powerful it would be to blend any data

into randonness. Table 8 tabulates its testing results with

ENT. The plaintext file fails all ENT test cases:

• The entropy per 8-bits is 4.22, indicating the input data

are indepent English sympols [25].

• Chi square is 1821992676.77 with p-value 0.0001, meaning

totally bias.

• Arithematic mean is 97.9686, but ideal value is 127.5.

• Monte Carlo 𝝅 value is 4.00 not 3.14159265, so a unit

square not a unit circle.

• Serial correlation is -0.138722, showing the strong correlation

for each byte to its previous byte.

Then after qeBooster, the output file demonstrates a good

randomness for all ENT test cases:
• The entropy per 8-bits is 7.999998, no longer English

characters, with 0% compression rate.

• Chi square is 233.20 with p-value 0.83, no visible byte level

bias existed.

• Arithematic mean is 127.4953, very close to ideal 127.5.

• Monte Carlo 𝝅 value is 3.141981640, with error ~0.01%.

• Serial correlation is – 9.3x10-5, dropped down from -0.139.

It is clearly seen from this extreme case that qeBooster injects

great entropies into input data and make it be in good

randomness, thanks to quantum permutation pad. In this case,

qeBooster acts as a data encryptor with the boosted data as

the ciphertexts of input plaintexts. We also display the testing

results with qStream QRNG with 200 MB random data as our

comparison to the output of qeBooster. Both sets of data show

close randomness to each other.

 Table 8. ENT testing is tabulated for statistically biased plaintext

inputs with qeBooster as an entropy booster.

qeBooster may be a good candidate for the whitening

algorithm of QRNG or any HRNG. A physical quantum

random number generator naturaly produce the output

random numbers with certain biases. In order to remove the

biases, a whitening algorithm must be used to produce true

random numbers. John von Neumann invented an algorithm

to discard all ‘00’ and ‘11’ bits and convert ‘10’ to ‘1’ and

‘01’ to ‘0’. This algorithm works nicely but it directly wastes

75% of bits. It is possible to use qeBooster with extremely

high entropy to “smooth out” the bias. Therefore, we would

waste any valuable bits generated from a physical QRNG

then the physical throughput of a QRNG can be increased by

4-8x.

NIST 800-22 Rand() with qeBooster
Frequency Success Success

Block Frequency Success Success

Cumulative Sums Success Success

Runs Success Success

Longest Run Success Success

Rank Success Success

FFT Failed Success

Non-Overlapping Template Success Success

Overlapping Template Failed Failed

Universal Success Success

Approximate Entropy Success Success

Random Excursions Success Success

Random Excursions Variant Success Success

Serial Success Success

Linear Complexity Success Success

Dieharder rand() Rand() + qeBooster

Passed 106/114 109/114

Weak 6/114 5/114

Failed 2/114 0

ENT rand() Rand() + qeBooster

Entropy (bits) 7.999999 7.999998

Chi Square 190.91 284.43

p-Value 1.00 0.10

Arith. Mean 127.4939 127.5054

Monte Carlo 𝝅 3.141834126 3.141980526

Serial Corr. 0.000007 0.000022

ENT Plaintexts + qeBooster qStream

200MB

Entropy (bits) 4.224280 7.999998 8.000000

Chi Square 1821992676.77 233.20 240.45

p-Value 0.0001 0.83 0.73

Arith. Mean 97.9686 127.4953 127.501

Monte Carlo

𝝅

4.000000000 3.141981640 3.14121543

Serial Corr. -0.138722 - 0.000093 -0.000004

https://en.wikipedia.org/wiki/John_von_Neumann

IV. CONCLUSION

This paper proposes to use quantum permutation pad or QPP

as a fundamental building block for pseudo quantum random

number generator or pQRNG, entropy booster for low

entropy PRNGs and whtining algorithm for HRNGs

including QRNGs to increase their physical random number

generation speeds. pQRNG demonstrates excellent

randomness in random number generations, with Giga bytes

per second. As an entropy booster, it can dramatically

improve the randomness of any input data. It has a small

footprint at 2.5KB so it can be embedded in any system to

boost system pseudo random number generations such as

/dev/urandom in Linux. We will perform further

benchmarking exploration in the near future.

REFERENCES

[1] JG Rarity, PCM Owens, and PR Tapster. Quantum random-number
generation and key sharing. Journal of Modern Optics, 41(12):2435-
2444, 1994.

[2] Andr_e Stefanov, Nicolas Gisin, Olivier Guinnard, Laurent Guinnard,
and Hugo Zbinden. Optical quantum random number generator.
Journal of Modern Optics, 47(4):595-598, 2000.

[3] Ma, X., Yuan, X., Cao, Z. et al. Quantum random number
generation. npj Quantum Inf 2, 16021 (2016).
https://doi.org/10.1038/npjqi.2016.21.

[4] Tobias Gehring, Cosmo Lupo, Arne Kordts, Dino Solar Nikolic, Nitin
Jain, Tobias Rydberg, Thomas B. Pedersen, Stefano Pirandola, Ulrik
L. Andersen. “Ultra-fast real-time quantum random number generator
with correlated measurement outcomes and rigorous security
certification”. https://arxiv.org/abs/1812.05377v3

[5] Gehring, T., Lupo, C., Kordts, A. et al. Homodyne-based quantum
random number generator at 2.9 Gbps secure against quantum side-
information. Nat Commun 12, 605 (2021).
https://doi.org/10.1038/s41467-020-20813-w.

[6] Nie YQ, Huang L, Liu Y, Payne F, Zhang J, Pan JW. The generation
of 68 Gbps quantum random number by measuring laser phase
fluctuations. Rev Sci Instrum. 2015 Jun;86(6):063105. doi:
10.1063/1.4922417. PMID: 26133826.

[7] IDQ Random Number Generation. IQ Quantique,
http://www.idquantique.com/random-number-generation/, 2017.

[8] Quintessence qStream quantum random number generator,
https://www.quintessencelabs.com/products/qstream-quantum-true-
random-number-generator/.

[9] James, F., Moneta, L. Review of High-Quality Random Number
Generators. Comput Softw Big Sci 4, 2 (2020).
https://doi.org/10.1007/s41781-019-0034-3.

[10] Orúe A.B., Hernández Encinas L., Fernández V., Montoya F.
(2018) A Review of Cryptographically Secure PRNGs in
Constrained Devices for the IoT. In: Pérez García H., Alfonso-
Cendón J., Sánchez González L., Quintián H., Corchado E. (eds)
International Joint Conference SOCO’17-CISIS’17-ICEUTE’17
León, Spain, September 6–8, 2017, Proceeding. SOCO 2017,
ICEUTE 2017, CISIS 2017. Advances in Intelligent Systems and
Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-
3-319-67180-2_65.

[11] Baldanzi, L., Crocetti, L., Falaschi, F., Bertolucci, M., Belli, J.,
Fanucci, L., & Saponara, S. (2020). Cryptographically Secure Pseudo-
Random Number Generator IP-Core Based on SHA2
Algorithm. Sensors (Basel, Switzerland), 20(7), 1869.
https://doi.org/10.3390/s20071869.

[12] Kalikinkar Mandal, Xinxin Fan and Guang Gong (2013). Warbler: A
Lightweight Pseudorandom Number Generator for EPC C1 Gen2
Passive RFID Tags. International Journal of RFID Security and
Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

[13] George Marsaglia, XorShift RNG's, Journal of Statistical Software
volume 8 issue 14, July 2003. doi:10.18637/jss.v008.i14

[14] Daniel Lemire and Melissa E. O'Neill. Xorshift1024*, Xorshift1024+,
Xorshift128+ and Xoroshiro128+ Fail Statistical Tests for Linearity.
https://arxiv.org/abs/1810.05313. 10.1016/j.cam.2018.10.019

[15] Sebastiano Vigna (2016). Further scramblings of Marsaglia's xorshift
generators, https://arxiv.org/abs/1404.0390

[16] R. Kuang and N. Bettenburg, "Shannon Perfect Secrecy in a Discrete
Hilbert Space," 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), Denver, CO, USA, 2020, pp. 249-
255, doi: 10.1109/QCE49297.2020.00039.

[17] Eslam G. AbdAllah1, Randy Kuang, and Changcheng Huang.
Generating Just-in-Time Shared Keys (JIT-SK) for TLS 1.3 Zero
RoundTrip Time (0-RTT). International Journal of Machine Learning
and Computing, 2021, to be pubished.

[18] R. Kuang, D. Lou, A, He, and A. Conlon, “Quantum Safe Lightweight
Cryptography with Quantum Permutation Pad”, 2021 The 6th
International Conference on Computer and Communication Systems
(ICCCS 2021), April 23rd -26th , Chengdu, China.

[19] R. Kuang and M. Barbeau, “Quantum Permutation Pad for Universal
Quantum Safe Cryptography”, manuscript submitted to Quantum
Information Processing 2021.

[20] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, "Synthesis
of reversible logic circuits," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 6, pp. 710-722,
June 2003.

[21] D Hurley-Smith, J Hernandez-Castro. “Quam Bene Non Quantum:
Bias in a Family Quantum Random Number Generators.” IACR
Cryptol. ePrint Arch. 2017, 842.

[22] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai.
On the (im) possibility of cryptography with imperfect randomness. In
Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 196-205. IEEE, 2004.

[23] National Institute of Standards and Technology. NIST com-puter
security resource center (CSRC). Retrieved from:
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html 13:53
07/09/2016.

[24] John Walker. Ent. A pseudo-random number sequence testing
program. Retrieved from: https://www.fourmilab.ch/random/ 13:52
07/09/2016.

[25] Walter Anderson. A study of entropyuh. Retrieved
from:https://sites.google.com/site/astudyofentropy/background-
information/the-tests 13:30 07/09/2016.

https://doi.org/10.1038/npjqi.2016.21
https://arxiv.org/search/quant-ph?searchtype=author&query=Gehring%2C+T
https://arxiv.org/search/quant-ph?searchtype=author&query=Lupo%2C+C
https://arxiv.org/search/quant-ph?searchtype=author&query=Kordts%2C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Nikolic%2C+D+S
https://arxiv.org/search/quant-ph?searchtype=author&query=Jain%2C+N
https://arxiv.org/search/quant-ph?searchtype=author&query=Jain%2C+N
https://arxiv.org/search/quant-ph?searchtype=author&query=Rydberg%2C+T
https://arxiv.org/search/quant-ph?searchtype=author&query=Pedersen%2C+T+B
https://arxiv.org/search/quant-ph?searchtype=author&query=Pirandola%2C+S
https://arxiv.org/search/quant-ph?searchtype=author&query=Andersen%2C+U+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Andersen%2C+U+L
https://arxiv.org/abs/1812.05377v3
https://doi.org/10.1038/s41467-020-20813-w
https://www.quintessencelabs.com/products/qstream-quantum-true-random-number-generator/
https://www.quintessencelabs.com/products/qstream-quantum-true-random-number-generator/
https://doi.org/10.1007/s41781-019-0034-3
http://www.jstatsoft.org/v08/i14/paper
http://www.jstatsoft.org/v08/i14/paper
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.18637%2Fjss.v008.i14
https://arxiv.org/search/cs?searchtype=author&query=Lemire%2C+D
https://arxiv.org/search/cs?searchtype=author&query=O%27Neill%2C+M+E
https://arxiv.org/abs/1810.05313
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.cam.2018.10.019&v=9c8e1eeb
https://arxiv.org/search/cs?searchtype=author&query=Vigna%2C+S

