
Solving Sensor Placement Problems In Real Water
Distribution Networks Using Adiabatic Quantum

Computation
1st Stefano Speziali

Idea-re S.r.l.
Perugia, Italy

sspeziali@idea-re.eu

2nd Federico Bianchi
Idea-re S.r.l.
Perugia, Italy

fbianchi@idea-re.eu

3rd Andrea Marini
Idea-re S.r.l.
Perugia, Italy

amarini@idea-re.eu

4th Lorenzo Menculini
Idea-re S.r.l.
Perugia, Italy

lmenculini@idea-re.eu

5th Massimiliano Proietti
Idea-re S.r.l.
Perugia, Italy

mproietti@idea-re.eu

6th Loris F. Termite
Idea-re S.r.l.
Perugia, Italy

ltermite@idea-re.eu

7th Alberto Garinei
Department of Engineering Sciences,

Guglielmo Marconi University
& Idea-re S.r.l.
Perugia, Italy

a.garinei@unimarconi.it

8th Marcello Marconi
Department of Engineering Sciences,

Guglielmo Marconi University
& Idea-re S.r.l.
Perugia, Italy

m.marconi@unimarconi.it

9th Andrea Delogu
BlueGold S.r.l.

Milan, Italy
andrea@blue-gold.it

Abstract—Quantum annealing has emerged in the last few
years as a promising quantum computing approach to solving
large-scale combinatorial optimization problems. In this paper,
we formulate the problem of correctly placing pressure sensors
on a Water Distribution Network (WDN) as a combinatorial
optimization problem in the form of a Quadratic Unconstrained
Binary Optimization (QUBO) or Ising model. Optimal sensor
placement is indeed key to detect and isolate fault events.
We outline the QUBO and Ising formulations for the sensor
placement problem starting from the network topology and few
other features. We present a detailed procedure to solve the
problem by minimizing its Hamiltonian using PyQUBO, an open-
source Python Library. We then apply our methods to the case
of a real Water Distribution Network. Both simulated annealing
and a hybrid quantum-classical approach on a D-Wave machine
are employed.

Index Terms—Water Distribution Networks, Optimization Al-
gorithms, QUBO, Adiabatic Quantum Computation, Quantum
Annealing

I. INTRODUCTION

Water leaks in Water Distribution Networks (WDNs) can
be cause of significant economic loss, besides being waste of
important resources [1], [2]. Asset management of WDNs is
indeed a relevant issue for the scientific community and novel
and more efficient solutions to detect and isolate leaks are
always needed. In particular, the optimal placement of sensors
is crucial if we want to monitor the behavior of a WDN and
prevent fault events.

It is often the case that the number of nodes in a WDN
is much larger than the number of available sensors. While
the former can be in the order of thousands for a realistic
WDN, there is usually just a few dozens of the latter. Hence,
sensors must be placed such that network-wide global relevant
information can be provided.

Several methods to deal with leak detection and isolation
have been developed in recent years. See [3] and references
therein for a comprehensive overview. Standard methods to
detect and isolate water leaks employ the use of genetic algo-
rithms [4], [5], while more modern techniques contemplate the
use of Artificial Intelligence-inspired methods. For example,
in [6], [7] Dictionary Learning strategies are used to handle
pipe leakage in WDNs through fault detection and isolation
mechanisms, while in [8] Convolutional Neural Networks are
used to learn different pressure maps characterizing leaks
localization.

In this paper1, we take a different route and formulate the
problem of sensor placement as a combinatorial optimization
problem [9]. Roughly speaking, combinatorial optimization
refers to the computation of maxima or minima of a function
over a discrete domain.

Some combinatorial problems can easily become intractable
when the number of variables is large enough. However, it
turns out that many of these problems can be addressed by
means of a new computational technique, known as Ising
machine. As a matter of fact, in 2011 D-Wave Systems
announced D-Wave One, the first commercially available
quantum annealer, able to solve combinatorial optimization
problems [10]. Since then, large-scale combinatorial problems
in daily life have been addressed by means of Quantum
Annealing (QA) on D-Wave quantum or hybrid quantum-
classical solvers with applications ranging from delivery [11],

1The study presented here is part of the project “WATER A.I. - empower
the efficiency of WATER networks through Artificial Intelligence for IoT”
financed to BlueGold S.r.l by BANDO INNODRIVER S3 Azione I.1.b.1.1–
sostegno all’acquisto di servizi per l’innovazione tecnologica, strategica,
organizzativa e commerciale delle imprese, ID Progetto 1734422 — CUP
E47B20000590007.

1

ar
X

iv
:2

10
8.

04
07

5v
2

 [
m

at
h.

O
C

]
 2

0
A

ug
 2

02
1

to traffic flow [12] or job scheduling [13].
The reasons for thinking of the sensor placement as a

combinatorial problem are diverse. First of all, we do not need
to simulate the hydraulic behavior of the water network, the
mathematical formulation of which can be sometimes very
challenging and poorly accurate. Second, as stated above,
combinatorial problems can be run on Ising machines (like
the D-Wave quantum annealer) and often good solutions can
be found quickly. This can be useful when we want to monitor
large WDN’s and optimal sensor configurations are needed in
a relatively short time.

In order to employ Ising machines to solve an optimization
problem, one should define the energy function (Hamiltonian)
of the Ising model or QUBO (Quadratic Unconstrained Binary
Optimization) problem which corresponds to the function we
want to minimize (or maximize) [14].

We propose in this paper an instance of Hamiltonian whose
ground state encodes the optimal sensor placement for a
generic WDN. The lowest energy state is then found by
means of Simulated Annealing (SA) or Adiabatic Quantum
Computation (AQC). In order to program the optimization, we
used PyQUBO, an open source Python library [15] useful to
construct QUBOs from the objective functions and constraints
of optimization problems. As we shall see, the algorithm
we propose is very flexible and suitable for refinements or
generalizations.

The paper is organized as follows. In section II we re-
view some basic facts about combinatorial problems and
discuss how they can be formulated as optimization problems
(QUBO). In section III we review how QUBO problems
can be mapped to Ising models and briefly discuss quantum
adiabatic optimization. Sections IV and V are the core of the
paper. We formulate the problem of how to place sensors
on a generic WDN as a QUBO problem and we perform
a simulation on a real WDN. We give our conclusions in
section VI. In Appendix A we give an overview on the basics
of annealing methods in Quantum Mechanics and quantum
adiabatic evolution, while in Appendix B we discuss a possible
technical problem that might arise when physically installing
sensors and its resolution.

II. COMBINATORIAL OPTIMIZATION

As stated in the introduction, many combinatorial optimiza-
tion problems can be solved using quantum algorithms. Before
discussing how this can be done, let us review a few basic facts
about combinatorial optimization.

A combinatorial optimization problem can be formulated as
follows. Let

C : S → R (1)

be a function over a set S of decision variables to the field of
real numbers. We seek to find a (possibly unique) element of
S, x∗ ∈ S, which minimizes C:

x∗ = arg minxC(x) , (2)

such that a set of constraints of the form

gl(x) = 0 , hm(x) ≤ 0 (3)

is satisfied. Here l = 1, . . . , L and m = 1, . . . ,M are indices
counting the number of equality and inequality constraints,
respectively.

The function C is usually referred to as the “cost function”
of the problem. Remarkably, equation (2) can be re-written as
an unconstrained optimization problem where constraints, as
in (3), are given in the form of penalties. More in detail, we
want to find x∗ such that

x∗ = arg minxHP (x) , (4)

with

HP = C(x) +
∑
l

algl(x)2 +
∑
m

bmmax[hm(x), 0] . (5)

Here al and bm are positive real numbers enforcing the
constraints gl(x) = 0 and hm(x) ≤ 0. The coefficients al
and bm must be tuned so that it is disadvantageous to violate
any of the constraints.

When the set of decision variables, S, is given in terms of
binary variables, S = Bn with B = {0, 1}, and the “energy
function” HP is quadratic2, the problem is usually referred to
as QUBO.

QUBO problems are closely related and equivalent to Ising
models, where the decision variables are spin, taking values
in {−1, 1} instead of B. To go from QUBO to Ising we just
need to perform a straightforward change of a variables. More
details are given in the following section.

Thus, solving a combinatorial optimization problem can be
rendered, in many cases, equivalent to finding the ground state
of a quantum system, where physics methods can be readily
applied. One of the most promising methods to find the ground
state of a given Hamiltonian is provided by AQC, a framework
of quantum computation that relies on the adiabatic condition
(slow change of parameters), and such that the quantum system
is supposed to follow in the time evolution the instantaneous
ground state.

AQC is often used in the literature as synonym of Quantum
Annealing (QA). In fact, the latter defines a broader concept,
where also non-adiabatic changes of the underlying Hamil-
tonian are possible. However, in this paper we will restrict
ourselves to the case where the two concepts can be used
interchangeably.

Let us now see how QUBO problems can be mapped to
Ising models and discuss briefly how AQC is useful to our
purposes.

2If the problem of interest has higher order interactions, it is still possible to
reduce it to a QUBO by introducing ancillary variables. For example, a local
expression of the form x1x2x3 is reduced to x1x4 if we define x4 = x2x3.
The latter condition can be imposed by adding to the cost function the term

3x4 + x2x3 − 2x2x4 − 2x3x4.

This expression gives a vanishing contribution only when x4 = x2x3 and is
positive (penalty) otherwise.

2

III. FROM QUBO TO ISING MODELS AND QUANTUM
ADIABATIC OPTIMIZATION

A classical QUBO problem is usually written as a quadratic
function of a set of n binary variables xi which take value 0
or 1:

HP =
∑
i,j

Qijxixj +
∑
i

cixi . (6)

Here Qij and ci are real numbers. Of course, Qij = Qji, as
the term xixj is symmetric with respect to the exchange of i
and j.

The model (6) can be re-written in the form of a Ising
model if we perform the straightforward change of variables
xi = (si + 1)/2. Here, si are spin variables taking values ±1.
We get for HP :

HP = −
∑
i,j

Jijsisj −
∑
i

hisi , (7)

where hi and Jij are real numbers related to ci and Qij by
the following expressions

hi = −1

2

ci +
∑
j

Qij

 , Jij = −1

4
Qij . (8)

A constant energy-shift in (7) has been neglected: In general,
constant shifts of the energy function can be ignored as they
play no role in the minimization (or maximization) procedure.

The quantum version of the same Hamiltonian HP is simply
obtained by replacing si → σzi ,

HP = −
∑
i<j

Jijσ
z
i σ

z
j −

∑
i

hiσ
z
i , (9)

where σzi = I⊗(i−1) ⊗
(

1 0
0 −1

)
⊗ I⊗(n−i) acts on the i-

th spin, and with I being the 2 × 2 identity matrix. The
Hamiltonian in eqn. (9) is easily diagonalized in the basis
{|s〉 ∈ C2n |s ∈ {−1, 1}n}, with σz| ± 1〉 = ±| ± 1〉. When
Jij are chosen from a random distribution, the model (9) is
also referred to as a spin glass, a well-known NP-hard problem
for classical computers.

Finding the ground state of (6) or (7) can become a
challenging task when the number of variables is large, and
here is where annealing methods come to play a role. We
review some basics of annealing methods and the quantum
adiabatic theorem in Appendix A. For more in-depth reviews
we refer the reader to e.g. [16], [17].

For the time being, we just point out that an important
ingredient for QA is adiabaticity. According to the quantum
adiabatic theorem [18], [19] (see also Appendix A), the ground
state of the model of interest, defined in this case by some
Ising model HP , can be found by initializing the system in
the ground state of some other Hamiltonian HB , which should
be easy to prepare both theoretically and experimentally. HB

must be chosen such that it does not commute3 with HP .
3This is due to the fact that we want to avoid level crossing: one has to

tune (in general) three parameters of a 2 × 2 Hamiltonian to get two states
with the same energy. We have only one (t) and thus we do not expect any
degeneracy over the time evolution.

Then, we perform an adiabatic evolution from HB to HP ,
H(u) = (1 − u)HB + uHP , where u = t/T is a “time
parameter” for total evolution time T . In this way we are
assured that the solution to the optimization problem encoded
in the Hamiltonian HP is reached after a time T , which should
be long enough [20].

It is customary [20] to choose HB to be

HB = −h1
∑
i

σxi , (10)

where σxi = I⊗(i−1) ⊗
(

0 1
1 0

)
⊗ I⊗(n−i) again acts on the

i-th spin, while h1 is a positive real constant. In this way, the
ground state of HB is an equal superposition of all possible
states of HP . This, in particular, means that no level-crossing,
and thus no degeneracy, is expected in the time evolution.

Let us now move on to formulating the placement of sensors
as a QUBO (or Ising) problem.

IV. QUBO FORMULATION OF THE SENSOR PLACEMENT
PROBLEM

A WDN can be formally interpreted as a graph G = (V, E),
where the nodes (or vertices), denoted collectively as V , are
either tanks or junctions (the former are source of water while
the latter distribute the existing water flow to users through
the pipes), whereas the edges, denoted collectively E, are the
pipes connecting nodes. Even though we will not need much
from graph theory, we refer the reader to [21] for an overview
on graphs and to [22] for a nice review on approximation
algorithms defined on graph structures.

A. Formulation of the Problem

Let xi be a binary variable associated with the i-th vertex in
V . We choose xi to be 1 if the node of our WDN associated
with the i-th vertex hosts a sensor, 0 otherwise.

The problem of covering our WDN with pressure sensors
can be formulated as the minimum vertex cover problem [14],
very well-known in combinatorial optimization. The constraint
that every edge4 (ij) ∈ E of the graph has at least one vertex
associated with a sensor can be encoded in the following
Hamiltonian:

H ′(0) = A
∑

(ij)∈E

(1− xi)(1− xj) . (11)

Then, we want to minimize the number of vertices with an
associated sensor. In the most general setup, each node i ∈ V
comes with an associated cost, ci say, which we always assume
to be non-negative [22] (ci ≥ 0). Thus, we want to minimize

H(1) =
∑
i∈V

cixi . (12)

Given these considerations, it seems that covering a WDN
with pressure sensors amounts to finding the ground state of
the hamiltonian H = H ′(0) +H(1). Of course, in order to have

4In the following, an edge will be identified either by a Latin letter, say
e ∈ E, or by its endpoints (say i, j ∈ V) (ij) ∈ E.

3

a well defined minimization problem, we should specify what
the costs ci correspond to. We will propose a realistic cost ci
for each node i ∈ V below.

Before defining what ci will be for us, it should be kept
in mind that in realistic situations the number of sensors
is fixed and much smaller than the number of nodes. The
constraint that forces the total number of sensors to be equal
to a predetermined number s ∈ N, i.e.

∑
i∈V xi = s, can

be included in the minimization problem by considering the
following hamiltonian

H(2) = B

(∑
i∈V

xi − s

)2

, (13)

where B is a positive number, chosen so that the constraint
on the fixed number of sensors is always satisfied.

We might also wonder what changes if the number of
sensors was not to be strictly equal to a predetermined number,
s, but rather not greater than that number. In the latter case
the constraint would be instead:

∑
i∈V xi ≤ s.

As we will show in a moment, such a constraint can still
be re-written as an equality constraint. However, an expansion
in the number of spins is necessary [14].

Let yα for 0 ≤ α ≤ s denote a binary variable, which is
1 if the final number of sensors is α and 0 otherwise. Then
the inequality constraint can be implemented by the following
Hamiltonian

H̃(2) = B

(
1−

s∑
α=1

yα

)2

+B

(
s∑

α=1

αyα −
∑
i∈V

xi

)2

, (14)

where the first term is there to ensure that only one among
the yα’s is equal to 1 (one-hot), say yα̂, while the second term
forces the number of sensors to be equal to α̂(< s).

One can employ either H2 or H̃2 for the optimization,
according to the type of constraint considered.

Now, the fact that the number of sensors is usually much
smaller than the number of nodes induces a further com-
plication. More in detail, not all edges of our network can
have at least one sensor associated with one of their endpoint.
Therefore, to render the problem more consistent, we should
weigh different edges differently, according to their intrinsic
properties in the WDN. We propose to modify the hamiltonian
(11) in the following fashion:

H(0) = A
∑

(ij)∈E

wij(1− xi)(1− xj) , (15)

where wij is a (positive) weight for the edge (ij) ∈ E, which
we define later below.

To sum up, the optimal sensor placement can be formulated
as a QUBO problem where the defining hamiltonian is given
by

HP = H(0) +H(1) +H(2) (or H̃2) , (16)

with H(0), H(1), H(2) (or H̃2) defined as above.
As a final comment, we point out that one of the four

parameters A, B, C and D could be scaled away: minimizing

HP or a × HP , with a an arbitrary constant, makes no
difference and this gives us the freedom to get rid of one
of the four parameters. However, it is useful to keep all of
them so that numerical simulations can be run by choosing
the four hyper-parameters independently.

B. Vertex cost function

We shall now describe what the costs ci, introduced above,
will be for us. As remarked before, the aim of this paper
is to derive a simple and realistic model for WDN sensor
placement regardless of the hydraulic behavior of the WDN
itself. Two simple and important parameters one may want to
take into account are given by the degree of accessibility of
the network (some nodes may be physically more accessible
than other as they are located in correspondence of control or
check valves, fire hydrants and so on) and water consumption
in correspondence of the given nodes.

The former is a useful parameter to consider when phys-
ically installing sensors, while the latter guarantees that we
pick in the optimization nodes with higher demands of water.

Water consumption is usually given by WDN owners in
terms of the amount of water (in a given amount of time) vi
necessary to cover specific needs for users in correspondence
of the i-th node. For the following analysis, it is useful to
define the dimensionless quantities v̂i = vi/vmax. Note that
v̂i lies in the range 0 to 1.

Thus, we propose to define ci as

ci = Cfi +Dgi , (17)

where fi ≡ f(v̂i) is a function of the water need at each node
i, while gi weights different nodes differently, according to
their degree of accessibility. C and D are positive weights that
can be tuned arbitrarily, but that should not exceed B, in order
not to violate the constraint (13) or (14). A simple example
of accessibility weighting is given by considering gi to be
equal to 1 for nodes that are considered less accessible, and
0 otherwise. Given also that one may want to monitor nodes
with higher rates of consumption, f(v̂i) can be chosen to be a
monotonically decreasing function of its argument (normalised
between 0 and 1). Simple models for f might be f(x) = 1−x
or f(x) = e−x.

In section V we will show the results for sensor placement
optimization in the case of simple choices of f and g. Let us
now discuss the edge weights wij .

C. WDN centrality metrics

We shall now discuss what wij , weight for a given edge
(ij) ∈ E, will be for us. A simple argument suggests that
the most “central” nodes or edges should be more likely to
be selected to host pressure sensors. By “central” we mean a
node or edge where water is more likely to pass through in
order to meet clients’ needs. However, to make this statement
precise a more mathematical formulation is needed.

In Complex Network Theory (CNT), different concepts of
centrality exist. Examples of these are the betweennes, close-
ness or degree centrality. See [23] for an extensive overview on

4

1000 m

(a) Water Distribution Network used for the optimization. It comprises
1368 nodes (blue points) and 1391 edges (solid lines connecting nodes).
The solid red point corresponds to the actual tank of the network, while
the green point corresponds to a fictitious outlying tank added so to get a
more interesting edge betweennes.

0.2

0.4

0.6

0.8

1.0

(b) Water Distribution Network tailored centrality. The edge betweennes cen-
trality has been weighted using pipe lengths. We have normalized it to lie in
the range 0 to 1. The darkest edges are those in proximity of the two tanks
and where water is more likely to pass through to reach demand nodes of the
network.

Fig. 1

networks and centrality metrics. A thorough discussion about
all existing centralities would take us too far afield, but for
the sake of clarity let us briefly introduce the betweennes
centrality, a concept that in fact will be relevant for us in
the following.

Given a node i and a couple of other vertices s and t, say m
shortest paths connect s to t. A fraction of these paths passes
through i. The sum of all those fractions for every couple (s, t)
in the graph is called the betweennes centrality of the node i.
In more mathematical terms, we have the following definition:

CBi =
∑

s6=i 6=t∈V

σs,t(i)

σs,t
, (18)

where σs,t is the number of shortest paths between s and t,
while σs,t(i) is the number of shortest paths through i.

Remarkably, an analogue formulation can be given for the
centrality of an edge of the graph G. In that case we speak
of “edge betweennes” and, instead of considering the fraction
of shortest paths passing through a node i, we compute the
number of shortest paths linking two nodes s and t passing
through an edge e of the graph. In particular, we take as a
definition of the edge betweennes for an edge e:

CBe =
∑
s6=t∈V

σs,t(e)

σs,t
, (19)

where σs,t is the number of shortest paths between s and t
while σs,t(e) is the number of shortest paths between s and t
passing through e.

A natural question is whether a definition like this would
suffice to define centrality properties of a WDN. A possible

answer to this question came from [24] (see also [25]) where
the authors tailored a suitable centrality metric for a generic
WDN. Their analysis revolves essentially around three points
[24], that we report here for clarity:

• edges (i.e. pipes) are the most relevant components of a
WDN, not nodes. Thus, centrality should be referred to
edges rather than nodes,

• pipes are characterized by asset features such as length,
diameter and hydraulic resistance. Thus, a centrality
should be weighted accordingly,

• each node can represent a different component of the
WDN: some of them are source nodes, others can be
junctions (connections) or demand nodes. Thus, a cen-
trality metric should be defined by taking into account
where water flows start and end.

While the first two items are relatively easy to deal with,
the third requires some more explanation. What the authors
of [24] propose is to create a network of nf fictitious node
around and connected only to source nodes, with nf equal
to5 (the integer part of) n/ns, where n is the total number of
nodes in the network and ns is the number of source nodes.
In this way, source nodes behave like hubs for water supply
and the centrality metric is weighted accordingly.

5We are in fact oversimplifying a bit the analysis of [24] where the authors
also discuss the case where a tank undergoes an emptying/filling process, and
directional devices – installed near the tanks – allow water to flow only in one
direction. The former case, in particular, is taken into account by replacing
nf by ndVT /VD , where VT and VD are the tank volume and average water
volume supplied during the operating cycle to demand nodes. In the present
context, we will not use this level of complexity.

5

1000 m

(a) Optimal sensor placement using the simulated annealing algorithm of the
PyQUBO library. Red points mark nodes that have been selected to host a
sensor. There are in total 48 red points and they appear to be uniformly
distributed over the WDN with a tendency to aggregate in regions with a higher
centrality. 35 out of the 48 sensors are found to be placed in correspondence
of nodes classified as most accessible. About 4.3% of the water flow passes
through the selected nodes.

345 350 355 360 365
Energy

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sp
ec

tra
l D

en
sit

y

(b) Energy spectral density of the simulation. The hyperparameters are
chosen to be (A,B,C,D) = (1, 30, 5, 1). On the horizontal axis we have
the energies associated with different runs, while on the vertical axis the
number of events normalized so to have total unit area under the histogram.
We have found that 100 runs is enough to get an acceptable solution to
the sensors placement problem.

Fig. 2

In light of what we said, we propose to use as weights,
wij , the WDN tailored edge betweennes centrality as defined
in [24]. This will guarantee that the most central edges, in
the sense just discussed, are more likely to be be assigned a
sensor by the optimization algorithm.

V. CASE STUDY: SIMULATIONS AND RESULTS ON A REAL
WDN

In this section, we solve the sensor placement problem
for the case of a real WDN. In order to minimize the
Hamiltonian HP using classical and quantum annealing, we
used PyQUBO, an open library for Python. PyQUBO is an
easy-to-use environment that allows to create and solve Ising
or QUBO models and is fully integrated in D-Wave Ocean
SDK. See [15] for a comprehensive overview on the subject.

The WDN we use for the simulations is depicted in Fig.
1a and corresponds to a real water network in the Lombardy
region in Italy. It comprises 1368 nodes (blue points), one of
which is associated with a tank (red point) and 1391 edges
(solid lines connecting nodes). The WDN has a total length of
approximately 26 kilometers, and serves about 4000 people.

The actual tank of our WDN lies in a very central position
(red point in Fig. 1a). To make the problem more interesting,
and for the purpose of this study only, we have added an
extra outlying tank to the network (green point in Fig. 1a).
The resulting edge betweennes centrality is shown in Fig. 1b.

The edge betweennes has been computed using pipe lengths
as weights, and has been normalized to lie in the range 0 to 1.
As anticipated before, in order to take into account the position
of the two tanks, a network of 683 fictitious nodes has been
created around each tank. Fig. 1b clearly shows that the most
central edges (dark green) are those in proximity of the two
tanks and where water is more likely to pass through to reach
demand nodes, as we expected. A more refined version of the
same centrality could be obtained by considering also other
asset features, such as the pipe resistance or diameter.

We have run our algorithm for many instances of hy-
perparameters A, B, C and D. Here, we report the case
(A,B,C,D) = (1, 30, 5, 1). The vertex cost functions fi has
been chosen to be fi = 1−v̂i. Water consumption at each node
v̂i corresponds to water need at each node over the period of
one year. We have also chosen to set gi = 0 when the i-th
node is considered easily accessible and 1 otherwise. Again,
splitting the nodes in two categories of accessibility comes
from engineering assessments.

Of course, more general choices of f and g exist, but for
the purpose of the following analysis we will content ourselves
with our choice.

The remaining of this section is made of two parts. In
the first part, we use simulated annealing methods to find
the (approximate) global minimum of the Hamiltonian of the
model of interest, eqn. (16), whereas in the second we use a

6

hybrid quantum-classical approach on D-Wave Leap hybrid
solver service (HSS). As it turns out, neither the Chimera
nor the Pegasus D-Wave architectures were big enough to
embed our instance problem (16). Thus, we drew on the D-
Wave Hybrid Solver where one should not worry about any
embedding on D-Wave architectures nor should one think
about choosing the right chain-strength. See the D-Wave
documentation [26] for more details on quantum and hybrid
quantum-classical solvers.

Let us begin with the simulations performed using simulated
annealing.

A. Simulated Annealing
As for the simulated annealing, we have used the Hamil-

tonian (16) with a number of sensors fixed at 48 units.
The minimization is carried out performing 100 runs of the
simulated annealing algorithm, for fixed hyperparameters A,
B, C and D, as described above. Each run comes with
an associated energy, each supposedly close to the global
minimum, and the final sensor placement corresponds to the
best result (minimum energy) among the 100 runs. The optimal
sensor placement is shown in Fig. 2a.

Red points correspond to nodes selected by the optimization
to host a sensor. As we can see, sensors are distributed quite
uniformly over the water network with a tendency to aggregate
in regions with a higher centrality, ensuring a good spatial
coverage. We have found that 35 out of 48 sensors are to
be placed in correspondence of nodes classified as the most
accessible, while the percentage of water flowing through the
selected nodes is about 4.3% of the total flow. The percentage
of water that flows through the selected points might seem
poor at first, but in fact with a random sensor placement
we would end up monitoring roughly the 3% of the total
on average. Thus, our configuration provides a consistent
improvement.

In Fig. 2b we show the energy spectral density of our
minimization. On the horizontal axis we give the energies
associated with different runs, while on the vertical axis we
depict the number of events normalized so to have total
unit area under the histogram. As we can see, to find the
configuration closest to the global minimum, multiple runs
are needed. We have found that 100 runs is enough to get an
acceptable solution. The optimal solution is found when the
energy is (approximately) HP = 341.8.

As a final comment, we state that the minimization of the
Hamiltonian in eqn. (16) for the case of the WDN shown
in Fig. 1a takes approximately 100 seconds on a standard
laptop equipped with a CPU Intel i7, which is indeed very
satisfactory. In particular, this gives hope that running our
algorithm on a bigger WDN could give sensible results in
a reasonable time even on a classical computer.

Let us now move on to the case of the quantum-classical
solver.

B. Hybrid quantum-classical solver
As for the hybrid quantum-classical annealing, we have

run our algorithm on the D-Wave Leap hybrid solver service

1000 m

Fig. 3: Optimal sensor placement using the hybrid D-Wave Leap solver.
Again, red points denote nodes that have been selected to host a sensor. The
number of selected nodes labeled as more accessible is of 39 out of 48 and
percentage of water flowing through the selected notes is about 7.4% of the
total flow.

(HSS) [26]. The D-wave hybrid solver, differently from the
quantum solver, does not need any embedding nor any choice
of the chain strength [27]. The only tunable parameter is the
Computation Time [28]. We have found that the optimal solu-
tion for the minimization problem (16), with (A,B,C,D) =
(1, 30, 5, 1), as above is achieved when the run-time is set at
100 seconds (similar to SA).

The outcome is slightly different from the case of the sim-
ulated annealing and is shown in Fig. 3. The optimal solution
is attained when the energy is approximately HP = 304.8,
lower than in the classical case. We have also found that the
number of selected nodes labeled as more accessible is of 39
out of 48 and percentage of water flowing through the selected
notes is about 7.4% of the total flow.

Even though we find, overall, that the hybrid solver per-
forms better in this particular case, a systematic comparison
between classical solvers and the hybrid quantum-classical
approach to the optimization problem lies outside the main
goals of the present paper. We hope to tackle these issues in
future research.

VI. CONCLUSION

In this paper we considered a new quantum annealing
heuristic method to solve the sensor placement problem on
a generic Water Distribution Network (WDN). Our method
can be run on a classical computer by means of Simulated
Annealing (SA) or on the publicly available D-Wave quantum
solver. Due to the limited number of qubits of the current D-
Wave architectures, we relied on the hybrid quantum-classical
solver reaching encouraging results.

The advantage of using an heuristic method that does not
rely on hydraulic simulations lies in its flexibility and ease of
use. The algorithm is designed as a QUBO (or Ising problem)

7

and is formulated in such a way sensors can be placed
on a generic WDN as the result of a compromise between
topological properties of the network and more distinguishing
features, such as nodes accessibility or water consumption in
a given area.

The hyper-parameters of the QUBO problem can be tuned
so as to give more importance to either topology or clients’
needs. We have given one instance of optimization for a set
of hyper-parameters and compared results using simulated
annealing and a hybrid quantum-classical method.

Our approach can be easily extended, modified or gen-
eralized not only by adding or choosing different hyper-
parameters for the QUBO problem, but also by considering
different strategies for the sensor placement. We hope that our
work will inspire also how to tackle different optimization
problems involving different spatial networks (transportation
and mobility, electricity networks etc.).

Moreover, the proposed method proves to be promising to
support, in real time, operational teams during the installation
phase. For example, during the physical installation, it is often
necessary to relocate some of the sensors as a consequence
of the fact that the positions indicated by the optimization
algorithm may correspond to nodes that are difficult to access
(lack of connectivity due to shielding, lack of space, etc...). See
Appendix B for a problem of this kind and its resolution. Thus,
the present work opens also the way to a more systematic
assistance in the field thanks to the reduced computation time.

ACKNOWLEDGEMENTS

It is a pleasure to thank David Amaro and Saskia Demulder
for very interesting discussions and feedbacks.

APPENDIX A
ANNEALING METHODS AND ADIABATIC EVOLUTION

In this appendix, we review some basic facts about anneal-
ing and adiabatic evolution.

“Annealing” is a term used in metallurgy and materials
science. It refers to the gradual cooling process of metal alloys
and glassy materials to remove stress and defects.

The Simulated Annealing (SA) imitates annealing processes
in computer simulations, where a temperature is introduced
into the optimization problem as thermal fluctuation [29].
The best solution can then be obtained by decreasing the
temperature gradually. Thermal excitations allow the system
to escape local minima and reach states of lower and lower
energy, until it relaxes onto the ground state.

Besides considering thermal fluctuations, we might consider
quantum fluctuations as well. An annealing process where
quantum fluctuations drive the minimization is referrer to
as Quantum Annealing (QA) [20], [30], [31]. In the QA,
a quantum field plays a similar role to the temperature in
the simulated annealing. We start from a quantum-mechanical
superposition of all possible states with equal weights, and
then we evolve the system following the time-dependent
Schroedinger equation.

QA provides a formidable tool to find the lowest energy
state encoding the solution to our combinatorial problem.
Excellent reviews on annealing methods and implementations
can be found, for example, in [16], [17].

Let us say just a few words about the quantum adiabatic
theorem [18], [19], a crucial ingredient in Adiabatic Quantum
Optimization (AQC) and QA.

Quantum adiabatic theorem

The time evolution of any quantum system is governed by
the Schroedinger equation

i~
∂Ψ

∂t
= H(X(t))Ψ . (20)

Here, we assume that the Hamiltonian H depends on a set of
time-dependent parameters, X(t). In order to discuss adiabatic
changes of the quantum system, the control parameters X(t)
must be varied slowly on the time-scale set by the energy-
eigenvalues of the Hamiltonian H . The set of control parame-
ters X can be thought of as parametrizing a topological space,
that we still denote as X . For simplicity, X is assumed to be
connected, but not necessarily simply connected. Examples of
parameters that can be controlled externally are magnetic or
electric fields, for instance.

Here, Ψ(t) denotes the state of the system at the time t
and, mathematically, is defined as a section of a bundle of
Hilbert spaces over X , π : H → X . Recall that a section of
a bundle H → X is a continuous map Ψ : X → H such
that π ◦Ψ = idX , i.e. π(Ψ(x)) = x, for any x ∈ X . Another
way to say this is that a section is a continuous assignment
x 7→ ψ(x) ∈ Hx. See [32] for a review on fibre bundles and
applications to Physics.

The inverse image, of the projection π, π−1(x) = Hx is
the fibre at x ∈ X and corresponds to a Hilbert space. In
particular, Ψ(t) ∈ HX(t) is in a different fibre of the bundle
for each X(t).

Of course, the bundle H → X can be non-trivial. We
assume that a trivialization is always possible. What this
means is that over suitable open covers {Uα} of X there
are isomorphisms φα : π−1(Uα) → Uα × H0, where H0

is some Hilbert space which, in the finite dimensional case,
can be chosen to be isomorphic to CN , H0

∼= CN , for
some positive N (e.g. N = 2n for a system of n spins).
An important remark about trivializations is that if there are
different trivializations of the bundle corresponding to different
choices of basis {ψα(x)}, {ψβ(x)}, these should be related
by some non-trivial map to the unitary group of H0, U(H0),
such that ψβ = U(H0)βαψα.

The adiabatic theorem says, in essence, that a quantum
system with slowly varying parameters follows, in the time
evolution, the instantaneous eigenstate if we start the dynamics
in one of the eigenstates of the initial Hamiltonian. See [18],
[19] for full details. Here, we are assuming that the degree
of degeneracy of the energy spectrum does not change in the
time evolution. In particular, if we start from the ground state
(assumed to be unique for simplicity) of the initial Hamiltonian

8

H(0) = HB , ψ(0) = ψg.s., then in the adiabatic approxima-
tion, the wave function stays close to the instantaneous ground
state after a time T . The adiabatic condition is often stated as

max0≤t≤T
|〈ψn(t), dH(t)

dt ψg.s.(t)〉|
En,0(t)2

� 1 , n ≥ 1 (21)

where En,0(t) = En(t)−E0(t), while {ψn} is any trivializa-
tion of the Hilbert bundle at time t. Here, n is a label for the
n-th eigenstate (in order of increasing energy) of H(t) with
energy En(t). The bracket 〈, 〉 denotes an hermitian form on
the fibre of the Hilbert bundle.

Equation (21) can be rewritten for n = 1 (first excited state)
as

T � max0≤u≤1
|〈ψ1(u), dH(u)

du ψg.s.(u)〉|
E1,0(u)2

, (22)

which gives an estimate of what the total time evolution T
should be in order for the adiabatic condition to hold.

APPENDIX B
A TECHNICAL PROBLEM AND ITS RESOLUTION

Here, we would like to point out a technical problem that
might arise when physically installing sensors on a WDN.

Assume that our (classical or quantum) algorithm has found
the optimal configuration for the sensor placement and m(< s)
sensors have been physically installed. At the same time,
assume that when installing the (m+ 1)th sensor a technical
problem arises and the (m+1)th sensor cannot be installed at
the selected position. Running the algorithm again excluding
that particular node would give in principle a completely
different configuration and the work done for the first m
sensors should be undone. An unpleasant possibility. Here we
propose a simple way out for this problem.

Define Va ⊂ V , the subset of nodes where sensors have
been physically installed and Vr ⊂ V the subset of nodes that
were selected by the algorithm but for one reason or another
are not suitable to host a sensor. Of course, Va ∩ Vr = ∅.

We can run the minimization including a term of the form

E
∑
a∈Va

(xa − 1)2 + E
∑
r∈Vr

x2r , (23)

where the first term is there to make sure that in the new
optimization the nodes in Va will be selected again (and no
work has to be undone) while the second forbids the nodes in
Vr to be selected in the new optimization. E is a positive real
parameter.

We now define two vectors k(a), k(r) ∈ Rn, so that k(a) has
non-zero entries (say 1’s) in correspondence of nodes where
a sensor has been installed (e.g. if the 147th node hosts a
sensor, k(a)147 = 1), and k(r) has non-zero entries (again, 1’s)
in correspondence of nodes that should not be chosen by the
optimization. It is an easy exercise to see that the term in (23)
can be re-written as

E
[
k(a) · (k(a) − x) + k(r) · x

]
, (24)

where the dot is the Euclidean dot-product in Rn and the
components of x ∈ Rn are the binary variables xi defined in
the main text.

The advantage of considering eqn. (24) rather than (23)
is only for numerical purposes: if we initialize k(a), k(r)

to be null vectors, we can just “update” them as explained
above whenever a “bad” position (i.e. where sensors cannot
be installed) is found on site and run again the optimization
algorithm.

REFERENCES

[1] M. Farley and S. Trow, Losses in water distribution networks. IWA
publishing, 2003.

[2] K. B. Adedeji, Y. Hamam, B. T. Abe, and A. M. Abu-Mahfouz, “To-
wards achieving a reliable leakage detection and localization algorithm
for application in water piping networks: An overview,” IEEE Access,
vol. 5, pp. 20 272–20 285, 2017.

[3] R. Puust, Z. Kapelan, D. Savic, and T. Koppel, “A review of methods for
leakage management in pipe networks,” Urban Water Journal, vol. 7,
no. 1, pp. 25–45, 2010.

[4] R. Perez, G. Sanz, V. Puig, J. Quevedo, M. A. C. Escofet, F. Nejjari,
J. Meseguer, G. Cembrano, J. M. M. Tur, and R. Sarrate, “Leak local-
ization in water networks: A model-based methodology using pressure
sensors applied to a real network in barcelona [applications of control],”
IEEE control systems magazine, vol. 34, no. 4, pp. 24–36, 2014.

[5] M. V. Casillas, V. Puig, L. E. Garza-Castanón, and A. Rosich, “Optimal
sensor placement for leak location in water distribution networks using
genetic algorithms,” Sensors, vol. 13, no. 11, pp. 14 984–15 005, 2013.

[6] P. Irofti and F. Stoican, “Dictionary learning strategies for sensor place-
ment and leakage isolation in water networks,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 1553–1558, 2017.

[7] P. Irofti, F. Stoican, and V. Puig, “Fault handling in large water networks
with online dictionary learning,” Journal of Process Control, vol. 94, pp.
46–57, 2020.

[8] M. Javadiha, J. Blesa, A. Soldevila, and V. Puig, “Leak localization in
water distribution networks using deep learning,” in 2019 6th Interna-
tional Conference on Control, Decision and Information Technologies
(CoDIT). IEEE, 2019, pp. 1426–1431.

[9] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver,
Combinatorial Optimization. USA: John Wiley & Sons, Inc., 1998.

[10] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk et al.,
“Quantum annealing with manufactured spins,” Nature, vol. 473, no.
7346, pp. 194–198, 2011.

[11] M. Borowski, P. Gora, K. Karnas, M. Błajda, K. Król, A. Matyjasek,
D. Burczyk, M. Szewczyk, and M. Kutwin, “New hybrid quantum an-
nealing algorithms for solving vehicle routing problem,” in International
Conference on Computational Science. Springer, 2020, pp. 546–561.

[12] F. Neukart, G. Compostella, C. Seidel, D. Von Dollen, S. Yarkoni,
and B. Parney, “Traffic flow optimization using a quantum annealer,”
Frontiers in ICT, vol. 4, p. 29, 2017.

[13] D. Venturelli, D. J. Marchand, and G. Rojo, “Quantum annealing im-
plementation of job-shop scheduling,” arXiv preprint arXiv:1506.08479,
2015.

[14] A. Lucas, “Ising formulations of many np problems,” Frontiers in
Physics, vol. 2, p. 5, 2014.

[15] M. Zaman, K. Tanahashi, and S. Tanaka, “Pyqubo: Python library for
qubo creation,” IEEE Transactions on Computers, 2021.

[16] M. Nakahara, Lectures on quantum computing, thermodynamics and
statistical physics. World Scientific, 2013, vol. 8.

[17] S. Tanaka, M. Bando, and U. Gungordu, Physics, Mathematics, and All
that Quantum Jazz. World Scientific, 2014, vol. 9.

[18] A. Messiah, Quantum Mechanics, ser. Dover books on physics. Dover
Publications, 1999. [Online]. Available: https://books.google.it/books?
id=mwssSDXzkNcC

[19] M. H. Amin, “Consistency of the adiabatic theorem,” Physical review
letters, vol. 102, no. 22, p. 220401, 2009.

[20] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum compu-
tation by adiabatic evolution,” arXiv preprint quant-ph/0001106, 2000.

[21] J. Clark and D. A. Holton, A first look at graph theory. World Scientific,
1991.

9

https://books.google.it/books?id=mwssSDXzkNcC
https://books.google.it/books?id=mwssSDXzkNcC

[22] V. V. Vazirani, Approximation algorithms. Springer Science & Business
Media, 2013.

[23] M. Newman, Networks. Oxford university press, 2018.
[24] O. Giustolisi, L. Ridolfi, and A. Simone, “Tailoring centrality metrics for

water distribution networks,” Water Resources Research, vol. 55, no. 3,
pp. 2348–2369, 2019.

[25] O. Giustolisi, A. Simone, and L. Ridolfi, “Network structure classi-
fication and features of water distribution systems,” Water Resources
Research, vol. 53, no. 4, pp. 3407–3423, 2017.

[26] “https://www.dwavesys.com/sites/default/files/14-1039A-A D-Wave
Hybrid Solver Service An Overview.pdf.”

[27] “https://www.dwavesys.com/sites/default/files/14-1041A-A Setting
The Chain Strength.pdf.”

[28] “https://docs.dwavesys.com/docs/latest/ downloads/
d6ccb9200f3a37151c546a008795eafd/09-1107B-D
DeveloperGuideTiming.pdf.”

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[30] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse
ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.

[31] T. Kadowaki, “Study of optimization problems by quantum annealing,”
arXiv preprint quant-ph/0205020, 2002.

[32] M. Nakahara, Geometry, topology and physics. CRC press, 2003.

10

https://www.dwavesys.com/sites/default/files/14-1039A-A_D-Wave_Hybrid_Solver_Service_An_Overview.pdf
https://www.dwavesys.com/sites/default/files/14-1039A-A_D-Wave_Hybrid_Solver_Service_An_Overview.pdf
https://www.dwavesys.com/sites/default/files/14-1041A-A_Setting_The_Chain_Strength.pdf
https://www.dwavesys.com/sites/default/files/14-1041A-A_Setting_The_Chain_Strength.pdf
https://docs.dwavesys.com/docs/latest/_downloads/d6ccb9200f3a37151c546a008795eafd/09-1107B-D_DeveloperGuideTiming.pdf
https://docs.dwavesys.com/docs/latest/_downloads/d6ccb9200f3a37151c546a008795eafd/09-1107B-D_DeveloperGuideTiming.pdf
https://docs.dwavesys.com/docs/latest/_downloads/d6ccb9200f3a37151c546a008795eafd/09-1107B-D_DeveloperGuideTiming.pdf

	I Introduction
	II Combinatorial Optimization
	III From QUBO to Ising models and Quantum Adiabatic Optimization
	IV QUBO formulation of the sensor placement problem
	IV-A Formulation of the Problem
	IV-B Vertex cost function
	IV-C WDN centrality metrics

	V Case study: simulations and results on a real WDN
	V-A Simulated Annealing
	V-B Hybrid quantum-classical solver

	VI Conclusion
	Appendix A: Annealing Methods and Adiabatic Evolution
	Appendix B: A technical problem and its resolution
	References

