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Abstract—Barren plateaus are a notorious problem in the
optimization of variational quantum algorithms and pose a
critical obstacle in the quest for more efficient quantum machine
learning algorithms. Many potential reasons for barren plateaus
have been identified but few solutions have been proposed to
avoid them in practice. Existing solutions are mainly focused on
the initialization of unitary gate parameters without taking into
account the changes induced by input data. In this paper, we
propose an alternative strategy which initializes the parameters
of a unitary gate by drawing from a beta distribution. The
hyperparameters of the beta distribution are estimated from the
data. To further prevent barren plateau during training we add
a novel perturbation at every gradient descent step. Taking these
ideas together, we empirically show that our proposed framework
significantly reduces the possibility of a complex quantum neural
network getting stuck in a barren plateau.
Reproducibility: The source code and data are available at
https://github.com/aicaffeinelife/BEINIT

I. INTRODUCTION

The world of machine learning has seen a tectonic paradigm
shift in the last decade. From handcrafted features that were
manually fed to classical optimization algorithms like sup-
port vector machines we have moved on to the deep neural
networks (DNN) that can simultaneously perform the task of
feature engineering and recognition without any explicit inter-
vention from the developer. The ever increasing performance
gain in terms of accuracy on really large datasets has led to the
quest for more faster and accurate algorithms that can scale
to the amount of data being produced today.

The ongoing development of Noisy Intermediate-Scale
Quantum (NISQ) computers has led to considerable excite-
ment about the potential quantum advantage that can be
obtained in several optimization problems that are used in
almost all fields of science today. Various hybrid quantum-
classical algorithms [1]–[4] offer possible ways to utilize NISQ
computers. Variational Quantum Algorithms (VQAs) offer a
potential way of leveraging quantum computers alongside
classical computers in a hybrid fashion. When it comes to
deployment of VQAs on NISQ devices, the limitations of ex-
isting quantum computers (i.e., noisy gates and limited circuit
depth) [2], [5] restrict the overall potential of these algorithms.
Moreover, VQAs themselves are not without issues. In this
paper, we make a step towards addressing a well known issue

that frequently arises in optimization approaches involving
VQAs.

The main component of a VQA is a variational quantum
circuit (VQC) that consists of a finite sequence of parama-
terized unitary gates U(~θ) and a measurement produced by a
quantum observable Ô. The parameters of the unitary gates
are real-valued. More formally, we can express U(~θ) as:

U(~θ) =

L∏
i=1

U(θ1)U(θ2) . . . U(θL) (1)

An ansatz formed of a sequence of unitary gates as in
Equation 1 is trained to solve an optimization problem of the
form:

θ∗ = arg min
θ

C(θ) (2)

Where, C(θ) is a cost function that quantifies the deviation
of a VQC at a given timestep from the “true” trajectory of
the problem. Given Ô and θ a general cost function for VQAs
can be defined as:

C(θ) = f(〈0|U†(~θ)ÔU(~θ)|0〉) (3)

Where the choice of f depends on the specific application
of the VQA [2]. The parameters of a VQC are initialized from
a random distribution. Over the course of training, the output
of the VQC is measured with respect to the observable Ô
and the gradients of every unitary gate are estimated using
the parameter shift rule [6], [7]. The set of parameters at a
given time step and the gradients of the unitary gates are then
passed to a classical computer which updates these parameters
according to a gradient descent rule. This update is usually
performed by an optimizer and it’s choice is usually considered
to be a hyperparameter(i.e. parameters which are manually
selected by the developer). Some popular optimizers include
Adam [8], AdaGrad [9] etc.

Ideally, for an optimization problem, the set θ∗ should
correspond to the best set of parameters that minimizes the
cost function. However, it has been observed that when the
VQC is complex either in number of qubits used to represent
the input or the number of layers of unitaries, the optimization
halts at a suboptimal set of parameters that do not correspond

ar
X

iv
:2

20
4.

13
75

1v
1 

 [
qu

an
t-

ph
] 

 2
8 

A
pr

 2
02

2

https://github.com/aicaffeinelife/BEINIT


to a minima in the optimization surface. This situation occurs
when the circuit gets stuck on a plateau from where there are
no good descent directions and is commonly referred to as
being stuck in a “barren-plateau”. The unitary designs induced
due to random parametrization of ansatz [10], optimization
w.r.t a global cost function [11], entanglement between
visible and hidden layers of a Quantum Neural Network
(QNN) [12] and random entanglement [13] have been studied
as potential causes for the barren plateau problem. Attempts
to mitigate the barren plateau problem comprise of advanced
initialization schemes [14], [15], local objective functions [11]
and Bayesian initialization schemes [16].

Our contribution The current body of work leaves, among
the others, two questions unanswered. First, does the choice
of the initializing distribution have an effect on the appearance
of barren plateaus in a random ansatz (barring the case where
the parameters are initialized from a classical neural network)?
Second, once a good initialization has been found, is there a
way to influence the gradient descent such that the likelihood
of barren plateaus is reduced? In this paper, we study these
questions for the specific case of QNNs and empirically show
that the choice of initializing distribution is an important and
often neglected hyperparameter in VQAs. We further show that
adding a derived perturbation in the parameter space during
gradient descent can help a QNN from getting stuck in barren
plateaus. We combine these insights into an algorithm which
we call BEINIT . Although our results are derived for the
specific case of QNN, we believe that these results are general
enough for any VQA application.

II. BARREN PLATEAU PROBLEM IN QNNS

We earlier mentioned that barren plateaus can have several
causes. In this work, we choose to focus on a generic case
where we only vary the parameters of the unitary gates (as
opposed to additionally randomizing the specific gate choice
as in [10]) and optimize in presence of a global cost function
i.e. for a given QNN we have one global observable. The
global cost function assumption is not unreasonable since we
wish to study the effect of initialization in cases where no
additional steps to mitigate barren plateaus have already been
taken (e.g. optimizing with local observables [11]).

Since we deal with QNNs, we briefly specify the general
VQA framework discussed earlier. For any labeled dataset
consisting of m samples; D = {(xi, yi)}mi=1, a QNN requires
access to a state encoding function K(~x) which accepts
~x(i) ∈ Rd and produces a quantum state. This encoding can
be seen as an instance of kernel function which maps a real
valued vector into the complex Hilbert state. The output state
before measurement of a QNN can be described as:

|ψ〉 = U(~θ)K(~x)|0〉. (4)

The output of a classifier f(~x, ~θ, Ô) is an expectation over m
samples in the given dataset:

f(~x, ~θ, Ô) =

m∑
i=1

||yi−〈0|U†(~θ)K†(~x(i))ÔU(~θ)K(~x(i))|0〉||2.

(5)
This output is a scalar value which is compared using a

distance measure with the true label and the error signal is
propagated to each unitary circuit. An advantage of using such
differentiation rule as in [6] is that the same unitary circuit can
evaluate the output and its respective gradient. A circuit with
unitary gates of dimension d corresponds to a unitary group
U(d). For any measure dU on this group, the kth moments
can be expressed as in [17]:

Mk(dU) =

∫
U(d)

dUUi1,j1 . . . Uik,jkU
†
i1′,j1′ . . . U

†
ik′,jk′ . (6)

Where ik, jk are the row and column indices of the kth

unitary matrix. If the measure is a left invariant measure like
Haar-measure, i.e. dU = dUH then, the first and second order
moments are given as

M1(dUH) =
1

d
δi1i1′δi2i2′

and

M2(dUH) =
(δi1i1′δi2i2′δj1j1′δj2j2′ + δi1i2′δi2i1′δj1j2′δj2j1′)

d2 − 1
−

(δi1i1′δi2i2′δj1j2′δj2j1′ + δi1i2′δi2i1′δj1j1′δj2j2′)

d(d2 − 1)
,

respectively. Any measure dU exhibits a unitary 2-design if
and only if M1(dU) = M1(dUH) and M2(dU) = M2(dUH).
For a sequence of parameterized unitary gates expressed as

U(~θ) =

L∏
i=1

U(θ1) . . . U(θL),

we can denote

U− =

k∏
i=1

U(θ1) . . . U(θk−1)

and

U+ =

k∏
i=1

U(θk) . . . U(θL)

for the kth unitary Uk
In [10] the authors show that if any U− or U+ exhibits a

unitary 2-design then the variance of the classifier with respect
to θk, V ar[∂kf ] can be given by:

V ar[∂kf ] ∝
(
Tr(U2)

23n
− Tr(U)2

24n

)
(7)

In Equation (7), U ∈ U(d) and n is the number of qubits.
The relation assumes that both U− and U+ exhibit a 2-design
and shows that with increasing number of qubits, the variance
of the gradient will approach zero and consequently the QNN
will be stuck in barren plateau with all conditions kept the
same (other cases also exhbit a similar kind of decay).



(a) Overview of the BEINIT algorithm (b) Variance of Gradient with VQC
initialized by different distributions.

Fig. 1: The BEINIT algorithm accepts data and parameters generated from a beta distribution whose hyperparameters are
generated from an MLE estimation of the data. The gradients are then utilized to generate a perturbation in the parameter
space. The empirical basis for the algorithm is shown in the right figure.

III. AN EXPERIMENT WITH INITIALIZATION

We noted that related works are relying on the common
assumption that the parameters for lth layer unitary Ul(θl)
are drawn from a uniform distribution (e.g. from [−π, π]). In
order to answer our first question i.e. the effect of initialization
on variance of gradient with different probability distributions,
we reproduced the experimental setup of [10] and ran it with
parameters derived from the Uniform (θl ∼ Unif(0, 2π)),
Beta (θl ∼ Beta(1, 2π)) and a normal distributions (θl ∼
N (0, 2π)).The results of our experiment are shown in Fig-
ure 1b.

Note that the blue line corresponding to the uniform
distribution closely matches the results obtained in [10].
Interestingly, when the parameters of the quantum circuit
are initialized using the beta distribution (orange line), the
reduction in variance of the gradient is significantly less than
the other two cases. This result may seem counter-intuitive at
first, but if we examine the Beta distribution more closely then
we find that its domain is [0, 1] which implies that it can be
used to model a distribution over probabilities. Moreover, its
shape parameters α, β (which are inputs to the gamma function
Γ(z) =

∫∞
0
xz−1e−xdx, see Eq. 8 and 9) can be tuned and

used to guide the relative weight over the input probabilities.
This behavior is in contrast with the uniform distribution which
places equal weight over the input interval.

Based on our experimental observations above we advocate
for the following conjecture.

Conjecture 1. The choice of the sampling distribution over a
unitary group U(d) has a direct impact on the likelihood of the
resulting VQC exhibiting a unitary-2 design. The more non-
mean collapsing behavior a distribution exhibits, the lesser
the likelihood of the occurence of a barren plateau.

By a “mean-collapsing” distribution we refer to a distribu-
tion for which its first and second order moments are unbiased
MLE estimators (e.g., normal distribution). Conversely, a non-
mean collapsing distribution has biased estimators in either

first or second order moments.

IV. EMPIRICAL BAYES

The effectiveness of Beta distribution raises a question - is it
possible to find the shape parameters in a principled manner?
We analyze this question using insights from the Bayesian
machine learning.

For any given dataset D and a model with parameters θ, the
goal of Bayesian machine learning is to determine the posterior
distribution π(θ|D). A prior distribution over the parameters
is given by π(θ) and the likelihood function is given as

L(D;θ) =

m∏
i=1

p(xi|θ),

where xi ∈ D. By the Bayes Law π(θ|D) ∝ L(D;θ)π(θ).
In a purely Bayesian model, we can set the prior p(θ) distri-

bution to be a known parametrized distribution. We can further
assume a prior on the hyperparameters of the parametrized
distribution as well. However, doing this in practice is in-
tractable for large dimensions or data points. A technique
proposed in [18], [19] alleviates this problem by estimating
the hyperpameters from the data using Maximum Likelihood
Estimation (MLE) approach. These initial hyperparameters are
then used to draw samples from the prior distribution. We
use this insight to impose a known prior distribution over
the parameters of the unitary gates and estimate the shape
parameters directly from the data.

For the Beta distribution the MLE estimation of α and β
can be found as:

αMLE ≡ m
Γ′(α+ β)

Γ(α+ β)
−mΓ′(α)

Γ(α)
+

m∑
i=1

xi = 0 (8)

βMLE ≡ m
Γ′(α+ β)

Γ(α+ β)
−mΓ′(β)

Γ(β)
+

m∑
i=1

(1− xi) = 0 (9)



(a) Beta Distribution (b) Uniform Distribution (c) Normal Distribution

Fig. 2: The solid histogram shows the distribution of normalized Iris dataset. The hollow histogram(in red) shows the distribution
of random samples of size equal to Iris drawn from parametrized distributions where the parameters have been estimated from
the data.

Algorithm 1 The BEINIT Algorithm

1: procedure BEINIT (D, η, C(θ), iters)
2: α, β ← EB FIT(D)
3: Dtrain,Dtest ← SPLIT(D)
4: θi ← INIT(α, β)
5: θ ← θi
6: for i = 0→ iters do
7: σ2

i ← VAR(∇θL)

8: σ2
n ←

η

(1 + i)γ+σ
2
i

9: θ′ ← θ +N (0, σ2
n)

10: θi+1 ← GRAD DESCENT(θ′,Dtrain, η, C(θ))
11: end for
12: end procedure

V. THE BEINIT ALGORITHM

We propose an algorithm termed BEINIT that is based on
two key observations. First, drawing samples from a beta dis-
tribution for parametrizing the quantum circuit yields a much
higher gradient variance for increasing number of qubits and
second, it is possible to estimate the hyperparameters of the
beta distribution from the data itself. The second observation
is based on the empirical Bayes framework discussed earlier.

Algorithm 1 describes the overall procedure and is visually
represented in Figure 1a. We take as input a labelled dataset
D = {(xi, yi)}mi=1, the learning rate η, a cost function C(θ)
and the number of iteration steps iters as a required input. In
the first step, we estimate the α and β parameters from all the
available data using Equations (8) and (9). We then split this
dataset into training and test subsets and initialize the circuit
parameters from the discovered beta distribution parameters.

During the training, we keep track of the gradient variance
produced during an iteration i; σ2

i . It has been shown that
adding a perturbation during gradient descent can help a
learning algorithm escape saddle points [20] [21]. Inspired
by a perturbation method proposed for deep learning [22],
we introduce noise in the parameter space by considering a
normal distribution parameterized by 0 mean and σ2

n variance

given by:
σ2
n =

η

(1 + i)(γ+σ
2
i )
, (10)

where η and γ are fixed parameters. One can interpret γ as a
constant additive bias that prevents a low noise perturbation
(since σ2

i progressively decreases as the output of the circuit
gets closer to the true label). Empirically, the choice of
η defines the amount of noise that will be generated per
gradient descent step. We follow earlier works and choose
η ∈ {0.01, 0.3, 1.0} and keep γ = 0.55. It must be noted
that our method generates this perturbation in the parameter-
space as opposed the gradient space which is proposed by
earlier related work [22].

VI. NUMERICAL EXPERIMENTS

In this section, we demonstrate numerical results that lend
experimental evidence for our claims in the previous sections.
The source code and data are available at https://github.com/
aicaffeinelife/BEINIT

A. Data Driven Initialization with Bayes Distribution

In our exposition of the BEINIT algorithm we had claimed
that a data driven initialization process worked best with
the Beta distribution. To verify this claim we extracted a
two class subset from the original Iris dataset [23]. We then
normalized the data and estimated the parameters of three
continuous distributions - Beta, Uniform and Normal using
MLE estimation similar to Equations (8) and (9). The results
of this experiment are shown in Figure 2.

The solid histogram is the normalized subset of the Iris
dataset. The histogram contoured with red line is constructed
by drawing an equivalent number of samples from the three
continuous random distributions with their estimated parame-
ters. We can see that for the case of uniform distribution, the
estimated upper and lower bounds correspond to the minimum
and maximum value of the data and the random distribution
is evenly spread around those bounds. A similar observation
can be made about the case of the normal distribution where
the random distribution concentrates heavily around the mean
of the underlying data. In contrast to these two cases, the

https://github.com/aicaffeinelife/BEINIT
https://github.com/aicaffeinelife/BEINIT


(a) Iris (b) Wine

Fig. 3: The variance of the gradient of the first parameter is shown with increasing qubit sizes for three different initialization
scenarios. Initialization with a beta distribution and added perturbation show the least degradation in variance with increasing
qubit size.

Beta distribution closely conforms to the contours of the
data. These results indicate that the Beta distribution is a
much more data-sensitive distribution and can help provide
a parameter initialization such that the parameters do not
initially concentrate around the first or second order moments
of the underlying data.

B. Experiments with Increasing Number of Qubits

Fig. 4: A graphical representation of the circuit used in our
experiments

We demonstrate the effectiveness of our algorithm on
the Iris and Wine datasets [23]. To study the effect of the
BEINIT algorithm on the gradient variance with increasing
number of qubits, we compare against two baseline cases. In
the first case, we initialize the QNN’s parameters using the
uniform distribution as per [10] with the parameters estimated
from the normalized data distribution. In the second case,
we keep the same initialization as before, but introduce the
perturbation as in Equation (10). Both datasets considered
in this study are multi-class classification problems, but we
convert them into a binary classification problem by taking
only first two classes. The labels are then binarized to ±1. In
the case of the Wine dataset, we reduce the dimensionality
of the data by performing a principal component analysis
(PCA) such that d = 2, where d indicates the dimensionality
of a given data vector. We choose the number of qubits
q ∈ {4, 5, 6, 7, 8, 9, 10}. All our experiments are performed on

the default quantum simulator provided by the Pennylane [24]
library and we use the Nesterov momentum optimizer [25]
for all experiments.

The QNN architecture used in our studies is shown in Figure 4.
The first stage in our architecture is a standard state encoding
circuit that maps ~x ∈ Rd 7→ |ψ(x)〉 ∈ Cq . For each dimension
j = 0 . . . d; d ∈ {2, 4}, we encode xj ∈ ~x as:

|ψ(x)〉(j) = e−ixjσx , (11)

where |ψ(x)〉(j) indicates the j-th component of the resulting
input quantum state and the RHS is the X rotation gate. Since
we wanted to study the effect of increasing number of qubits,
we kept the data encoding process as simple as possible.

The second stage of our architecture comprises of a cascade
of parametrized rotation gates R(θ) arranged in a q× 3 shape
i.e. each component of the input state is passed through a
succession of three rotation gates. Their outputs are then
entangled using CNOT gates. This block is then arranged in
L layers. We choose a single Pauli Z operator applied on the
first qubit as the objective operator for the output state |ψo〉.

Figure 3 shows an interpolated line computed from the raw
gradient values for different cases. We can observe that for
both datasets, initializing with a beta distribution proves to
be beneficial in reducing the likelihood of a 2-design from
forming. We can also see that in certain cases (e.g. Wine
dataset), perturbing the gradient even with uniform distribution
can have a beneficial effect on the variance of the gradient.
It is interesting to note that in both datasets, a variational
quantum circuit initialized with uniform distribution exhibits
a similar decay in variance as with a random circuit of [10].
This strongly indicates that a VQCs initialized with a uniform
distribution have a higher likelihood of exhibiting a unitary
2-design.



(a) Iris (b) Wine

Fig. 5: The variance of gradient of first parameter is shown with increasing number of layers. The uniform distribution with
no perturbation shows a downward trend with increasing layers. Beta and Uniform initialization with parameter perturbation
result in a much more stable variance with beta initialization outperforming the uniform case.

C. Experiments with Deeper Circuits

We also performed experiments with QNNs that were
several layers deep on the two datasets above. In this set of ex-
periments, we kept the number of qubits to be constant at 4 and
varied the number of layers L ∈ {2, 4, 6, 8, 10, 15, 20, 25, 30}.
Besides these changes, we kept the experimental setup similar
to the qubit experiments before.

The variance of gradient of the first parameters in different
cases is shown in Figure 5 shows the result of our experiments.
As expected, the uniform distribution with no perturbation
shows a poor scaling with increasing number of layers. With
parameter perturbation, both uniform and beta initialization
show a more stable behavior. In the case of the Iris dataset, the
BEINIT procedure results in a steadier variance as compared
to the uniform initialization with perturbation. The perfor-
mance of BEINIT is also evidenced in the case of the Wine
dataset. The results of these experiments shed light on the
efficacy of both perturbation and data driven beta initialization
for deep QNN circuits.

VII. DISCUSSION

In this paper, two crucial questions regarding solving the
barren plateau problem have been raised. We first explored
different probability distributions and found that the choice of
probability distribution for drawing the initial set of parameters
has a direct influence on the variance of the gradient with
complex circuits (i.e., circuits with a large number of qubits).
Our experiments show that the Beta distribution is a highly
data-sensitive distribution and initializing from it can lead
to much lower degradation in gradient variance. This result
is general and can be applied to initialization of parameters
in different VQA algorithms. In the case of QNNs, the data
guides the end result of optimization. We thus design a data-
driven initialization process that incorporates the insights from
data (e.g., determining the hyperparameters of the initializing
distribution) to guide the overall initialization process. The

observations from our experiments confirm that this data-
driven initialization process can have a strong positive influ-
ence on the overall training process and reduce the chances
of a barren plateaus. Our experimental insights lead us to
develop a conjecture that explores the relationship between
barren plateaus in optimization and the characteristics of the
initalizing distribution. To the best of our knowledge, this is
the first work that considers such a relationship in the context
of VQA.

Our second question opened a novel direction in the explo-
ration of solutions to avoid the barren plateau problem. In the
previous works, no attention has been paid to the effect of
perturbation during the course of training and its subsequent
role in improving the variance of the circuit. We devised the
BEINIT procedure to combine our earlier insights along with a
parameter perturbation scheme and showed that it is effective
in improving the variance of the circuit with increasing number
of qubits. Our experiments with the initialization and pertur-
bation are shedding light on the barren plateau problem and
suggest that a solution to overcome it may lie in finding a good
data driven initialization and perturbation during the course of
gradient descent. Another promising research direction is to
investigate how the proposed technique affects another vari-
ational quantum approach, namely, the quantum approximate
optimization algorithm (QAOA). Its acceleration at increasing
circuit depth and number of qubits including techniques to
deal with the barren plateau is a subject of major efforts [26],
[27].
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