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Abstract—Quantum sensing is an important application of
emerging quantum technologies. We explore whether a hybrid
system of quantum sensors and quantum circuits can surpass
the classical limit of sensing. In particular, we use optimization
techniques to search for encoder and decoder circuits that
scalably improve sensitivity under given application and noise
characteristics.

Our approach uses a variational algorithm that can learn
a quantum sensing circuit based on platform-specific control
capacity, noise, and signal distribution. The quantum circuit is
composed of an encoder which prepares the optimal sensing state
and a decoder which gives an output distribution containing
information of the signal. We optimize the full circuit to maximize
the Signal-to-Noise Ratio (SNR). Furthermore, this learning
algorithm can be run on real hardware scalably by using the
“parameter-shift” rule which enables gradient evaluation on
noisy quantum circuits, avoiding the exponential cost of quantum
system simulation. We demonstrate up to 13.12x SNR improve-
ment over existing fixed protocol (GHZ), and 3.19x Classical
Fisher Information (CFI) improvement over the classical limit
on 15 qubits using IBM quantum computer. More notably,
our algorithm overcomes the decreasing performance of existing
entanglement-based protocols with increased system sizes.

Index Terms—Quantum sensing, quantum computation, circuit
learning, optimization, metrology

I. INTRODUCTION

In recent years, we have seen enormous growth in emerging
quantum technologies that exploit quantum mechanics for
various applications, such as computation, communication,
and sensing. The sensitivity of quantum states to changes in the
external environment, while seen as an obstacle in computation
and communication, becomes a valuable advantage in sensing.
Quantum sensing is believed to have the most immediate real-
world impacts, likely before other quantum technologies []1]].
The applications span a wide range of areas, including time-
keeping [2]], spectroscopy [3]], tests of fundamental physics [4]],
and probing nanoscale systems such as condensed matter and
biological systems [5]]. There has been exciting experimental
progress on various physical platforms, such as atomic vapor,
trapped ions, Rydberg atoms, superconducting circuits, and
nitrogen-vacancy centers in diamond. Even today, practical
quantum sensors such as SQUID magnetometers [6], atomic
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Fig. 1: SNR scaling. The classical parallel scheme (Classical
Limit) gives square root scaling of SNR versus the number
of sensing qubits. The theoretical upper bound of quantum
sensing is the Heisenberg Limit, which gives linear scaling.
Shaded region corresponds to entanglement-enhanced sensing.
Existing and optimized curves are based on experiments on
IBM hardware (dotted lines are extrapolations)—optimization
is able to overcome the decreasing performance of existing
entanglement-based protocols.

vapors, and atomic clocks [2] have already become the state-
of-the-art in magnetometry and timekeeping [7].

Quantum advantage is enabled by entanglement, which
allows for higher sensitivity than what can be achieved by
a classical parallelization of the sensing qubits—the classical
limit. As shown in Figure [} the classical limit gives a
square root scaling of Signal-to-Noise Ratio (SNR) versus the
number of sensing qubits. By contrast, the theoretical limit—
the Heisenberg limit—achieves linear scaling [1]], [8]-[10].
In recent years, there has been exciting experimental progress
beyond the classical limit in areas ranging from spectroscopy
[3]] to precision measurement [11f], [12] to the famous LIGO
experiment for gravitational wave detection [13], [[14]]. While
the state-of-the-art shows great promise in achieving quantum
advantage in sensing, we still expect further improvement—the
Hilbert space of entangled states is large and existing protocols
only explore a small set of sensing states. Furthermore, the
current state-of-the-art in entanglement-enhanced sensing is
still mostly proof-of-concept experiments, and such protocols
do not necessarily yield good performance on real hardware—
each platform is subject to a unique set of noise and control
constraints. Given the constraints of limited and imperfect con-
trol, device-specific noise, and readout errors of practical hard-
ware, theoretically-optimal sensing protocols yield suboptimal
performance. For example, the Greenberger—Horne—Zeilinger
state (GHZ state) is optimal without noise but decoheres easily
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Fig. 2: Algorithm schematic. Given available gateset and connectivity graph, multiple ansatz’s are proposed. Each template
parameterizes a circuit into a continuous vector, upon which we run optimization to maximize sensitivity. Optimization could
be run on-device via the “parameter-shift” rule for gradient evaluation. Optimization across different circuit structures converges

upon a final optimized output.

in noisy cases. Another theoretically optimal state, called the
spin-squeezed state, is hard to create if we do not have global
interaction or all-to-all qubit connectivity [7]. We believe that a
co-design optimization approach, which optimizes the sensing
apparatus circuit based on characteristics of the underlying
hardware, noise model, and signal can provide a solution.

We propose a flexible, architecture-aware circuit structure
design, as well as a hardware-based optimization procedure
that could be run under device noise.

The algorithm schematic is shown in Figure 2] We divide the
sensing circuit into four components: encoder, signal accumu-
lation, decoder, and measurement. Given the available control
gateset, platform-specific noise, and gate/readout errors, our
approach aims to find the optimal encoder/decoder pair. The
encoder prepares the sensing state prior to exposure to the
signal by applying superposition and entanglement to the
initial state. Then the sensing qubit(s) will be exposed to the
signal for a certain amount of time, which results in changes to
the state due to the signal as well as interrogation noise (noise
during signal accumulation). A long probing time magnifies
the signal but also brings in more noise. The decoder’s function
is to transform the post-signal state into some other state such
that measurement of the qubits yields the greatest information
about the signal. Prior work [I5]-[18]] focuses much more
on the encoder for preparing a sensing state, and not so
much on the decoder for extracting quantum information into
classical information. However, as we show in this paper,
given imperfect control and readout errors, decoder design has
considerable effects on sensitivity.

Our optimization approach is as follows: to constrain the ex-
ponentially large Hilbert space of all possible entangled states,
we propose ansatz’s based on both physics principles and
hardware capacities. The ansatz parameterizes a circuit into
a real-valued vector, framing circuit design into a multivariate
optimization problem. We use an objective function based on
estimation theory, as well as prior results on noisy gradient
estimation [19], which allows for efficient and scalable search
evaluated on real hardware.

We achieve 3.19x CFI improvement over classical limit,
and 13.12x SNR improvement over GHZ protocol on 15
qubits using an IBM quantum computer, with larger gains
expected for increased system size. More importantly, we are
able to overcome the decreasing performance of known
entanglement-based protocols, obtaining consistent sensi-
tivity gain from additional qubits. Compared to the classical
limit, our optimization result is equivalent to 3.19x savings in
the number of qubits needed, or 3.19x savings in total sensing
time to achieve the same SNR. Considering the increasing
difficulty of engineering large quantum systems, a 3.19x
reduction in system size has significant practical benefits.
Furthermore, a smaller system size also allows for smaller
sensing volume, which is key in invasive applications such as
biological sensing. Reduction of the sensing time, in addition,
allows for improved precision in sensing any time-dependent
signal.

We enable quantum sensing to be implemented with high
fidelity on real near-term noise-prone quantum hardware. Our
solution considerably extends the state-of-the-art by incorpo-
rating noise-awareness, realistic classical-quantum interfacing,
and adaptivity to diverse physical platforms and applications.
The main contributions of this work are as follows:

« Enabling a guided exploration of a larger space of entan-
gled states than existing protocols;

o Leveraging platform-specific information via on-device
training under realistic hardware and noise constraints;

o Optimizing full sensing circuit including information
extraction (rather than just state preparation), which we
show to have important effects on performance, especially
given gate noise and readout errors;

« Considering a holistic noise model including gate noise,
interrogation noise, and readout noise, and demonstrating
automatic adaptation to different relative magnitudes of
these noises;

« Exploiting non-uniform signal distributions to further
improve sensitivity;

o Designing the algorithm to be scalable to large sys-



tems and generalizable to different sensing platforms and
applications—from nanoscale field sensing to timekeep-
ing to testing physics beyond the standard model.

The rest of the paper is organized as follows: Section[[T|com-
pares this paper to prior work in quantum sensing, quantum-
classical hybrid algorithms, and NISQ quantum computing
architecture. Section [II] covers the background of quantum
sensing including the theoretical framework, as well as in-
troduces baseline protocols. Section describes our opti-
mization algorithm in detail, discussing the tradeoffs we need
to balance as well as our design decisions. Section [V] shows
experimental results on IBM hardware, and Section M] shows
simulation results under different noise combinations and with
different signal distributions. Section discusses various
sensing platforms and applications on which our methodology
can be applied, as well as future directions.

II. COMPARISON TO PRIOR WORK

Our work builds on prior work both in three areas: classical-
hybrid quantum sensing [15]-[17], [20], variational algo-
rithms, [6], [21], [22], and NISQ quantum computing architec-
ture [23]]-[27].From the sensing perspective, existing classical-
hybrid sensing protocols are all evaluated in simulation, con-
sider only limited noise sources, use fixed ansatz structures
(thus cannot generalize easily to different platforms when addi-
tional constraints are necessary e.g. no individual addressibility
on NV platform). They also require deep circuits or global
interactions that are impractical on many platforms. Finally,
existing variational sensing work focuses on the “encoding”
rather than “decoding” part, which we show to be important.

From the variational algorithm perspective, we borrow the
idea of alternating between execution on quantum hardware
and execution on a classical optimizer which guides subse-
quent iterations of quantum operations. By limiting the number
of operations on quantum hardware per iteration, variational
methods reduce errors while maintaining the quantum advan-
tage. Variational algorithms also allows for guided exploration
of the large Hilbert space for entanglement generation.

From the architecture perspective, quantum sensing is a
new architecture application on real emerging systems, yet
the goal for sensing circuit optimization is very different
from QC circuit optimization. For sensing we optimize the
protocol rather than the implementation of a fixed logical
circuit (as in QC), and can leverage noisy operations (if the
benefit from entanglement outweighs noise) rather than only
selecting a subset of best qubits/gates. Furthermore, we co-
optimize the signal accumulation time, the result of which
could be much longer than normal QC gates (depending on
the platform), meaning sensing circuit could operate in a
much higher-decoherence regime compared to QC, and have
much higher noise tolerance (as long as we are still able
to decode). Most existing circuit-level compilation methods
cannot directly apply to sensing, but we see this design space
as an exciting area of future architecture work (in aspects such
as scalable and noise-aware ansatz design, robust optimization,

pulse-level optimization with modified objectives), similar to
the recent innovations in QC architecture.

III. BACKGROUND

A. Theoretical Framework: Classical and Quantum Fisher
Information

Given a specific signal w, the objective of quantum sensing
is to maximize the Signal-to-Noise Ratio (SNR), % SNR,
however, is not a good metric for a sensing circuit since it is
signal-dependent. If we view the sensing problem as parameter
estimation, i.e. constructing an estimator of the unknown
signal based on measured outcomes, we could use concepts
from estimation theory as better metrics. Based on estimation
theory, Classical Fisher Information (CFI) and Quantum Fisher
Information (QFI) are used as signal-independent metrics that
quantify information [28]], [29]]. In particular, QFI quantifies
information carried by the quantum state whereas CFI quan-
tifies information in the classical distribution obtained after
repeated quantum measurements.

Because noise causes attenuation of signal information,
QFI decreases monotonically after each noisy operation. A
noiseless measurement in an optimal basis can extract full
quantum information into classical information, in which case
the CFI is equal to QFI of the final state. However, when
measurement cannot be performed on an arbitrary basis or is
noisy, the quantum information cannot be fully extracted, and
thus CFI is lower than QFI. We find this to be the case in
practical sensing applications. Therefore, while prior works
such as [15] focus on QFI, we adopt CFI as a more practical
metric.

Mathematically, CFI provides a lower bound on the variance
of signal estimator o, via the Cramér-Rao Bound [30], there-
fore upper-bounding SNR. This bound tells us how good the
SNR could be given perfect post-processing. With A repeated
experiments, the full relation is written as:
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where CFI is defined as
CFI(w) = E {(W)Q 2

where X is the measurement outcome with a distribution over
2NV possible values for a N-qubit circuit. Whereas we find
the CFI-QFI bound hard to saturate on practical hardware,
we find it easy to saturate the first bound via a local 2-
degree polynomial fit. Since we are only estimating one signal
parameter, this bound is saturated by the Maximum-Likelihood
Estimator. Therefore, in this work, we study QFI to understand
the signal attenuation at each operation, but use CFI for the
final optimization objective because it’s more practical.

Note that the definition of CFI in Equation [2] requires
gradient evaluation, which is challenging on noisy hardware.
This could be resolved by using the “parameter-shift” rule
detailed in Section [[II-Bl



B. Parameter-Shift Rule for CFI Evaluation

As shown in Section CFI evaluation requires gradient
evaluation. Note that even if we don’t use a gradient-based op-
timizer, evaluation of our optimization objective still requires
gradient. The “parameter-shift” rule makes such evaluations
possible on noisy hardware. When running on real hardware,
we do not have the analytic form of output probabilities
and only have access to the noisy sensing circuit. Numerical
derivatives via finite differences fail to work since the shot
noise and machine noise result in larger fluctuation than a
slight change in the signal. A method called the “parameter-
shift” rule, similar to backpropagation in neural networks,
resolves this problem by enabling analytic gradient evaluation
[16], [17], [19]. As shown in Figure E} the gradient at angle
value 0 can be estimated with function values at 6 + 7 and
0 — g, and this is proven to be true even with noise [16],
[17]. As detailed in Appendix A of [16], noises such as
dephasing and depolarizing channels satisfy this assumption.
Mathematically, in our application, gradient of pr(lll%a(billit)y of

r(n|w

measuring n on signal w could be written as — = =

%(Pr(n\w + §) — Pr(njw — T)). Note that this formula is
for the single-qubit case. For an IN-qubit sensing circuit, we
use a simple extension with 2N additional circuit evaluations,
each time adding/subtracting 5 to one qubit and keeping
other qubits constant. The “parameter-shift” rule allows for
macroscopic step sizes instead of microscopic step sizes and

is therefore robust to noise.
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Fig. 3: Parameter-shift rule for gradient estimation on noisy
circuits: to estimate the derivative of a quantum observable,
the naive finite-difference approximation fails on practical
hardware—true derivative is overshadowed by noise. The
“parameter-shift” rule proves that gradient at 6 could be
estimated with function values at ¢ + 5 and 6 — 7, which
resolves this problem. Our CFI evaluation requires gradient of
the signal, which is a parameter used N times (on N qubits).
This requires a simple extension of the parameter-shift rule:
instead of two additional evaluations, we need 2N additional
evaluations, each time adding/subtracting 5 to one out of the
N qubits. The “parameter-shift” rule gives numerically-stable
gradient values, allowing for optimization on real hardware.

C. Baseline Protocols

We use parallel Ramsey experiments [7] and two real-
izations of GHZ states [31]] as baseline protocols. Ramsey
has classical scaling but is more robust, whereas GHZ states

achieve high theoretical QFI (Heisenberg scaling) but 1) suffer
entanglement gate error and 2) decohere easily.

Two types of decoder could be constructed for GHZ states,
both optimal in the noiseless case, as shown in Figure
We use a comparison of the two as a motivating example to
show how two theoretically identical decoders are affected by
practical hardware constraints differently. The first decoder is
a uniform Hadamard rotation on all qubits which transforms
information in parity (GHZ-H), the other one is symmetric to
the state prepration circuit - chained CNOT gates followed by
a Hadamard gate (GHZ-INV).
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Fig. 4: Two GHZ decoders. Both are optimal in the noiseless
case, but in practical scenarios, they are subject to different
noise tradeoffs. The uniform-H decoder avoids higher-error
CNOT gates but requires parity readout, which is susceptible
to readout errors. The inverse-symmetric decoder uses more
CNOT gates, but concentrates information on one qubit, and
is thus more robust to readout errors. A comparison of the
two shows that different noise combinations favor different
decoder designs, and it is not sufficient to only consider QFI
of the encoded state.

The drawbacks of existing protocols motivate the need to
optimize circuits that give relatively high QFI while being
robust to system noise/errors, which we demonstrate with
variational optimization with a practical objective function.

IV. VARIATIONAL OPTIMIZATION

In Section we introduced three baseline protocols:
parallel Ramsey (independent Ramsey experiments on each
sensing qubit), GHZ with uniform-H decoder (GHZ-H), and
GHZ with inverse-symmetric decoder (GHZ-INV). These pro-
tocols are suboptimal on practical hardware: parallel Ramsey
only gives classical (square-root) scaling, and GHZ states tend
to decohere easily in noise. Considering imperfect control,
interrogation noise, and readout error of each specific platform,
we believe an architecture-aware and noise-aware circuit op-
timization approach can achieve the highest sensitivity under
practical constraints. In all our experiments and simulations,
we compare our optimization algorithm with the above three
baselines.



A. Objective Function

As mentioned in Section [[II-A] we base the objective
function on CFI. The signal is a R, rotation on the sensing
qubit(s) proportional to time, with angle ¢ = wt. Since we
ultimately care about signal w rather than ¢, this means an
extra factor of t>: CFI(w) = t2CFI(¢). Based on Equation
maximizing SNR per unit time is equivalent to maximizing

2
037 < Nog - CFI(w) = - SO )

t + toverhead
where t is signal accumulation time, a parameter we can con-
trol, and ¢oyerhead 1S the time overhead for encoding, decoding
and measurement, a parameter determined by hardware and
dependent on circuit structure. Ny, is the number of repeated
experiments, and Ty,; is unit time. We use Equation (3| as the
objective function for optimization.

Due to noise, there is a tradeoff between CFI(¢) and t.
Both terms contribute positively to the objective function, yet
a large t means longer exposure to interrogation noise, which
causes a decrease in CFI(¢)) (CFI(¢) is upper-bounded by N2
for a N-qubit circuit, according to the Heisenberg Limit). We
aim to balance this tradeoff by finding a state whose CFI(¢)
decreases slowly with ¢, meaning the state decoheres slowly
in the given noise channel.

The objective function Equation [3] provides a direct bound
on SNR and requires a joint optimization of circuit and probe
time ¢ in the noisy case.

B. Constraining the Design Space

The Hilbert space of entangled states is exponentially large.
To explore such a space, the first step is to constrain the design
space by proposing an ansatz. An ansatz specifies the encoder
and decoder structures. Seen from an optimization perspective,
an ansatz creates a one-to-one mapping from a parameter
vector @ to a sensing circuit. Thus, for a fixed ansatz, any
circuit metric Cy is simply a function of 6, and circuit design
becomes a multivariate optimization problem.

The ansatz generation rules are based on both physics prin-
ciples and hardware capacities. From a physics perspective,
since both the initial state and the final measurement are in Z-
basis, we stipulate the encoder and decoder structures (though
not parameters) to be symmetric. From a co-design perspec-
tive, we base our ansatz on the native gates and connectivity
graph of hardware. We define three hyperparameters: [ circuit
layers, k single-qubit gates per layer, and m entanglement
gates per layer. By setting these hyperparameters, we could
control how local/global we want the entanglement to be,
and sequentially explore circuits with increasing depths. Any
ansatz that contains redundant, canceling, or spurious gates are
discarded. These design choices, while preserving structural
flexibility, constrains possible circuit structures to a tractable
amount.

C. Optimization Algorithm

Combining the components in the sections above, we have
the full optimization procedure in Algorithm [1} In each itera-

tion, an ansatz is proposed and then optimized with evaluation
on real hardware using the “parameter-shift” rule.

Given N qubits, available gateset U, connectivity graph
G, and hyper-parameters 1 (number of layers), k (number
of single qubit gates per layer), m (number of two-qubit
entanglement gates per layer), the optimization algorithm
could be divided into two steps per iteration. The first step
is ansatz structure proposal - the algorithm generates random
ansatz structures which satisfy platform constraints and create
meaningful entanglements. The specific rules for ansatz gener-
ation is platform-dependent, and we show an example based on
the IBM gateset with our pseudo-code. The proposed ansatz
structure parametrizes the circuit into a number of rotation
angles, and turns the problem into a continuous multivariate
optimization. The second step is continuous optimization.
Evaluation of objective function could be done on real hard-
ware using the parameter-shift” rule, and we choose some
classical optimizer (e.g. Powell, COBYLA), considering both
the speed of convergence (since hardware evaluation could be
expensive) and quality of solution (to avoid local optima).

Algorithm 1 Circuit Learning (with IBM gateset)

For N-qubit system, given hyper-parameters k, [, m

fori=1, ..., iter;,q, do
// Ansatz Construction
for j=1, ..l do

1. Randomly choose k out of N qubits, q,...q; to
apply a single-qubit Us gate on each. Us gate on g,
parameterized by (6;,5.0,0;,p,1,05,p,2) (p=1,..K).
2. Based on connectivity graph G, randomly choose m
non-repeating (control, target) pairs out of N qubits to
do an entanglement operation on each pair. If j = 1,
make sure control qubit either 1) has been chosen in
step 1, or 2) has been chosen as the target in a prior
entanglement operation in the current step.

end for

/I Continuous Optimization

1. Initialize 8 € [0,27]%%!, ¢ + 10us (or some value

between =T and 7).

2. Use a classical optirznizer (e.g. Powell, COBYLA) to

obtain maxg ; Co,s = Lo . T, CFI(g) obtained via
2N + 1 circuit runs using the “parameter-shift” rule.
3. If Cp ¢ higher than previous max, record optimal 6.t,
Cot

end for

return optimal 0.t, Cg ;

Here we describe the algorithm in more detail using the
example of the IBM machine gateset and connectivity. Note
that this could be easily generalized to other platforms, de-
tailed in Section [VII-A] The native gateset of IBM machines is
comprised of general Us gates on single qubits (with three free
parameters), and CNOT gates for entanglement operations. A
combination of Uz gates and CNOT gates per layer allows for
the flexibility of creating parallel (or weakly entangled) local



structures—for N qubits, if we specify [ = 1 layer, kK = N
single-qubit gates per layer, and m = 0 entanglement gates
per layer, then a scheme similar to Paralle]l Ramsey could be
recovered. Similarly, if we specify [ = 1 layer, k = 1 single-
qubit gates per layer, and m = n — 1 entanglement gates per
layer, with the correct order of entanglement gates the global
GHZ protocol could be recovered. Choosing different values
of I, k, m, we could obtain arbitrary entangled states. However,
a circuit that is too deep will likely incur high gate errors. In
our simulations as well as experiments, one layer is usually
sufficient.

This algorithm is designed to be generalizable to other
sensing platforms and applications. For a different platform,
e.g. when we have global twisting interactions which allow us
to create spin-squeezed states, we would modify the template-
generation part slightly, and no longer aim to create parallel
local structures. The continuous optimization part extends
naturally to determination of optimal twisting/untwisting, and
similar methods are seen in [20], [32]. In general, for sensing
platforms with more global and constrained controls, there will
be less flexibility in ansatz construction, but the continuous
optimization step becomes more important.

V. EXPERIMENT RESULTS
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Fig. 5: CFI scaling of baseline and optimized circuits up to
15 qubits on IBM’s machine “Paris”. Signal is applied with
small Rz rotation across the signal accumulation time. The
“echo” technique is used (negating the signal and applying
X) to suppress detuning, as in other sensing applications.
GHZ protocols yield decreasing performance at > 4 qubits.
The optimized circuit employs local entangled structures and
overcomes this problem, achieving up to 3.19x CFI gain from
the classical limit, and up to 13.2x SNR improvement from
GHZ protocol. Due to limited hardware access, the the number
of total optimization iterations and repeats we can run is
limited. For this reason, we fix sensing time to be 0.355us in
experiment (whereas in simulation we are able to co-optimize
time, resulting in longer ¢ and lower CFI(¢), seen in Figure .
The variance can also be expected to be smaller without such
limitations.

We demonstrate the optimization algorithm on IBM quan-
tum computer “Paris”, up to 15 qubits. Signal is applied
with small Rz rotations uniformly across all sensing qubits
throughout the signal accumulation time. We note that for
such a system size, simulation-based optimization is infeasible

due to the expensive computation of simulation of 15-qubit
circuits (which needs to be repeated thousands of times
as an optimization subroutine). Optimization outperforms all
existing baseline protocols, achieving up to 3.19x gain from
the classical limit. Furthermore, we note that the baseline
protocols are run with existing circuit compiler optimization to
unnecessary swap gates based on hardware connectivity map,
which shows the advantage of variational circuit optimization
compared to existing (fixed) compiler optimization.

We observe that for GHZ states, CFI starts to decrease when
we have more than three qubits, probably due to errors from
the chained CNOT gates and the short coherence time of multi-
qubit GHZ states. This might explain the significant drop in
performance of GHZ states (vastly underperforming classical
parallel) for more than four qubits.

While analyzing the result states returned by the adaptive
learning protocol, we noticed that variational optimization
never returned max entanglement chain of length greater than
5, and the circuit structure is generally not symmetric across
probe qubits—by taking advantage of local entanglements
and adapting to variation in qubit/gate qualities, adaptive
optimization achieves higher scalability. The circuit learning
approach enables more flexibility in balancing the tradeoffs
between a large number of entangled qubits (higher QFI
capacity) vs. gate noise from entanglement operations, as well
as the sensitivity of strongly-entangled states such as GHZ
vs. their susceptibility to noise. The effects of different noise
sources are studied in more detail in Section [V1l

We also noticed the difference between experiment and
simulation with device statistics at long accumulation time
(Figure [5] and Figure [7)— although simulation suggests signal
accumulation time could be much longer (to maximize SNR),
in practice we observed that results can be quite inconsistent
across repeated trials when accumulation time is long, proba-
bly due to other fluctuating noise sources on the real device.
Due to this reason, accumulation time in experiment is kept
much shorter than simulation, resulting in more significant
effects of gate/read noise as opposed to T1/T2 noise in
experiment.

VI. OPTIMIZATION RESULTS UNDER DIFFERENT
PLATFORM CONDITIONS

A. Optimization with Different Noises

We demonstrate that our optimization algorithm is system-
adaptive by simulating different platform conditions, including
different noise decompositions, signal distributions, and gate-
set or connectivity constraints.

1) Noise Decomposition: Noise is incurred by each
operation—encoding, signal accumulation, decoding, and
readout. The contribution of each noise component depends on
specific circuit parameters (encoder/decoder depth, accumula-
tion time, whether the output distribution is “concentrated” on
some qubits, etc.). As mentioned in Section QFI quanti-
fies the amount of information contained in the quantum state
and decreases monotonically under noisy quantum channels.
Calculating the QFI at different points in the circuit allows us



to see how much information is lost at each (noisy) step, as
shown in Figure [f] We compare 4 circuits: a circuit obtained
via optimization with full noise and three baseline baselines-
Parallel Ramsey, GHZ with uniform-H decoder, and GHZ with
inverse-symmetric decoder. We observe that parallel Ramsey
starts with low QFI but is more robust to noise, whereas
GHZ states start with high QFI (optimal in noiseless case),
but decohere easily during interrogation. The optimized result
starts with a QFI lower than GHZ, but is more robust to noise,
yielding a high QFI after all noisy operations.

2) Optimization Results: In this section, we consider four
different noise scenarios: full noise model including gate
noise, interrogation noise, and readout noise, and removing
(or suppressing) each noise source. In each noisy scenario,
we run our optimization algorithm to maximize SNR and
compare the optimized results with baseline sensing protocols:
parallel Ramsey, GHZ state with uniform-H decoder, GHZ
state with inverse-symmetric decoder. The optimization target
is Equation |3} For each baseline circuit, we only optimize on
the interrogation time parameter. For the optimized result, we
jointly optimize circuit and interrogation time.

For optimization, we use Powell [33] and COBYLA [34]
gradient-free optimizers. Powell allows for the exploration of
a relatively large parameter space and is less likely to return
a local maximum in our optimization application, although
at the cost of a larger number of iterations. COBYLA is
observed to converge much faster, although sometimes outputs
local maxima. The simulation results shown in this section
come from Powell optimizer which in general finds better
solutions, but in experiment (or for large simulation) where
circuit evaluations are more expensive, we use COBYLA for
its evaluation efficiency.

The orange (bottom) part shows the final QFI after all
noises, equal to CFI, which is our optimization objective.
Each colored region shows the additional QFI improvement
of given circuit if the labeled operation is perfect. Total height
denotes QFI in the ideal case. The optimized circuit has less
total QFI than GHZ states because we are optimizing for
the highest practical (orange) region. A comparison between
GHZ-H and GHZ-INV shows that decoder noise is higher in
GHZ-INV, which is expected since GHZ-INV has 2 CNOT
gates in decoder, whereas GHZ-H only has single-qubit gates.
The readout noise in GHZ-INV is expected to be smaller than
GHZ-H when the starting state is somewhat close to GHZ.
We suspect the stronger effect from readout noise to GHZ-INV
here is because the final state is already highly decohered, thus
making the effect of readout noise harder to predict. Overall,
our adaptive optimization found a protocol that performs 2-3x
better specifically under the given constraints.

As shown in Figure[7] under full noise, the classical parallel
circuit allows for the longest probe time, although with a
relatively low CFI. GHZ states give higher CFI but are limited
to a much shorter probe time. The parallel scheme gives square
root scaling, and the scaling of GHZ states approximately sat-
urates. It is also notable that GHZ with an inverse-symmetric
decoder achieves much higher sensitivity than the uniform-

H decoder, which shows that readout errors incurred by the
parity-readout for the uniform-H decoder outweigh the errors
from the N — 1 extra CNOT gates of the inverse-symmetric
decoder.

The optimized circuit achieves much better scaling than
baseline circuits. Theoretically, when we have depolarizing
channels which overlap with the signal direction, the asymp-
totic scaling cannot surpass square root [35]]. Although we are
still in the few-qubit regime and far from asymptotics, this
might explain why we could not get a linear scaling.

Optimization yields up to 1.75x SNR gain in 5 qubits. The
optimized circuit obtains higher SNR largely by achieving a
high CFI, at the cost of a relatively short probe time. The
optimized results all come from one-layer ansatz’s. For 1
to 3 qubits, the optimized results entangle the full system,
whereas for 4-qubit and 5-qubit systems the optimal solutions
are two entangled subsystems. The reason is probably twofold:
1) gate errors during encoding/decoding accumulate when we
entangle too many qubits; 2) Strongly entangled states like
GHZ states are highly susceptible to noise and is no longer
optimal for sensing under a non-negligible amount of noise.
The high noise susceptibility leaves us with a shorter probe
time which hurts sensitivity. GHZ state can be seen as an
extreme case of both these effects. The optimized circuit, by
leveraging local rather than global entanglements, is able to
overcome these issues and achieve better scalability.

To better understand the effects of each noise source, we
also removed/suppressed each noise type, keeping the other
two sources constant. Gate and readout noises can be removed
by simulating perfect gates/readout. Interrogation noise is
decoherence noise coming from the characteristic lifetimes
of the qubit, called 77 and T5. Shorter interrogation times
(relative to 77 and T5) lead to lower decoherence error.
To suppress interrogation noise, (Note that we could not
remove interrogation (77,75) noise entirely, since that will
result in infinite probing time and thus infinite sensitivity.)
we simulate 77 and 75 as 10 times their actual value. Results
are shown in Figure B} We obtain 1.75x, 1.74x, 1.15x SNR
improvements when removing gate noise, removing readout
noise, and suppressing 731/75 noise, respectively.

Note that GHZ with inverse-symmetric decoder outperforms
the classical scheme once we remove gate noise, which shows
the effects of CNOT gate errors. What is surprising at first
sight is that after removing readout error, inverse-symmetric
decoder still performs better than uniform-H decoder for GHZ
states, even with the N — 1 extra CNOT gates. A closer QFI
analysis shows that although an H rotation before measurement
is optimal in the noiseless case, with interrogation noise H is
no longer the best rotation direction. Rotating each qubit in a
suboptimal direction, in this case, results in less system QFI
compared to a chain of CNOT gates followed by a rotation
of one qubit in a suboptimal direction. The advantage of
optimization becomes smaller if we suppress interrogation
errors while keeping gate and readout error constant. This
shows our optimization mainly targets interrogation noise,
which is the largest noise component shown in Figure [f] When
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are independent, their effects need to be considered holistically—a state that is robust to one noise type usually is vulnerable
to others. Optimization aims to balance the tradeoff of these noise effects. The orange (bottom) part shows the final QFI after
all noises, equal to CFI, which is our optimization objective. Each colored region shows the additional QFI improvement of
given circuit if the labeled operation is perfect. Total height denotes QFI in the ideal case. The optimized circuit has less total
QFI than GHZ states because we are optimizing for the highest practical (orange) region. Our optimization found a protocol
that performs 2-3x better specifically under the given constraints. This plot is based on a simulation of a 3-qubit sensor with
a 10kHz signal and a fixed probing time of 20us.
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Fig. 7: Optimization results with full noise. Noise statistics are based average of hardware calibration data of IBM
superconducting hardware: single qubit 1% depolarizing channel, CNOT 3% (independent) depolarizinig channels on both
qubits, readout 5% error, 11 52.2us, To 62.8us. Signal strength is 10kHz. The optimization objective is % (Equation [3)
with a hardware-determined Zoverhead- Optimization requires balancing the tradeoff between CFI and interrogation time ¢. In

addition to SNR derived from our objective function, we also plot out the optimal CFI and ¢ which maximize the optimization

objective.

interrogation noise is suppressed, the dominant noise source
comes from the control itself, and simple protocols are highly
favored. Our optimization technique provides the greatest gain
when the control noise is not highly dominant, meaning we
can afford to create interesting (and probably slightly more
complex) states.

B. Optimization with different signal distributions

Different sensing applications concern input signals with
different distributions. By adaptively optimizing on the actual
signal, our optimization algorithm can exploit the non-uniform
signal distribution and find a circuit that works especially
well with the given distribution. In this section, we compare
baseline circuits with optimization run on uniform as well
as Gaussian signal distributions with different variances. We
observe that optimizing with different distributions yields the
same circuit structure, but different circuit parameters. As
shown in Figure 0] optimization run on non-uniform signal
distributions gives the best results (up to 1.51x CFI im-
provement), with increasing gain at small variances. This is

especially well-suited to applications where the signal has
frequency peaks, such as NMR spectroscopy [36].

C. Optimization with limited control

The other important flexibility given by our optimization
technique is that we could tailor to the available control
of each platform. On some platforms, the control is greatly
limited. Since our optimization technique takes gateset and
connectivity map as inputs and proposes ansatz’s based on
these constraints, it is also suitable for such applications.

1) Collective Control: For certain sensing applications, e.g.
dark spins of nitrogen-vacancy (NV) platform [37] (detailed in
Section [VII-AT), we do not have individual addressability of
the probe spins. Each reporter spin will undergo roughly the
same transformations given the drive field, and thus the avail-
able control is an arbitrary rotation uniformly applied to all
probes. Likewise, the S,-S, entanglement operation between
NV and probes also applies simultaneously to all probes,
which could be modeled as simultaneous controlled-R, gates
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Fig. 9: Optimization results under different signal distributions.
Since the signal is non-constant, we use CFI rather than the
signal-dependent SNR as the metric (see Section [[II-A). The
data is taken from a simulation of three qubits under the
full noise model. Signal (Rz rotation angles) are modeled
as Gaussians with unit mean and varying standard deviation,
as displayed on the x-axis. Note that although we vary the
distribution of signal magnitude, the signal is always applied
uniformly to each sensing qubit (i.e. the Rz rotation angles
on qubits i and j are kept the same). We compare baseline
protocols, a circuit optimized on uniformly-distributed signal
(“Optimized on Uniform”, orange), and a circuit optimized on
the actual signal distribution (“Optimized on Actual”, purple).
Optimizing on actual data gives the highest sensitivity, which
shows that our optimization technique can take advantage of
non-uniform signal distributions, yielding up to 1.51x CFI
improvement. We also observe that optimizing with different
distributions yields the same circuit structure, but different
circuit parameters.

with different rotation angles, and thus easily interface into
our optimization framework.

2) Limited Connectivity: On certain platforms, the qubit
connectivity is severely limited. Although in principle, by
“relaying” operations we are able to perform entanglement on
an arbitrary pair of qubits, the gate error and time overhead
could be considerable, and thus a good model should take
the connectivity constraints into consideration. For example,
nuclear spins around the NV center [38] could only entangle
with each other via the NV center. Such connectivity con-
straints are entirely handled by our optimization framework

in Algorithm [I] which specifies the ansatz based on the
connectivity map.

VII. OUTLOOK
A. Applications

Based on the variational optimization method’s capability of
achieving high sensing performance while considering noise,
gate error, and limited control, our method could be widely
applied to different sensing platforms and applications.

1) Nitrogen-Vacancy Sensing: The nitrogen-vacancy (NV)
center in diamond is a promising sensing platform due to its
long coherence time in room temperature [39] and photolu-
minescence property, which allows for easy initialization and
readout [40]]. NV centers can be used to sense magnetic field
[41], [42]], electric field [43|] and temperature [44]-[46]. Sur-
face reporter spins [47], [48]] and NV ensemble sensing [49]]
show promise in increasing sensitivity and reducing sensing
volume. Circuit learning could be used to exploit probe spins
near the diamond surface for sensitivity enhancement. Ab-
stracted to a sensing circuit, this corresponds to a constrained
gateset of a time-dependent probes-NV entanglement gate and
uniform controls on probe spins. Via adaptive optimization, we
could adjust the circuit to the material-determined distribution
of probe spins, utilize the dipolar-dipolar interaction between
the probe spins, and optimize the orientation of the sensing
state as well as entanglement duration.

2) Dark Matter Detection: About 85% of the matter in
today’s universe consists of dark matter and dark energy [S0].
Axions are one of the most promising dark matter candidates
[51], [52]], and can be detected by the resonance frequency
shift of the qubit coupling to the superconducting cavity [4].
However, axion detection is difficult since long-distance entan-
glement is required [53]—one main challenge is photon loss
in long-distance fiber [54]. Our method could help alleviate
photon loss by optimizing for the optimal entangled photon
state in spatially separated superconducting cavity detectors
[55]I.

3) Squeezed States: Squeezed states improve sensitivity
by suppressing the uncertainty on one quadrature observ-
able while amplifying the uncertainty over another non-



commutative quadrature observable. Experimental progress
includes LIGO for gravitational wave detection [|13]], [[14] and
spin-squeezing using cold atoms for spectroscopy [11], [[12f],
[S56]. Building upon previous works [20], [32], our method
can be used to optimize for twisting time, signal direction,
and measurement scheme for higher sensitivity.

4) Atomic Clocks: Atomic clocks are currently used to
define a second with the precision of 10~'® (which means
it will err by 1 second within the age of our universe) [57]],
and play a central role in precision measurement applications
such as global positioning system (GPS). Finding and using
various techniques to keep the atomic transition stable is
crucial to sensitivity [2]. Atomic clocks use a feedback loop
to lock the frequency of a local oscillating field to the atomic
transition frequency, and the oscillating field frequency is
defined as the reference clock. Our circuit optimization can be
applied to the feedback loop system to potentially stabilize the
atomic transition and the laser frequency beyond the current
limitations.

B. Future Directions

We demonstrate an optimization algorithm which surpasses
the classical limit and overcomes the plateauing or decreasing
performance of existing entanglement-based protocols at in-
creased system sizes. We believe the algorithm could be further
improved by considering the following areas.

One of the challenges of running optimization on hardware
is the difficulty of obtaining convergence since device noise
fluctuates with time, and the optimal circuit at each given time
is different. For this reason, it is key that the optimization
routine does not take too long (so that the noise does not
fluctuate too much), and that the optimized sensing circuit
should be updated periodically. This means an optimizer that
is efficient in the number of objective function evaluations
is highly important. In our study, we did a preliminary
comparison of different optimizers, including Nelder-Mead
[58]], Powell [33], COBYLA [34], and in general observed a
tradeoff between speed of convergence and solution quality.
The simulation results in this paper are based on Powell,
which converges slowly but outputs high-quality solutions,
whereas experiment results are based on COBYLA which is
more evaluation-efficient (by doing polynomial interpolation
with points explored in the parameter space) but sometimes
outputs suboptimal solutions. For the optimization algorithm
to be run in real sensing applications, we hope to find a robust
optimizer which strikes a good balance of convergence speed
and solution quality.

Another way to speed up the optimization is to reduce the
number of proposed ansatz’s. The advantage of our algorithm
comes largely from the flexibility of constructing various
circuit structures based on available gateset and connectivity.
However, without losing this flexibility, we would benefit
from automatically “ruling out” suboptimal ansatz’s, which
would be possible if we design some heuristics to guide
ansatz selection. The current algorithm does rule out some
obviously bad circuit structures, but by considering permuta-

tion symmetry, circuit transformation/simplification, we could
make the template construction step smarter, thereby saving
optimization cost.

We also hope to investigate whether having ancilla qubits
that are not exposed to the signal could help improve sensi-
tivity. This is relevant in some sensing applications, such as
the NV sensing platform, where we have control over nuclear
spins close to the NV center [38]].

Finally, to make this optimization more applicable to real
sensing applications, we would like to consider more realistic
physical models, such as interactions between probe qubits.
We would also like to consider more complex and practi-
cal signal distributions, for example in NMR spectroscopy
applications. Our adaptive circuit optimization could also fit
into a Bayesian framework to fully take advantage of prior
knowledge of the signal.

VIII. CONCLUSIONS

Quantum sensing is an emerging area of quantum tech-
nology, which exploits quantum mechanical effects on dif-
ferent hardware platforms to achieve enhanced sensitivity.
Quantum sensing already has practical impacts in areas such
as magnetometry [59] and timekeeping [2]. Recent experi-
mental progress such as LIGO demonstrates the power of
entanglement-enhanced sensing [13]], [14]. We are entering
the exciting transition from proof-of-concept experiments to
practical applications [1].

On practical hardware, where we have limited control ca-
pacity over a relatively small number of qubits and noise from
various sources, we find existing protocols that are optimal in
ideal cases to perform poorly. Thus, it is important to adopt
a co-design approach: find sensing circuits tailored to the
specific underlying hardware and exploit application-specific
noise and signal characteristics. We demonstrate a quantum-
classical hybrid algorithm for sensing circuit optimization.
Our approach mirrors the myriad of recent work [60] on
applying machine learning approaches to improve classical
system optimization and design optimization. Our optimiza-
tion algorithm surpasses the classical limit and overcomes
the plateauing/decreasing performance of existing protocols,
both in simulation and in experiment. We also show that
the algorithm is especially advantageous when trained on
a highly non-uniform signal distribution, which applies to
various sensing applications such as NMR spectroscopy. The
optimization method could easily be generalized to different
platforms with different types of control, even going beyond
the gate model abstraction and directly parameterizing the
control Hamiltonians. We propose extensions of our method
for different sensing applications range from nanoscale field
sensing to dark matter detection and timekeeping. We believe
that a systems design approach with noise-awareness, real-
istic classical-quantum interfacing, and adaptivity to diverse
physical platforms and applications is essential to achieving
quantum advantage on practical sensing hardware.
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