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Pseudo Quantum Random Number Generator with 

Quantum Permutation Pad 

Abstract— Cryptographic random number generation is critical 

for any quantum safe encryption. Based on the natural 

uncertainty of some quantum processes, variety of quantum 

random number generators or QRNGs have been created with 

physical quantum processes. They generally generate random 

numbers with good unpredictable randomness. Of course, 

physical QRNGs are costic and require physical integrations 

with computing systems. This paper proposes a pseudo quantum 

random number generator with a quantum algorithm called 

quantum permutation pad or QPP, leveraging the high entropy 

of quantum permutation space its bijective transformation. 

Unlike the Boolean algebra where the size of information space 

is 2n for an n-bit system,  an n-bit quantum permutation space 

consists of 2n! quantum permutation matrices, representing all 

quantum permutation gates over an n-bit computational basis. 

This permutation space holds an equivalent Shannon 

information entropy log2(2n!). A QPP can be used to create a 

pseudo QRNG or pQRNG capable integrated with any classical 

computing system or directly with any application for good 

quality deterministic random number generation. Using a QPP 

pad with 64 8-bit permuation matrices,  pQRNG holds 107,776 

bits of entropy for the pseudo random number generation, 

comparing with 4096 bits of entropy in Linux /dev/random. It 

can be used as a deterministic PRNG or entropy booster of other 

PRNGs.  It can also be used as a whitening algorithm for any 

hardware random number generator including QRNG without 

discarding physical bias bits.    

Keywords—QPP, quantum permutation pad, quantum 

permutation gates, PRNG, QRNG, pQRNG, entropy booster 

I. INTRODUCTION 

Random number generations can be categoried into two 

classes: hardware random number generators or TRNGs and 

software/pseudo random number generators or PRNGs. A 

HRNG is a device which generates random numbers from a 

specific physical process such as noise sampling, free running 

oscillators, chaos, and quantum effects. These processes are 

generally considered to be unpredictable. Of HRNGs, 

quantum random number generators are specifically referred 

to optical devices. Rarity, Owens, and Tapster (1994) [1] 

reviewed the early status of interferometry-based quantum 

cryptography and compared photon-pair and faint-pulse 

schemes. Stefanov, et al (2000) [2] reported their optical 

quantum random number generator, a simple beam splitter. 

The random events are realized from the choice of single 

photons between two outputs of a beam splitter. Ma, et al 

(2016) published their recent review of quantum random 

number generators [3]. They classified QRNGs into three 

categories: practical QRNG, self-testing QRNG, and semi-

self-testing QRNG. The practical QRNG is built on fully 

trusted and calibrated devices and produce good randomness 

at high speed. The self-testing QRNG generates verifiable 

randomness without trusting the actual implementation. The 

semi-self-testing QRNG provides a tradeoff between the 

trustworthiness on the device and the generation speed. 

Gehring, et al in 2020, reported their ultra fast quantum 

random number generation at a speed 8 Gbps based on 

quadrature measurements of vacuum fluctuations [4]. 

Gehring, et al in 2021, reported their homedyne-based 

quantum random number generator at 2.9 Gbps. By using a 

different technique for quantum random number generation 

through measurements of laser phase fluctuations. Nie, et al 

in 2015 [6], reported their extremely high generation speed at 

68 Gbps.  

 

Some commercially available QRNGs can be found in the 

market. ID Quantique’s Quantis QRNG offers two form 

factors of PCI card and USB [7], coming with generation 

speed at 4 Mbps and 16 Mbps. Quintessence Labs offers their 

QRNG qStream PCIe card with 8 Gbps quantum entropy 

source, reduced to 1 Gbps unconditional entropy after the 

whitening algorithm. Commercial QRNGs usually comes 

with certaint whitening algorithm to remove biases in the 

outputs of a physical generator. 

 

Although QRNGs can produce truly unpredictable random 

numbers, they are generally expensive and also not suitable 

to integrate in certain computing systems such as user end 

devices. The most common way to have a good randomness 

generator is to use pseudo-random number generators. James 

and Moneta (2020) [9] reviewed pseudo-random number 

generators based on the Kolmogorov–Anosov theory of 

mixing in classical mechanical systems. Orúe, et al (2017) 

[10], reported their deep review on cryptographic secure 

PRNGs for IoT devices. In 2019, Baldanzi, et al, presented 

a cryptographically secure PRNG based on SHA2 hash 

algorithm [11]. They analysised different cryptographic 

algorithms such as SHA2, AES-256 CTR mode, and triple 

DES to build deterministic random bit generators or DRBGs. 
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The highest security strength is 256 bits of entropy.  Their 

DRBG based on SHA256 cryptographic primitive has passed 

NIST randomness testing with high pass rate. They has 

implemented it on FPGA and ASIC standard-cell 

technologies. With those hardware accelerations, their 

cryptographic secure PRNGs demonstrate high throughput 

pseudo-random number generations. Mandal, et al (2013) 

[12] designed and analysised a new lightweight 

cryptographic pseudo random number generator called 

Warbler PRNG for smart devices, which demonstrates a good 

randomness and passes NIST randomness testing suite. 

However, it only has a security of 45-bit entropy. 

 

Among all existing PRNGs, xorShift worthes a special 

mention although it is generally among the non-

cryptographically secure random number generator.  

Marsaglia created it in 2003 [13], there have been developed 

multiple variations of improvements such as xorshift* to use 

an invertible multiplication to its outputs, xorshift+ (64+ or 

128+) to use addition for faster non-linear transformations, 

xoshiro, and xoroshiro with rotations in addition to additions. 

The unique benefit from xorshift family PRNGs is their fast 

generation speed. They can simply generate pseudo random 

numbers at a speed of Giga bytes per second. Vigna (2016) 

[15] analysised xorshift PRNGs and found xorshift128+ to be 

the fastest generator successfully passing BigCrush testing.  

 

One of major issues from existing PRNGs is the limited 

entropy injected with a seed. With our knowledge, the highest 

entropy accepted by a PRNG algorithm is 1024 bits in 

xorshift1024+/xorshift1024* where statistical tests are also 

failed  for linearity. That indicates that increasing the seed 

length may not fix those failures.  

 

Kuang and Bettenburg in 2020 [16] proposed a new 

algorithm based on quantum permutation logic gates or 

quantum permutation pad or QPP over quantum 

computational basis. AbdAllah1, Kuang, and Huang also 

applied QPP to generate Just-in-Time shared keys (JIT-SK) 

for TLS 1.3 Zero roundtrip time (0-RTT) [17]. Kuang, et al 

in 2021 [18], proposed a quantum safe lightweigh 

cryptographic algorithm by replacing SubBytes and 

AddRoundKey with the same QPP in AES algorithm and 

achieved a round reduction by two-thirds. Kuang and 

Barbeau (2021) [19] proposes a universal quantum safe 

cryptography with QPP. This paper plans to build a pseudo 

quantum random number generator or pQRNG with QPP, 

based on a quantum computing algorithm. 

 

 In the remaining parts, we will briefly introduce QPP in 

section 2, then propose pQRNG and perform randomness 

analysis in section 3, and a conclusion will be drawn at the 

end. 

II. QUANTUM PERMUTATION PAD 

Classical computing systems are built on the Boolean algebra 
with a set of basic Boolean logic gates such as AND, OR, 
NAND, NOR, and XOR. They are bitwise operations. 

Quantum computers are built on linear algebra over Hilbert 
space, or called computational basis in quantum computing, 
with operations represented by quantum logic gates such as 
Hadamard gate and permutation gates. The mathemathical 
expressions of quantum logic gates are all unitary and 
reversable square matrices over  the computational basis. 
Quantum gates are classified into two categories: non-
classical behavior and classical behavior gates. The former 
represents quantum superpositions and entanglements and the 
later is deterministic transformation from an input state of the 
system to an output state, or simply a state permutation. For a 
n-qubit system with 2n information states represented by 
Galois field GF(2n), the entire state permutations form the 
symmetric group S

2n, with total 2n! unique permutations. A 

generic permutation gate can be physically implemented with 
an algorithm proposed by Shende et al in 2003 [20] using 
quantum NOT, CNOT and TOFFOLI gates in a quantum 
computing system and can be also mathematically expressed 
with permutation matrix in classical computing systems.   

A n-qubit permutation gate can be represented by a 2nx2n 
permutation matrix P[2n, 2n] over a quantum computational 
basis: {|0⟩, |1⟩, …., |2n-1⟩}, with only one element to be 1 on 
each row and each column and all others to be 0.  Each 
permutation matrix represents a bijective mapping from input 
information space to output space. There exist 2n! unique 
bijective mappings between input and output information 
space over the computational basis (note: only 2n mappings 
under Boolean algebra). The entire permutation matrices form 
a special space called permtation space of 2n! dimensions, 
associated with an equivalent Shannon entropy e = log2(2n!) ≈ 
2n ( n - 0.42) bits at a larger n. For n=8 bits, the corresponding 
entropy is 1684 bits. Therefore, an n-bit permutation space can 
be considered as an entropy expansion from the classical 
Boolean information space or Galois field GF(2n) to quantum 
permutation space or S

2n. This huge entropy from the quantum 

permutation space paves a foundation for quantum safe 
cryptography with the property of the Shannon perfect secrecy 
[16]. 

An n-bit permutation matrix can be randomly selected through 
the Fisher-Yates shuffling algorithm with a true random seed 
of length n2n bits as shown in Algorithm 1 for n = 8. For a 
QPP pad with M permutation matrices, we can repeat the 
Algorithm 1 for M times to create the pad with nM2n bits of 
random secrets. A typical QPP pad with M=64 and n=8 can 
have an equivalent Shannon entropy = 107,744 bits. Such a 
high entropy can be used to build  pQRNG. 

Algorithm 1. Pseudo code of QPP mapping from the secret key 

-- only illustrate a single permutation matrix selection 

-- state array S[256] → a permutation matrix P[256][256] 
-- initialize P[256][256]to all zeros 

for i from 0 to 255 

         S[i] = i 
-- input random key k[N] in bytes with N =256 

for i from 255 down to 1 do 

    j = k[i] 
   swap S[j] and S[i]  

for i from 0 to 255 

         P[i][S[i]] = 1 

 

https://arxiv.org/search/cs?searchtype=author&query=Vigna%2C+S


III. PSEUDO QUANTUM RANDOM NUMBER GENERATOR  

As what we discussed in section II, QPP is a quantum 

algorithm which can be implemented both in a quantum 

computing system and a classical computing system. It has 

been proven to be a quantum-based cryptographic algorithm 

with the property of Shannon perfect secrecy [16]. It is our 

motivation to build a new quantum algorithm-based pseudo 

random number generator or pQRNG. 

 

Figure 1 illustrates a deterministic pQRNG either with a input 

seed or directly retrieve from the local system such as 

/dev/random or /dev/urandom in a Linux system. The length 

of the seed is 64x256 Bytes = 16KB. Therefore, a pQRNG 

has a theoretical internal states 2131,072, amazing! The PRNG 

is seeded with the input seed so it can deterministically 

produce pseudo random numbers to control a dispatcher to 

select specific permutation matrix in QPP. The Counter is 

initialized by the supplied seed too. The feedback from the 

output and is XORed then randomly dispatched to a certain 

permutation matrix for transformation. A input byte is 

dispatched to the permutation matrix with index = x >> 2 or 

rigth shift 2 bits where x is a pseudo random byte produced 

by the PRNG. The output from QPP is considered as pseudo 

quantum random numbers or pQRN.  

 
We use industry recognized randomness testing stuites NIST 

800-22, Dieharder, and ENT to test pQRNs from pQRNG. 

For NIST testing, here are the testing parameters: 

 

• Block frequency: 20,000 

• Non-overlapping Template Matching: 9 

• Overlapping Template Matching: 9 

• Approximate Entropy: 10 

• Serial: 10 

• Linear Complexity: 500 

Table 1 displays the results with NIST 800-22 randomness 

testing. We generate 1GB random numbers and store it into a 

binary file and then supply to NIST 800-22 testing suite. For 

comparisons, we also display testing results together with 

pseudo random numbers generated from the system rand() 

through C library and xorshift128+. It is clearly seen from 

Table 1 that pseudo random numbers generated from both 

pQRNG and xorshift128+ pass all 15 NIST testing cases. But 

pseudo random numbers from C library rand() are failed. The 

same testing results are appeared for Dieharder testing in 

Table 2. Both xorshift128+ and pQRNG have zero failure but 

rand() has 2 failures. 

 
Table 1. NIST 800-22 testing reports are illustrated with other two 

PRNGs. The firt PRNG is from the system standard C library,   the 

second PRNG is xorshift128+ and the third is pQRNG. pQRNG is 

seeded with 16KB seed. The testing file size is 1GB. 

 
Table 2. Dieharder testing is displayed with the same three PRNGs 

as in Table 1. 

 

ENT randomness testing suite can generally catch the byte 

level bias from the supplied random data files. Hurley-Smith, 

Patsakis and Hernandez-Castro [21] recently identified 

biased QRNG random generations from a popular 

commercial QRNG family called Quantis [7] with ENT, 

where Chi square demonstrates a huge deviation from the 

idea value 256. In ENT testing, Arithmetical Mean has an 

ideal value to be 127.50 and Serial Correlation Coefficient 

measures the extent to which each byte in the file depends 

upon the previous byte and for true random it should be zero. 

Monte Carlo 𝝅 indicates the Monte Carlo Value for PI  to be 

ideally 3.14159265. Chi Square should be around 256 with a 

pvalue between 0.01 and 0.99 for good randomness data. 

ENT test report with pQRNG is tabulated in Table 3. We 

illustrate the testing result in Table 3. Again both 

NIST 800-22 rand() xorshift128+ pQRNG 

Frequency Success Success Success 

Block Frequency Success Success Success 

Cumulative Sums Success Success Success 

Runs Success Success Success 

Longest Run Success Success Success 

Rank Success Success Success 

FFT Failed Success Success 

Non-Overlapping 

Template 

Success Success Success 

Overlapping Template Failed Success Success 

Universal Success Success Success 

Approximate Entropy Success Success Success 

Random Excursions Success Success Success 

Random Excursions 

Variant 

Success Success Success 

Serial Success Success Success 

Linear Complexity Success Success Success 

Dieharder rand() xorshift128+ pQRNG 

Passes  109/114 113/114 108/114 

Weeak 3/114 1/114 6/114 

Failed 2/114 0 0 

Init 

PRNG 

⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 


⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 

…….. 


⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 


⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 

Dispatcher 

QPP 

Seed  /random 

Counter  

Figure 1. A deterministic pQRNG is illustrated. QPP consists of 64 

8-bit permutation matrices to be randomly selected with an external 

random seed of length up to 16KB.  

 



xorshift128+ and pQRNG shows very good randomness, 

especially for Chi square report. The Chi square is 231.04, 

for pQRNG and 263 for xorshift128+  respectively. 

However, rand() fails ENT testing with Chi square to be 

107.35 and p-value to be 1.0 which indicates that the data 

is not random for sure although three random generators 

shows very close testing results for Arithematical Mean, 

Monte Carlo 𝝅 and Serial Correlation. That is why Chi Square 
testing can identify if the input data is random or not at byte 
level. 
 
Table 3. ENT testing is illustrated with the same three PRNGs as in 

the Table 1. 

 

One interesting point from Table 3 is the serial correlation 

value. Of course, the ideal random data should have no 

correlation to each other. That means, the smaller in the serial 

correlation is better in randomness. Table 3 shows that the 

serial correlation is 8x10-6  from pQRNG, 1.9x10-5 from 

xorshift128+ and 5.2x10-5 from rand(), respectively.  

 

It would be interesting to see the comparison between a 

physical QRNG and pQRNG. We use a QRNG called 

qStream from Quintessence Labs. qStream QRNG can 

generate 1 Giga bits of good random numbers per second, one 

of the highest throughput on the market. Although both 

qStream and pQRNG pass NIST and Dieharder randomness 

test suites, we would like to illustrate the test reports for ENT 

because ENT randomness test is very sensitive to byte level 

bias [21]. Table 4 lists three sets of reports, two from pStream 

and one from pQRNG. For pStream QRNG, we perform ENT 

randomness testing with 300 MB and 1 GB of random 

numbers. All three reports pass ENT testing without visible 

byte level bias. Chi square values are around the ideal value 

256, with good p-values. But it is surpringly noticed that 

testing results from pStream 300 MB show extremely close 

report to pQRNG for all testing cases. It is hard to say wich 

testing data set is more random within the acceptable p-value 

between 0.01 and 0.99 of Chi Square. However, serial 

correlation value is worth to a close look because it indicates 

the correlation between each byte and its previous byte. 

pStream’s serial correlation is -4.0x10-5 for 300 MB and 

1.7x10-5 for 1 GB, but pQRNG’s serial correlaion is 8x10-6. 

That means, pQRNG demonstrate slightly less serial 

correlation than qStream QRNG in this comparison. 

 

Table 4. ENT randomness testing is tabulated for comparisons 

between physical QRNG from Quintessece Labs’ pStream and 

pQRNG. We list testing reports from two data sizes from pStream. 

ENT pStream 

300MB 

pStream 

1GB 

pQRNG 

1GB 

Entropy (bits) 8.000000 8.000000 8.000000 

Chi Square 231.03 259.41 231.04 

p-Value 0.86 0.41 0.86 

Arith. Mean 127.5035 127.5016 127.4995 

Monte Carlo 𝝅 3.14141912 3.14147598 3.141659557 

Serial 

Correlation 

-0.00004 0.000017 0.000008 

 

Figure 2 plots a slight variation of  a deterministic pQRNG 

shown in Figure 1, used to create a quantum entropy booster 

or qeBooster. As an entropy booster, qeBooster injects the 

entropy to improve input prng’s randomness. Linux 

/dev/random is an HRNG taking entropy from the system 

hardware. A typical Linux /dev/random has an entropy pool 

of 4096 bits. If the pool is not full, any random number 

request would be blocked utill the pool is full. In order to 

allow non-blocking random number generation, 

/dev/urandom is created. Based on that, urandom is a special 

PRNG associated with /dev/random. If the entropy pool is 

always full, then urandom would demonstrate excellent 

randomness, but the situation would be extremely bad if the 

pool is always nearly empty, which may be the case of cloud 

servers. In the case of servers are extremely lacking of 

entropy, they would generate keys with low entropy so reduce 

security. In this case, /dev/urandom can be piped with 

qeBooster to boost its entropy.  

 

Other PRNGs can be also piped with qeBooster to boost its 

entropy for cryptographic pseudo random number generation. 

As an example, we take a popular fast PRNG  created from C 

library rand()  as the input prng for qeBooster.   

 

ENT rand() Xorshift128+ pQRNG 

Entropy (bits) 8.000000 8.000000 8.000000 

Chi Square 107.35 263.79 231.04 

p-Value 1.00 0.34 0.86 

Arith. Mean 127.5013 127.5023 127.4995 

Monte Carlo 𝝅 3.141580069 3.141349333 3.141659557 

Serial 

Correlation 

0.000052 0.000019 0.000008 

Init 

PRNG 

⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 


⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 

…….. 

 


⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 


⬚ ⋯ ⬚
⋮ ⋱ ⋮
⬚ ⋯ ⬚

൩ 

Dispatcher 

QPP 

Seed  /random 

prng 

Figure 2. qeBooster  behaves as an entropy booster for a low 

entropy  pseudo random number generator.  



 Table 5. NIST testing is tabulated for rand() with geBooster as its 

entropy booster. 

 

Tables 5 - 7 demonstrate the testing results with rand() and 

rand() + qeBooster. After qeBooster, the boosted pseudo 

random numbers from rand() demonstrate good randomness 

improvements:  

 

• one failure cases are disappeared in NIST testing;  

• two failure cases in Dieharder are also disappeared, plus 

one weak case is reduced;    

• in ENT tests, the major improvement is the Chi square 

from 190.91 with p-value = 1.00 to 284.43 with p-value 

= 0.10; the byte level bias is significantly improved. 

(note: in comparison wih Table 3, we notice that pseudo 

random numbers generated by rand() at different time 

show different randomness at different time.) 

• in Dieharder test, rand() shows 6 weak and 2 failed. But 

after qeBooster, 5 weak and 0 failed. 

 Table 4. Dieharder testing is tabulated for rand() with qeBooster 

as an entropy booster. 

 
 Table 5. ENT testing is tabulated for rand() with qeBooster as an 

entropy booster. 

 

qeBooster comes with huge entropy, over 100Kb, and adapts 

QPP as its entropy injection algorithm. It can be applied to 

any input data, even with statistically biased plaintexts. We 

want to demonstrate its capability with a 100MB of English 

characters to see how powerful it would be to blend any data 

into randonness. Table 8 tabulates its testing results with 

ENT. The plaintext file fails all ENT test cases:  

• The entropy per 8-bits is 4.22, indicating the input data  

are indepent English sympols [25]. 

• Chi square is 1821992676.77 with p-value 0.0001, meaning 

totally bias. 

• Arithematic mean is 97.9686, but ideal value is 127.5. 

• Monte Carlo 𝝅 value is 4.00 not 3.14159265, so a unit 

square not a unit circle. 

• Serial correlation is -0.138722, showing the strong correlation 

for each byte to its previous byte. 

Then after qeBooster, the output file demonstrates a good 

randomness for all ENT test cases: 
• The entropy per 8-bits is 7.999998, no longer English 

characters, with 0% compression rate. 

• Chi square is 233.20  with p-value 0.83, no visible byte level 

bias existed. 

• Arithematic mean is 127.4953, very close to ideal 127.5. 

• Monte Carlo 𝝅 value is 3.141981640, with error ~0.01%. 

• Serial correlation is – 9.3x10-5, dropped down from -0.139. 

It is clearly seen from this extreme case that qeBooster injects 

great entropies into input data and make it be in good 

randomness, thanks to quantum permutation pad. In this case, 

qeBooster acts as a data encryptor with the boosted data as 

the ciphertexts of input plaintexts. We also display the testing 

results with qStream QRNG with 200 MB random data as our 

comparison to the output of qeBooster. Both sets of data show 

close randomness to each other. 

 
 Table 8. ENT testing is tabulated for statistically biased plaintext 

inputs with qeBooster as an entropy booster. 

 

qeBooster may be a good candidate for the whitening 

algorithm of QRNG or any HRNG. A physical quantum 

random number generator naturaly produce the output 

random numbers with certain biases. In order to remove the 

biases, a whitening algorithm must be used to produce true 

random numbers. John von Neumann invented an algorithm 

to discard all ‘00’ and ‘11’ bits and convert ‘10’ to ‘1’ and 

‘01’ to ‘0’. This algorithm works nicely but it directly wastes 

75% of bits. It is possible to use qeBooster with extremely 

high entropy to “smooth out” the bias. Therefore, we would 

waste any valuable bits generated from a physical QRNG 

then the physical throughput of a QRNG can be increased by 

4-8x.  

 

NIST 800-22 Rand() with qeBooster 
Frequency Success Success 

Block Frequency Success Success 

Cumulative Sums Success Success 

Runs Success Success 

Longest Run Success Success 

Rank Success Success 

FFT Failed Success 

Non-Overlapping Template Success Success 

Overlapping Template Failed Failed  

Universal Success Success 

Approximate Entropy Success Success 

Random Excursions Success Success 

Random Excursions Variant Success Success 

Serial Success Success 

Linear Complexity Success Success 

Dieharder rand() Rand() + qeBooster 

Passed 106/114 109/114 

Weak 6/114 5/114 

Failed 2/114 0 

ENT rand() Rand() +  qeBooster 

Entropy (bits) 7.999999 7.999998 

Chi Square 190.91 284.43 

p-Value  1.00 0.10 

Arith. Mean 127.4939 127.5054 

Monte Carlo 𝝅 3.141834126 3.141980526 

Serial Corr. 0.000007 0.000022 

ENT Plaintexts + qeBooster qStream 

200MB 

Entropy (bits) 4.224280 7.999998 8.000000 

Chi Square 1821992676.77 233.20 240.45 

p-Value  0.0001 0.83 0.73 

Arith. Mean 97.9686 127.4953 127.501 

Monte Carlo 

𝝅 

4.000000000 3.141981640 3.14121543 

Serial Corr. -0.138722 - 0.000093 -0.000004 

https://en.wikipedia.org/wiki/John_von_Neumann


IV. CONCLUSION 

This paper proposes to use quantum permutation pad or QPP 

as a fundamental building block for pseudo quantum random 

number generator or pQRNG, entropy booster for low 

entropy PRNGs and whtining algorithm for HRNGs 

including QRNGs to increase their physical random number 

generation speeds. pQRNG demonstrates excellent 

randomness in random number generations, with Giga bytes 

per second. As an entropy booster, it can dramatically 

improve the randomness of any input data. It has a small 

footprint at 2.5KB so it can be embedded in any system to 

boost system pseudo random number generations such as 

/dev/urandom in Linux. We will perform further 

benchmarking exploration in the near future. 
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