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Quantum information processing using linear optics is challenging due to the limited set
of deterministic operations achievable without using complicated resource-intensive methods.
While techniques such as the use of ancillary photons can enhance the information processing
capabilities of linear optical systems they are technologically demanding. Therefore, determining
the constraints posed by linear optics and optimizing linear optical operations for specific tasks
under those constraints, without the use of ancillas, can facilitate their potential implementation.
Here, we consider the task of unambiguously discriminating between Bell-like states without the
use of ancillary photons. This is a basic problem relevant in diverse settings, for example, in
the measurement of the output of an entangling quantum circuit or for entanglement swapping
at a quantum repeater station. While it is known that exact Bell states of two qubits can be
discriminated with an optimal success probability of 50% we find, surprisingly, that for Bell-like
states the optimal probability can be only 25%. We analyze a set of Bell-like states in terms of their
distinguishability, entanglement as measured by concurrence, and parameters of the beam-splitter
network used for unambiguous discrimination. Further, we provide the linear optical configuration
comprised of single photon detectors and beam splitters with input state-dependent parameters
that achieves optimal discrimination in the Bell-like case.

I. INTRODUCTION

Linear optical platforms are a promising route for
building quantum information processing devices in com-
putation [1], communication [2], and metrology [3]. On
one hand, qubits encoded into the quantum state of a
photon can have long coherence times [4, 5] and photonic
circuits can potentially be scalably integrated [6–9]. On
the other hand, there are fundamental limitations on the
type of operations that can be implemented without pro-
hibitive resource costs. A simple but important example
of this kind of limitation is in the case of discriminating
measurements on a set of mutually orthogonal entangled
pure quantum states. In other platforms, such as super-
conducting qubits [10] or ion traps [11], there are no fun-
damental limitations on perfectly discriminating between
the orthogonal states using measurements in arbitrary or-
thogonal bases. Whereas, in linear optical systems this
is no longer the case: It may not be possible to achieve
saturation of the quantum mechanically allowed statisti-
cal distinguishability among the given states using only
linear optical setups. A case in point being the set of the
four maximally entangled states of two qubits, or Bell
states, only two of which can be discriminated without
the use of ancillary photons.

In principle, given access to certain extra resources
such as prepared entangled quantum states and ancillary
photons, linear optical elements can be used to imple-
ment a universal set of operations for quantum informa-
tion processing [12]. In particular, with increasing use of
resources, Bell state discriminations can be implemented
with a success probability asymptotically approaching 1
[13, 14]. However, increasing the number of ancillary
photons to achieve the stated precision is technologically

challenging [1]. Without ancillary photons, only two of
the four possible Bell states can be unambiguously dis-
criminated, giving the protocol a maximum efficiency of
50% [15–17].

Generalizing this situation is the problem of unambigu-
ously discriminating between a set of mutually orthogo-
nal partially-entangled states of two qubits encoded into
four photonic modes, which we call the set of Bell-like
states. The formal structure of Bell-like states in terms
of the mode creation operators is identical to that of the
Bell states. However, the crucial difference is in the value
of their concurrence which is strictly less than 1, i.e.,
they are partially entangled. Obtaining the linear opti-
cal operation that optimally discriminates between Bell-
like states is, therefore, an important task since partially
entangled states are realistic in the practical scenario.
While conditions have been derived in order to deter-
mine whether a desired transformation is implementable
using linear optics [18–20], these results have limited util-
ity in determining the optimal transformation for specific
tasks.

The goal of this paper is to derive the efficiency of
optimal linear optical discrimination of Bell-like states
and the corresponding setup, i.e., a network of beam-
splitters and photon detectors which achieves the opti-
mal efficiency. Our focus is on the case where no an-
cillary photons are used. The approach is to derive con-
straints required by unambiguous discrimination between
the Bell-like states that allow us to construct feasible lin-
ear optical transformations under those constraints. The
transformations are then optimized to maximize their
probability of success. Completing these steps allows us
to design a general method for optimally discriminating
any set of Bell-like states. We find that the efficiency, or
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maximum success probability, of the optimal unambigu-
ous discrimination is only 25%, in contrast to the 50%
that can be achieved for Bell states [15–17].

The structure of our paper is outlined as follows. In
Sec. II, we review the basic mathematical framework
underlying linear optical setups for state discrimination.
Next, in Sec. III, we define the Bell-like states and pro-
ceed to derive the optimal unambiguous discrimination
achievable using linear optical setups. We show, in par-
ticular, that only two out of the four given states can
be successfully discriminated. In Sec. IV, we analyze
the optical network allowing the optimal unambiguous
discrimination between the Bell-like states showing the
25% efficiency of success. After presenting the results,
we conclude by discussing some possible follow-up direc-
tions.

II. LINEAR OPTICS FRAMEWORK FOR
STATE DISCRIMINATION

Let us consider the discrimination of two-qubit quan-
tum states, employing the dual-rail representation for
qubits [1, 21, 22]. The basic elements of this representa-
tion are m-mode photons described by the Fock states,

|nm〉 ≡ â†nm√
n!
|0〉, where â†m is the creation operator for

the m-th photon mode and nm is the number of photons
in that mode. Qubit states in the dual-rail representa-

tion are given as: |0〉 = |11, 02〉 = â†1 |0〉 , |1〉 = |01, 12〉 =

â†2 |0〉. Adding a second qubit can be represented by an-

other photon in two other modes: |00〉 = â†1a
†
3 |0〉 , |01〉 =

â†1â
†
4 |0〉 , |10〉 = â†2a

†
3 |0〉 , |11〉 = â†2â

†
4 |0〉. Therefore, the

first qubit is represented by one photon in the first two
modes and the second qubit is represented by one photon
in the second two modes. It is important to note that,
by the nature of this representation, the computational
space is only a subset of all possible states.

The relevance of this qubit encoding is that any trans-
formation allowed by linear optical elements, i.e., any
transformation using only beam splitter and phase shifter
generators, can be described by unitary transformations
on the creation and annihilation operators [23]. We can

define the output operators
{
b̂†i |i = 1 . . .m

}
in terms of

the input operators as b̂†i =
∑
j Uij â

†
j .

Now we describe the generalized measurement scheme
allowed by linear optical setups shown in Fig. 1.
At the input of the scheme are the photon modes{
â†i |i = 1 . . . 4

}
that can be coupled with auxiliary pho-

ton modes
{
â†i |i = 5 . . .m

}
. These input modes are con-

nected to the output modes
{
b̂†i |i = 1 . . .m

}
utilizing

beam splitters and phase shifters. Some of the output
modes can be detected by photon resolving detectors,
while the photons in the remaining modes can be treated
as a new states that can be used as an input for further

processing.
For the purposes of this paper, we restrict our consid-

eration to a special class of linear optical schemes, where
the auxiliary photon modes are empty. Additionally, we
focus only on the optimal measurement for a single iter-
ation, barring the use of conditional measurements.

FIG. 1. The general scheme for linear optical operations. The
input modes, â†i (the system, i = 1, 2, 3, 4) and the auxiliary
modes (the ancilla, i = 5, . . . ,m) are coupled via a network of
beam splitters and phase shifters to form the output modes.
The action of the linear optic network can be described by a
total unitary transformation U . At the output, some of the
modes are measured using photon resolving detectors, while
the remaining undetected modes can be used as input for
further processing.

III. BELL-LIKE STATES DISCRIMINATION

Bell-like states can be defined as

|Ψ1〉 =
(
α1â

†
1â
†
3 + β1â

†
2â
†
4

)
|0〉 , (1)

|Ψ2〉 =
(
β∗1 â

†
1â
†
3 − α∗1â†2â†4

)
|0〉 , (2)

|Ψ3〉 =
(
α2â

†
1â
†
4 + β2â

†
2â
†
3

)
|0〉 , (3)

|Ψ4〉 =
(
β∗2 â

†
1â
†
4 − α∗2â†2â†3

)
|0〉 , (4)

where αi and βi are the complex coefficients normalized
by |αi|2 + |βi|2 = 1. The Bell states are recovered for

α1 = β1 = α2 = β2 = 1/
√

2.
As we mentioned above, the most general operation im-

plementable by linear optics has the form b̂†i =
∑
j Uij â

†
j ,

and the inverse transformation yields â†i =
∑
j U
∗
jib̂
†
j .
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Therefore we can define an arbitrary state as |e〉 =∑
j,k∈σ αjkâ

†
j â
†
k |0〉, where σ ≡ {j, k|j = 1, 2; k = 3, 4}.

Using these expressions we can derive the relationship
between the input and the output modes

|e〉 =
∑

j,k∈σ
αjkâ

†
j â
†
k |0〉 ,

=
∑

j,k∈σ
αjk

(∑

l

U∗lj b̂
†
l

)(∑

m

U∗mk b̂
†
m

)
|0〉 ,

=
∑

m

∑

j,k∈σ
αjkU

∗
mjU

∗
mk b̂

†
mb̂
†
m |0〉 (5)

+
∑

l<m,m

∑

j,k∈σ
αjk

(
U∗ljU

∗
mk + U∗mjU

∗
lk

)
b̂†l b̂
†
m |0〉 .

Since the measurements are performed in the orthonor-
mal basis of photon modes, we just need to evaluate the
probabilities of detecting a various combination of two
photons for a given state. The probability of detecting
two photon in mode m is

| 〈2m|e〉 |2 = 2|
∑

j,k∈σ
αjkU

∗
mjU

∗
mk|2 = 2|

(
U∗NU†

)
mm
|2

= 2| 〈φm|N |φ∗m〉 |2

=
1

2
| 〈φm|

(
N +N>

)
|φ∗m〉 |2, (6)

while the detection probability of one photon in mode m
and another in mode n is

| 〈1m, 1n|e〉 |2 = |
∑

j,k∈σ
αjk

(
U∗njU

∗
mk + U∗mjU

∗
nk

)
|2

= |(U∗NU†)nm + (U∗NU†)mn|2
= | 〈φn|

(
N +N>

)
|φ∗m〉 |2, (7)

where N is a matrix whose nonzero elements are Njk ≡
αjk, |φ∗m〉 is the mth column of U†, and |φm〉 is the mth

column of U>.
Note that the detection of one photon in mode m and

one photon in mode n corresponds to unambiguous dis-
crimination if | 〈1m, 1n|e〉 |2 = 0, or | 〈2m|e〉 |2 = 0 if
m = n, for three out of the four input states and non-zero
for one of them. This detection event uniquely identifies
the input state.

Therefore, unambiguous discrimination of an input
state enforces constraints on the set of {|φm〉}. If we can
identify these sets of constraints, we can then construct
a U matrix that allows for successful discrimination. In
order to derive the constraints, it is helpful to note that
there is a linear transformation, π, that maps the vectors
|Ψµ〉 to matrices π (|Ψµ〉) such that π (|Ψµ〉) = Nµ+N>µ .
In order to understand this transformation, let us define
the following matrix Ae that is a straightforward trans-
formation of |e〉:

Ae =

(
α13 α14

α23 α24

)
. (8)

This simple matrix is an element of the 4 dimensional vec-
tor space of 2x2 complex matrices with the inner product
tr
(
A†B

)
. We can then explicitly give π (|e〉) using this

matrix:

π (|e〉) =




02×2 Ae 02×k
A>e 02×2 02×k

0k×2 0k×2 0k×k


 . (9)

Here, we have defined 0k×j as a matrix of size k× j with
the elements of 0. Additionally, k+4 is equal to the total
number of output modes. This representation of π (|e〉)
makes it obvious that π (|e〉)> = π (|e〉). In order to see
how this operator acts on the k + 4 dimensional vector
|φ∗m〉, it is helpful to decompose |φ∗m〉 as a direct sum of
two two-dimensional vectors, |u∗m〉 ∈ H2 and |v∗m〉 ∈ H2

and one k− 4 dimensional vector, |w∗m〉 ∈ Hk−4: |φ∗m〉 ≡
|u∗m〉 ⊕ |v∗m〉 ⊕ |w∗m〉, where:

|u∗m〉 =

(
U∗m1

U∗m2

)
, |v∗m〉 =

(
U∗m3

U∗m4

)
, |w∗m〉 =



U∗m5

...
U∗mk


 .

(10)

Given this, we can see that π (|e〉) |φ∗m〉 = Ae |v∗m〉 ⊕
A>e |u∗m〉 ⊕ 0.

Let us now consider the relevant term of the 2 photon
detection probabilities for these states:

〈φl|π (Ψ1) |φ∗m〉 = α1 〈φl|π (|00〉) |φ∗m〉
+β1 〈φl|π (|11〉) |φ∗m〉

〈φl|π (Ψ2) |φ∗m〉 = β∗1 〈φl|π (|00〉) |φ∗m〉
−α∗1 〈φl|π (|11〉) |φ∗m〉

〈φl|π (Ψ3) |φ∗m〉 = α2 〈φl|π (|01〉) |φ∗m〉
+β2 〈φl|π (|10〉) |φ∗m〉

〈φl|π (Ψ4) |φ∗m〉 = β∗2 〈φl|π (|01〉) |φ∗m〉
−α∗2 〈φl|π (|10〉) |φ∗m〉

If, e.g., we want the detection of photons l and m to
contribute to the unambiguous discrimination of |Ψ3〉,
we get the conditions:

α1 〈φl|π (|00〉) |φ∗m〉 = −β1 〈φl|π (|11〉) |φ∗m〉 (11)

β∗1 〈φl|π (|00〉) |φ∗m〉 = α∗1 〈φl|π (|11〉) |φ∗m〉 (12)

〈φl|π (Ψ3) |φ∗m〉 6= 0 (13)

β∗2 〈φl|π (|01〉) |φ∗m〉 = α∗2 〈φl|π (|10〉) |φ∗m〉 (14)

The first two conditions can be combined to give:

|α1|2 〈φl|π (|00〉) |φ∗m〉 〈φl|π (|11〉) |φ∗m〉
= −|β1|2 〈φl|π (|00〉) |φ∗m〉 〈φl|π (|11〉) |φ∗m〉 .

For Bell-like states, |α1|2 6= |β1|2, so the only way to
satisfy this condition and both of Eqs. (11) and (12) is
for 〈φl|π(|00〉)|φ∗m〉 = 〈φl|π(|11〉)|φ∗m〉 = 0. Since π(|11〉)
only has one non-zero singular value, 〈φl|π(|11〉)|φ∗m〉 = 0
requires that either π(|11〉) |φ∗m〉 = 0 or π(|11〉) |φ∗l 〉 =
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0. If we start by choosing π(|11〉) |φ∗m〉 = 0 we get the
following:

(
0 0
0 1

)
|v∗m〉 ⊕

(
0 0
0 1

)
|u∗m〉 = 0

|v∗m〉 ∝
(

1
0

)
|u∗m〉 ∝

(
1
0

)

|φ∗m〉 = ϕm1

(
1
0

)
⊕ ϕm2

(
1
0

)
⊕ ϕm3 |w∗m〉

Here, the normalization of |φ∗m〉 is enforced by the con-

dition
∑3
i |ϕmi|2 = 1. Additionally, it is worth not-

ing that there exists one alternate solution where both
|v∗m〉 = |u∗m〉 = 0. However, with such a solution
Eq. (13) cannot be satisfied. Applying the same ap-
proach to 〈φl|π (|00〉) |φ∗m〉 = 0, we see that choosing
π (|00〉) |φ∗m〉 = 0 requires |φ∗m〉 = 0. This choice violates
the condition in Eq. (13) and, hence, cannot contribute
to unambiguous discrimination. We can conclude from
this that any detection of two photons in the same mode,
or m = l, cannot contribute to unambiguous discrimina-
tion. This leaves us with setting π (00) |φ∗l 〉 = 0, giving:

|φ∗l 〉 = ϕl1

(
0
1

)
⊕ ϕl2

(
0
1

)
⊕ ϕl3 |w∗l 〉 (15)

The orthogonality condition 〈φ∗l |φ∗m〉 = δlm is preserved
by requiring that 〈w∗l |w∗m〉 = δlm. With some simple
substitution, we can see that the probability of suc-
cessfully discriminating |Ψ3〉, given this detection, is
| 〈φl|π (ψ3) |φ∗m〉 | ∝ |ϕl1ϕm2 + ϕm1ϕl2|. From the nor-

malizations
∑3
i |ϕmi|2 = 1 and

∑3
i |ϕli|2 = 1, it is

clear that this proportionality term is maximal when
ϕl3 = ϕm3 = 0. Thus the optimal solution is to reduce
our total number of output modes to 4. If we choose
m = 1 and l = 2 we can put all of this together to derive
the following unitary:

U† =


cos θ1 0 − sin θ1e
−iϕ1 0

0 cos θ2 0 − sin θ2e
−iϕ2

sin θ1e
iϕ1 0 cos θ1 0

0 sin θ2e
iϕ2 0 cos θ2


 .

In this equation, we have satisfied the condition |ϕi1|2 +
|ϕi2|2 = 1 by defining ϕi1 = cos θi and ϕi2 = eiϕi sin θi
for i = 1, 2.

Using the condition from Eq. (14), we get that if we
want a measurement of |11, 12〉 to unambiguously dis-
criminate |Ψ3〉 then we need:

β∗2 cos θ1 sin θ2e
−iϕ2 = α∗2 cos θ2 sin θ1e

iϕ1 (16)

It is obvious, by inspection, that detections of |11, 13〉 and
|12, 14〉 cannot unambiguously discriminate any state.
Let us now consider a detection in one of the remaining
outputs, for instance, |11, 14〉. This outcome can unam-
biguously discriminate |Ψ3〉, but then the system is only
succeeding when |Ψ3〉 is sent. Assuming that we want our

detector to be able to succeed for more than one state,
we need to look at using this output to discriminate |Ψ4〉.
It is straightforward to show that Eqs. (11) and (12) are
already satisfied. The only other condition that needs to
be satisfied is:

α2 cos θ1 cos θ2 = β2 sin θ1 sin θ2e
i(ϕ1+ϕ2) (17)

Solving these two equations simultaneously gives cos θ1 =
sin θ1 = 1√

2
and α2

β2
= tan θ2e

i(ϕ1+ϕ2). Combining this we

derive the following unitary:

U† =




1√
2

0 − 1√
2

0

0 β2 0 −α2
1√
2

0 1√
2

0

0 α∗2 0 β∗2


 (18)

This unitary will successfully discriminate |Ψ3〉 and |Ψ4〉
with an optimal probability of 25%. While our initial
choice of having the |11, 12〉 mode contribute to unam-
biguous discrimination was arbitrary, at this point the
problem is completely fixed and no other output modes
can contribute to unambiguous discrimination. If we
chose a different output, for instance |12, 13〉, we would
end up deriving a permutation of the above unitary that
also can only succeed in discriminating the states with a
25% probability.

IV. IMPLEMENTATION AND ANALYSIS

In the previous section, we provide a rigorous proof of
the optimal method of discriminating between Bell-like
states. In this section, we explicitly provide and analyze
the optical setup. Without loss of generality, we can, for
convenience, choose all of four parameters in Eqs. (1)-(4)
to be real and rewrite the possible Bell-like states in the
form:

|Ψ1〉 =
(

sin θ1â
†
1â
†
3 + cos θ1â

†
2â
†
4

)
|0〉 , (19)

|Ψ2〉 =
(

cos θ1â
†
1â
†
3 − sin θ1â

†
2â
†
4

)
|0〉 , (20)

|Ψ3〉 =
(

sin θ2â
†
1â
†
4 + cos θ2â

†
2â
†
3

)
|0〉 , (21)

|Ψ4〉 =
(

cos θ2â
†
1â
†
4 − sin θ2â

†
2â
†
3

)
|0〉 . (22)

We can also easily find the concurrence of these states:
C1,2 = sin (2θ1), C3,4 = sin (2θ2). The unitary in Eq.
(18) can be implemented by two beam splitters. Before
looking explicitly at the optimal solution, it is first helpful
to consider any general two beam splitter strategy:

(
b̂†1
b̂†3

)
=

(
η1

√
1− η21

−
√

1− η21 η1

)(
â†1
â†3

)
(23)

(
b̂†2
b̂†4

)
=

(
η2

√
1− η22

−
√

1− η22 η2

)(
â†2
â†4

)
(24)

This interaction is depicted in Fig. 2 (a), while the setup
in Fig. 2 (b) requires mapping 3 ↔ 4 in the previous
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equations. In order to simplify our analysis, we will fix
the first beam splitter to being a 50/50 beam splitter,

η1 = 1/
√

2, and parameterize the second beam splitter
by some angle φ, η2 = cosφ.

4

â†1 1

â†2 2

â†3

3

â†4

4

η2

η1

(a)

â†1 1

â†2 2

â†3

3

â†4

4

η2

η1

(b)

FIG. 2. Discrimination of Bell-like states, with two beam
splitters defined by the parameters η1 and η2. In (a), modes
1 and 3 interact in the first beam splitter and modes 2 and 4
interact in the second. In (b), modes 1 and 4 interact in the
first beam splitter and modes 2 and 3 interact in the second.

succeeding when |Ψ1〉 is sent. Assuming that we want our
detector to be able to succeed for more than one state,
we need to look at using this output to discriminate |Ψ2〉.
It is straightforward to show that Eqs. (13) and (14) are
already satisfied. The only other condition that needs to
be satisfied is:

α1 cos θ1 cos θ2 = β1 sin θ1 sin θ1e
i(ϕ1−ϕ2) (17)

Solving these two equations simultaneously gives
cos (θ1) = sin θ1 = 1√

2
and α1

β1
= tan θ2e

i(ϕ1−ϕ2). Com-

bining this we derive the following unitary:

U† =




1√
2

0 − 1√
2

0

0 β1 0 −α1

0 α∗1 0 β∗1
1√
2

0 1√
2

0


 (18)

This unitary will successfully discriminate |Ψ1〉 and |Ψ2〉
with an optimal probability of 25%. While our initial
choice of having the |11, 14〉 mode contribute to unam-
biguous discrimination was arbitrary, at this point the
problem is completely fixed and no other output modes

can contribute to unambiguous discrimination. If we
chose a different output, for instance |12, 13〉, we would
end up deriving a permutation of the above unitary that
also can only succeed in discriminating the states with a
25% probability.

IV. IMPLEMENTATION AND ANALYSIS

In the previous section, we provide a rigorous proof of
the optimal method of discriminating between bell-like
states. In this section, we explicitly provide and analyze
the optical setup. Without loss of generality, we can, for
convenience, choose all of our parameters to be real. In
this case we can give the 4 possible states as:

|Ψ1〉 =
(

sin θ1â
†
1â
†
3 + cos θ1â

†
2â
†
4

)
|0〉 , (19)

|Ψ2〉 =
(

cos θ1â
†
1â
†
3 − sin θ1â

†
2â
†
4

)
|0〉 , (20)

|Ψ3〉 =
(

sin θ2â
†
1â
†
4 + cos θ2â

†
2â
†
3

)
|0〉 , (21)

|Ψ4〉 =
(

cos θ2â
†
1â
†
4 − sin θ2â

†
2â
†
3

)
|0〉 . (22)

We can also easily find the concurrence of these states:
C1,2 = sin (2θ1), C3,4 = sin (2θ2). The unitary in Eq.
(18) can be implemented by two beam splitters. Before
looking explicitly at the optimal solution, it is first helpful
to consider any general two beam splitter strategy:

(
b̂†1
b̂†3

)
=

(
η1

√
1− η21

−
√

1− η21 η1

)(
â†1
â†3

)
(23)

(
b̂†2
b̂†4

)
=

(
η2

√
1− η22

−
√

1− η22 η2

)(
â†2
â†4

)
(24)

This interaction is depicted in Fig. 2 (a), while the setup
in Fig. 2 (b) requires mapping 3 ↔ 4 in the previous
equations. In order to simplify our analysis, we will fix
the first beam splitter to being a 50/50 beam splitter,
η1 = 1√

2
, and parameterize the second beam splitter by

some angle φ, η2 = cosφ.

Using this, we can calculate a table of the probabilities of measuring each possible outcome for each possible input
state:

TABLE I. Probability of each possible combination of photon detections for each input state.

In/Out P (1, 1) P (2, 2) P (3, 3) P (4, 4) P (1, 2) P (1, 3) P (1, 4) P (2, 3) P (2, 4) P (3, 4)

|Ψ1〉 cos2 θ1 sin2(2φ)
2

sin2 θ1
2

cos2 θ1 sin2(2φ)
2

sin2 θ1
2

0 cos2 θ1 cos2 (2φ) 0 0 0 0

|Ψ2〉 sin2 θ1 sin2(2φ)
2

cos2 θ1
2

sin2 θ1 sin2(2φ)
2

cos2 θ1
2

0 sin2 θ1 cos2 (2φ) 0 0 0 0

|Ψ3〉 0 0 0 0 cos2(θ2−φ)
2

0 cos2(θ2+φ)
2

sin2(θ2−φ)
2

0 sin2(θ2+φ)
2

|Ψ4〉 0 0 0 0 sin2(θ2−φ)
2

0 sin2(θ2+φ)
2

cos2(θ2−φ)
2

0 cos2(θ2+φ)
2

In this table, P (m,n) is the probability of detecting one
photon in detector m and one photon in detector n. If we

swap the two beam splitters, then we get the same table,
but with 1 ↔ 2 and 3 ↔ 4. If we swap the interactions,

FIG. 2. Discrimination of Bell-like states, with two beam
splitters defined by the parameters η1 and η2. In (a), modes
1 and 3 interact in the first beam splitter and modes 2 and 4
interact in the second. In (b), modes 1 and 4 interact in the
first beam splitter and modes 2 and 3 interact in the second.

Using this, we calculate the probabilities of measuring
each possible outcome for each possible input state. In
the table I, P (m,n) is the probability of detecting one
photon in detector m and one photon in detector n. If we
swap the two beam splitters, then we get the same table,
but with 1 ↔ 2 and 3 ↔ 4. If we swap the interactions,
as depicted in Fig. 2 (b), such that the first beam splitter
has the 1 and 4 modes as its input and the second beam
splitter has 2 and 3 as it’s input, we also get a similar
table, but with the first two and the last two rows of
this table swapped and with θ1 ↔ θ2. For each output,
we can use Bayes’ Theorem to calculate the confidence
[24, 25]:

P (|ψi〉 |m,n) =
P (m,n| |ψi〉)p (|ψi〉)∑
i P (m,n| |ψi〉) p (|ψi〉)

(25)

D (m,n) = max
i
{P (|ψi〉 |m,n)} (26)

Here, we have defined P (m,n| |ψi〉) as the probability
of a given detection outcome of two photons in the m
and n detectors for the input state |ψi〉. In addition,
we have assumed that all Bell-like states are sent with
equal probability: p (|ψi〉) = 1

4 . One final note is that
Eq. (25) only holds when the denominator is non-zero.
This definition of confidence gives a measure of how well
a given detection can be correlated to one of the input
states. When the confidence is 1

4 there is no correlation
between the detection and any input state and when the
confidence is 1 there is perfect correlation between the
detection and the associated input state. In the case
where confidence is 1, that detection can contribute to
unambiguous discrimination. From all the columns of

the table we only get 3 different equations for confidence:

D (1, 1) = D (2, 2) = D(3, 3) = D(4, 4) = D (1, 3) ≡ D1

D (1, 2) = D (1, 4) ≡ D2

D (2, 3) = D (3, 4) ≡ D3

D1 =
1 +

√
1− C2

1

2
(27)

D2 =
1 + |

√
1− C2

2 cos (2φ) + C2 sin (2φ) |
2

(28)

D3 =
1 + |

√
1− C2

2 cos (2φ)− C2 sin (2φ) |
2

(29)

(a)

(b)

FIG. 3. A plot of the confidences (a) D2 and (b) D3 as a func-
tion of the concurrence C2 and the beam splitter parameter
φ.

In Fig. 3, we illustrate a plot of both D2 and D3 as
functions of C2 and φ. Since unambiguous discrimination
is only achieved when the confidence is 1, we can see that
D1 only contributes to unambiguous discrimination when
the first two states are separable, or C1 = 0. In order to
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TABLE I. Probability of each possible combination of photon detections for each input state.

In/Out P (1, 1) P (2, 2) P (3, 3) P (4, 4) P (1, 2) P (1, 3) P (1, 4) P (2, 3) P (2, 4) P (3, 4)

|Ψ1〉 cos2 θ1 sin2(2φ)
2

sin2 θ1
2

cos2 θ1 sin2(2φ)
2

sin2 θ1
2

0 cos2 θ1 cos2 (2φ) 0 0 0 0

|Ψ2〉 sin2 θ1 sin2(2φ)
2

cos2 θ1
2

sin2 θ1 sin2(2φ)
2

cos2 θ1
2

0 sin2 θ1 cos2 (2φ) 0 0 0 0

|Ψ3〉 0 0 0 0 cos2(θ2−φ)
2

0 cos2(θ2−φ)
2

sin2(θ2+φ)
2

0 sin2(θ2+φ)
2

|Ψ4〉 0 0 0 0 sin2(θ2−φ)
2

0 sin2(θ2−φ)
2

cos2(θ2+φ)
2

0 cos2(θ2+φ)
2

satisfy either D2 = 1 or D3 = 1, we only need to choose
φ = θ2 or φ = π

2−θ2 respectively, which is the optimal so-
lution derived in the previous section and results in the
unitary given in Eq. (18) up to a simple permutation.
For both D2 = 1 and D3 = 1 to be satisfied, we either
need C2 = 1 and φ = π

4 , which is the case for Bell states,
or C2 = 0 and φ = 0, which is the case for separable
states. This analysis makes it clear that the unambigu-
ous linear optical discrimination of Bell-like states is not
a monotonic function of entanglement, or equivalently,
concurrence. Rather, for all Bell-like states, only one of
D2 = 1 or D3 = 1 can be satisfied, and therefore the Bell-
like states can only be successfully discriminated with a
probability of 25%. For Bell states, both D2 = 1 and
D3 = 1 can be satisfied, allowing for a success probability
of 50% for the discrimination. For completely separable
states, D1 = D2 = D3 = 1 can be satisfied, allowing for
complete discrimination between the four states.

V. CONCLUSION

In this paper we have derived the optimal efficiency
of unambiguous discrimination between Bell-like states
possible with linear optical setups without the need for
ancillary photons. We have explicitly shown that the
optimal efficiency for Bell-like states is only 25%, as op-
posed to the 50% success rate possible for Bell states.
The reduced symmetry of the Bell-like states results in
fewer outputs that can be useful for unambiguous dis-
crimination. When analyzed in terms of the entangle-

ment measure of the set of states, the optimal efficiency
shows a discontinuity between the set of Bell-like states
and exact Bell-states. The main conclusion is that the
upper bound for the success probability of unambiguous
discrimination between Bell-like states is 25%. This re-
sult is independent of the concurrence C of the states for
0 < C < 1, while C = 0, separable states, and C = 1,
maximally entangled states, emerge as singular points.
Previous works on Bell states simply prove that the pro-
posed transformation is optimal, in this paper we ob-
tained specific constraints on the unitary and used these
constraints to derive and construct the optimal discrim-
ination protocol. The systematic approach presented in
this paper has the potential to assist in optimizing other
types of linear optical discrimination problems. In follow
up work, we intend to consider more general classes of or-
thogonal entangled states. In addition, there is still room
to explore optical setups for unambiguous discrimination
that make use of ancillary photons. One final possible
extension of this work is using this approach to derive
the optimal minimum error discrimination, or even more
general strategies, allowed by linear optical setups.
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