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Abstract—Today’s Noisy Intermediate-Scale Quantum (NISQ)
computers support only limited sets of available quantum gates
and restricted connectivity. Therefore, quantum algorithms must
be transpiled in order to become executable on a given NISQ
computer; transpilation is a complex and computationally heavy
process. Moreover, NISQ computers are affected by noise that
changes over time, and periodic calibration provides relevant
error rates that should be considered during transpilation.
Variational algorithms, which form one main class of compu-
tations on NISQ platforms, produce a number of similar yet not
identical quantum “ansatz” circuits. In this work, we present a
transpilation methodology optimized for variational algorithms
under potentially changing error rates. We divide transpilation
into three steps: (1) noise-unaware and computationally heavy
pre-transpilation; (2) fast noise-aware matching; and (3) fast
decomposition followed by heuristic optimization. For a complete
run of a variational algorithm under constant error rates, only
step (3) needs to be executed for each new ansatz circuit. Step (2)
is required only if the error rates reported by calibration have
changed significantly since the beginning of the computation.
The most expensive Step (1) is executed only once for the whole
run. This distribution is helpful for incremental, calibration-
aware transpilation when the variational algorithm adapts its
own execution to changing error rates. Experimental results on
IBM’s quantum computer show the low latency and robust results
obtained by calibration-aware transpilation.

Index Terms—Calibration-Aware, Transpilation, NISQ,
QAOA, Benchmarking, Quantum Computing

I. INTRODUCTION

Quantum computing promises fundamentally more efficient
solutions for a number of hard real-world problems. In the
current Noisy Intermediate-Scale Quantum (NISQ) era, varia-
tional algorithms [1] such as the Quantum Approximation Op-
timization Algorithm (QAOA) [2]–[8] or Variational Quantum
Eigensolver (VQE) [9]–[11] are receiving significant attention,
since they can cope with non-trivial error rates of NISQ
computers. Variational algorithms interchange classical and
quantum computations. One complete run of a variational
algorithm executes a number of quantum “ansatz” circuits that
are parameterized, i.e., have identical basic structure but differ
in some specific parameters.

State-of-the-art NISQ computers come with limitations with
respect to connectivity of their qubits and quantum operations
supported. Moreover, they are affected by comparatively high

noise levels that can strongly vary over time. For example,
computers that are part of IBM Quantum Experience (IBM
QX) undergo an hourly calibration, which includes error
characterization, and the determined error rates are provided
to their users. To illustrate the role of calibration, Fig. 1
shows the topology graph of the 27-qubit IBM QX machine
ibmq ehningen along with a snapshot of error rates for its
components. It includes error rates for each single-qubit gate,
all two-qubit (CNOT or cx) gates between qubits connected
according to topology graph, and for readout operations.

We can see that error rates differ widely both across classes
of errors (e.g., they are an order of magnitude higher for
readout and two-qubit operations than for single-qubit gates)
and also within one class. Hourly calibration data, which we
collected on ibmq ehningen over a period of 39 days, are
reported in Fig. 2 and expose large-scale fluctuation in the
temporal domain as well. The highest variations were observed
for the cx gate between qubits 8 and 9 (Fig. 2a) and for the
readout errors of qubit 15 (Fig. 2c).

In general, quantum circuits, including the ansatz circuits
of variational algorithms, use operations and qubit interactions

Fig. 1: Topology graph of ibmq ehningen with error informa-
tion of single-qubit and two-qubit gates and readout.
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Fig. 2: Error information of ibmq ehningen over 39 days.

Fig. 3: Flowchart of Calibration-Aware (CA) Transpilation.

that are not supported by a given NISQ architecture. For this
reason, they need to be transpiled: all their operations must be
mapped to that architecture’s quantum gates, and two-qubit
gates must either be mapped to connected qubits or proximity
must be established by adding swap gates. In addition,
transpilation should be noise-aware, that is, try to use qubits
with currently lowest error rates. Various transpilation [12]–
[18] and heuristic [19]–[27] and exact [20], [22], [28]–[31]
mapping methods have been proposed. Both transpilation and
mapping are considered to be computationally hard problems.

In this paper, we introduce calibration-aware transpilation,
which is optimized for variational algorithms with parameter-
ized ansatz circuits and avoids the need for a costly complete
transpilation of each new circuit. The procedure is outlined
in Fig. 3. The processed ansatz circuit A is parameterized
with values θi, which, in case of QAOA, are angles deter-
mined by the classical optimization step. Transpiled circuits
A(θ1), A(θ2), . . . differ only minimally, and their basic struc-
ture must be computed only once for A and can be reused by
all circuits. Moreover, transpilation takes error rates ξ∗ into
account, which are determined by calibration.

After each re-calibration, the procedure checks whether new
error rates ξnew are substantially different from ξ∗. If this is
the case, transpilation is not repeated from scratch, but the
initial, optimized solution is mapped to a different subset of
qubits with the same sub-graph topology yet better fidelities.
Overall, calibration-aware transpilation consists of three steps:
Topology-Aware Pre-Transpilation (TAPT), executed once for
the entire run of a variational algorithm and calculating
parts of the solution applicable to all ansatz circuits; Noise-
Aware Matching (NAM), invoked only when error rates have
changed significantly; and Decomposition and Optimization
(DO), which includes improvements for a specific ansatz
circuit A(θi).

The main advantage of calibration-aware transpilation is the
significantly reduced effort, as all computationally heavy parts
are accumulated in the TAPT step that is run only once, and the
two remaining steps are lightweight. It is feasible to use NAM
and DO in an incremental mode: whenever a new ansatz circuit
is ready for execution on the quantum hardware, reserve the
quantum computer, acquire calibration data, execute NAM (if
needed) and DO, and then immediately execute the transpiled
circuit on the reserved computer. This makes sure that the
most recent calibration data are used for each ansatz circuit,



Fig. 4: Advantage for transpiling one circuit with calibration-
aware transpilation compared to traditional: fresher error rate
information. 1, 2 and 3 indicate TAPT, NAM and DO pro-
cesses in CA transpilation, respectively.

while the amount of the quantum computer’s time “wasted”
during reservation is minimal. In the traditional approach with
full transpilation of each ansatz circuit, reserving the quantum
computer for its complete duration would be unrealistic. The
computer would start processing other tasks, and the transpiled
ansatz circuit, once it is ready, would be inserted into the
regular queue and executed possibly at a time instant when
the calibration data is outdated.

In addition, a potential advantage of transpiling one circuit
with calibration-aware transpilation is shown in Fig. 4. The
high-level idea is to submit the circuit directly to the queue
after step 1, which is the most computationally heavy process.
Steps 2 and 3, which take calibration data into account, are
performed just before the circuit is due for execution, followed
by immediate execution of the transpiled circuit. This ensures
that CA has a fresher error rate information than the traditional
approach where calibration data is acquired at the beginning of
transpilation. This is crucial to the performance of algorithms
on the NISQ computers as their errors change over time.
Furthermore, based on CA’s structures, we can significantly
reduce effort and save time for a variational run with multiple
circuits, see Fig. 5. While the traditional approach requires
each circuit to be transpiled and passed into the queue before
execution, CA only needs to pass the first circuit into the
queue, and since steps 2 and 3 are fast, the remaining ansatz
circuits can be run in one piece, resulting in a significant
reduction in overheads.

The remainder of the paper is organized as follows. The next
section reviews variational quantum algorithms with a focus on
QAOA and includes some investigations of its behavior under
noise using simulations. Section III provides details on the
individual steps of calibration-aware transpilation. Section IV
reports results of calibration-aware transpilation in comparison
with other methods on several physical quantum computers,
outlining its advantages in both: solution quality and runtime.
Section V concludes the paper.

II. VARIATIONAL QUANTUM OPTIMIZATION

A. Quantum Approximation Optimization Algorithm (QAOA)

Using the quantum approximate optimization algorithm
(QAOA), approximate solutions to computationally hard prob-
lems such as portfolio optimization can be computed. QAOA
repeatedly performs two alternating steps. First, a set of pa-
rameters is chosen that are used to construct a parameterizable
quantum circuit called ansatz circuit. The second step consists
of the execution of such an ansatz circuit on a quantum com-
puter to yield a set of measurement results that are evaluated
subject to a problem-specific objective function. Then, again
a set of parameters is chosen by a classical optimizer that
uses the values of the previous objective functions and/or the
gradient of that objective function to determine the next set
of parameters. These two steps are repeated until the value
of the objective function converges or the runtime budget is
depleted.

We use QAOA for portfolio optimization to evaluate the
quality of transpilation. Assume n and B are the number
of available assets and the number of assets to be chosen,
respectively. For each i ∈ {1, ..., n}, we introduce variables
zi ∈ {0, 1} indicating whether this stock is picked or not.
Approximation ratio (AR) is defined as:

AR(z1, . . . , zn) =

{
F (z1,...,zn)−Fmax

Fmin−Fmax
if
∑

i zi = B

0 if
∑

i zi 6= B
(1)

with F the cost function [32]. Success probability is defined as
the the probability of obtaining the optimal portfolio. We used
n = 5, B = 2 with QAOA depth p = 1 in our experiments,
i.e. the QAOA circuit has 5 qubits. Its depth is 19 and the
total number of gates is 50, including 20 cx gates and 5
measurement gates.

The performance of QAOA depends on the initial values.
Optimal parameters result in a better performance, i.e., a
higher value of approximation ratio and/or success probability.
The initial values of QAOA are usually obtained by classical
optimizer that finds a local minimum in the area of attraction
around the initial point of the probe. The optimal initial
values of QAOA with p = 1 can be determined by grid
search. Fig. 6 (a) and (b) show the optimization landscape of
QAOA using qasm simulator in absence of noise and physical
quantum computer ibmq ehningen, respectively. The optimal
initial values θ, expectation values E, as well as approximation
ratio and success probability are shown in Table I. We can
see that the optimal initial values of QAOA and optimization
landscape are hardly changed, i.e. this QAOA circuit is noise-
tolerant and its parameters optimization is barely affected by
noise.

B. Simulation of QAOA with Noise Model

We simulate QAOA with original and optimal initial values
using bit-flip, bit-phase flip and depolarizing error channels
indicated by EX , EY and ED [33] with error rate λ. The



Fig. 5: Advantage of calibration-aware transpilation compared to traditional for a variational run with multiple ansatz circuits:
effort reducing and time saving. Classical optimization is used to calculate new parameters of QAOA.

(a) (b)

Fig. 6: Expectation values of QAOA with (a) Qasm simulator
and (b) ibmq ehningen.

TABLE I: Optimal solution founded by grid search with qasm
simulator in absence of errors (error-free) and ibmq ehningen.
θ: initial values. E: expectation values.

error-free ibmq ehningen
θ (2.3, 2.1) (2.3, 2.3)
E −0.957 −0.726

AR 0.417 0.409
SP 0.235 0.295

error channels act on qubits described by density matrix ρ
are defined as:

EX(ρ) = λXρX + (1− λ)ρ

EY (ρ) = λY ρY + (1− λ)ρ

ED(ρ) =
λ

4
(XρX + Y ρY + ZρZ) + (1− 3λ

4
)ρ.

We study state fidelity of QAOA final state with error rate
up to 1%. Moreover, the behavior of approximation ratio and
success probability with increased error rates is investigated.

The state fidelity of two quantum states is defined as

F (ρ1ρ2) = Tr

[√√
ρ1ρ2
√
ρ1

]2
(2)

where ρ1 and ρ2 are density matrices of two quantum states.
In our case, ρ1 is the final QAOA state in absence of errors
and ρ2 is the state for QAOA with error rate λ. We consider
discrete values λ ∈ {0, 0.1%, 0.2%, ..., 1%}. The maximum
fidelity 1 occurs at λ = 0.

In Fig. 6(a), “orig” stands for original initial values com-
puted by the classical optimizer COBYLA and “opt” denotes
optimal initial values determined by grid search. As shown
in Fig. 7, optimal initial values of QAOA produce a better
fidelity than original. The effect of bit-phase flips on fidelity
is significant, while the fidelity under bit-flip errors varies only
slightly. In addition, the type of initial values produces only
a small difference under depolarizing error. At λ = 1%, the
fidelity of QAOA with bit-flip, depolarizing and bit-phase flip
errors drops to about 0.95, 0.75 and 0.6, respectively.

The approximation ratio and success probability of 10
QAOA runs with qasm simulator are shown in Fig. 8 (a) and
(b), respectively. Without error, we achieved approximation
ratios of around 0.42 with optimal and 0.39 with original initial
values. The approximation ratio is strongly affected by bit-
phase flip errors, like the fidelity in Fig. 7, and has values of
around 0.33 and 0.30 with optimal and original initial values at
λ = 1%. QAOA under noise results in a better approximation
ratio and a significantly better success probability when opti-
mal (rather than original) initial values are used. The influence
of the type of initial values on approximation ratio is smaller
than success probability. We conclude from the simulation
results that as the error rate increases, the fidelity decreases,
leading to a lower approximation rate and a slight decrease in
success probability.



III. CALIBRATION-AWARE TRANSPILATION PROCEDURE

As has been discussed above (Fig. 3), calibration-aware
(CA) transpilation is organized in three steps:
• Topology-Aware Pre-Transpilation (TAPT), which can be

computationally complex and produces a high-quality (or
even optimal) solution that is independent of error rates.

• Noise-Aware Matching (NAM), which takes the connec-
tivity determined during the first step and maps it to a sub-
graph of the IBM QX’s topology graph with the lowest
error rates. This step is simple and needs to be repeated
only if the error rates according to the calibration data
have changed significantly.

• Decomposition and Optimization (DO), which is a col-
lection of inexpensive procedures that take the ansatz
circuit’s parameters (for QAOA: angle θi) into account.
For example, certain quantum gates can be removed
altogether for θi = 0.

In the following, we provide details on the three steps.

A. Topology-Aware Pre-Transpilation (TAPT)

Topology-aware pre-transpilation (TAPT) aims at satisfying
the connectivity requirements of a quantum algorithm (here:
ansatz circuit) at a given architecture. All two-qubit gates
must either be mapped to connected qubits of the quantum
hardware (e.g., qubits 10 and 12 in Fig. 1), or additional
swap gates must be inserted such as to bring them onto
neighboring qubits. On IBM’s architecture used in this work,
swap gates are rather expensive primitives, implemented by 3
cx gates. Therefore, TAPT aims at minimizing the number of
required extra swap gates, and ultimately the total number of
cx gates in the circuit. Note that in general, even an optimized
transpiled circuit has more cx gates than before transpilation.

Qiskit’s transpilation procedure includes randomization, and
running it multiple times produces different solutions. To
improve stability, we implemented an additional check that
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Fig. 7: Simulation of fidelity of QAOA with original (orig)
and optimal (opt) initial values using qasm simulator under
bitflip, depolarizing and bit-phase flip errors as a function of
error rate from 0 to 1%.

bounds the maximum increase of cx gates CXmax
inc , i.e., dis-

cards transpiled circuits with an increase of cx gates exceeding
this threshold. Fig. 9 and Fig. 10 show the approximation ratio
and, respectively, the success probability of 678 repetitions of
QAOA on the physical quantum computer ibmq ehningen with
CXmax

inc set to 215%, 185%, 155%, 140%, 75%. For each such
restriction, Fig. 9a and Fig. 10a show the 95% confidence in-
terval of approximation ratio and success probability, whereas
Fig. 9b and Fig. 10b include the complete histograms. It can be
seen that restricting the increase in cx gates tends to improve
the performance of QAOA. Therefore, one main goal of our
calibration-aware transpilation is to minimize the number of
used cx gates (while also improving fidelity).

Algorithm 1: Topology-Aware Pre-Transpilation
(TAPT)
Input: Original quantum circuit qc, Coupling map

G(V,E)
Output: Topology-aware pre-transpiled circuit pqc
begin

M ← initial mapping;
U ← set of sub-circuits between two qubits in qc

with different structures;
for u ∈ U do

transform all gates in qc with the same
structure as u to u with gate parameters;

end
Set initial mapping M ;
Route the re-constructed circuit by inserting swap

gates using SMT based optimal algorithm to
minimize depth;

Decompose parameterized u into basis gates of qc;
for each swap gate in the circuit do

if swap gate is before the measurement then
remove swap gate and interchange the

measurement of two qubits;
else

decompose swap into three cx gates and
optimize with cx cancellation;

end
end
Transform into a logic circuit by removing the idle
wires;

return pqc
end

Algorithm 1 shows the pseudocode of topology-aware pre-
transpilation (TAPT). To obtain an efficient pre-transpiled
circuit as a starting point, the algorithm starts with finding
an initial mapping by graph placement [12]. This procedure
identifies a sub-graph isomorphism between the graph of
interacting logical qubits and the connectivity graph of the
physical qubits. Before inserting swap gates, the circuit is
partitioned into sub-circuits bounded by a cx gate on one
or both sides. For QAOA ansatz circuits, such efficient sub-
circuits have the form cx rz cx and implement the Z ⊗ Z



0.30

0.35

0.40

A
R

(a)

bit-flip
optimal
original

depolarizing
optimal
original

bit-phase
optimal
original

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error rate (%)

0.05

0.10

0.15

0.20

0.25

SP

(b)

bit-flip
optimal
original

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error rate (%)

depolarizing
optimal
original

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error rate (%)

bit-phase
optimal
original

Fig. 8: Simulation of approximation ratio (a) and success probability (b) of QAOA with 10 repetitions using qasm simulator
under bitflip, depolarizing and bit-phase flip errors as a function of error rate from 0 to 1%.

4 8 16 32 64 128 256 512

0.2

0.3

A
R

(a)

CXmax
inc =215%

4 8 16 32 64 128 256 512

CXmax
inc =185%

4 8 16 32 64 128 256

CXmax
inc =155%

4 8 16 32 64 128

CXmax
inc =140%

4 8 16 32 64

CXmax
inc =75%

0 50 100

0.2

0.3

A
R

(b) 0 25 50 75 0 20 40 0 10 20 0.0 2.5 5.0 7.5

Fig. 9: 95% confidence interval (a) and histogram (b) for approximation ratio of 678 QAOA repetitions using Qiskit transpiler
on ibmq ehningen. With restriction of the amount of maximum increase in cx gates, the approximation ratio is improved.

interaction between two qubits.

To insert swap gates, we use an optimal method based on
SMT (satisfiability modulo theory) [31] with circuit depth as
the optimization objective to guarantee a high quality of pre-
transpilation, as its runtime does not influence the performance
of total process. The SMT method treats the sub-circuits
identified as outlined above as primitive circuit elements. That
is, swap gates are inserted only between sub-circuits. The
rationale behind this procedure is the later application of cx
cancellation, where cx gates on the boundaries of sub-circuits
can be merged with cx gates that implement swap gates. In
addition, considering sub-circuits reduces the problem com-
plexity and the run-time of the SMT solver. Thereafter, the

sub-circuits and the inserted swap gates are decomposed into
basis gates of the circuit and undergo optimization, including
cx cancellation. The resulting circuit is depth-optimized and
executable on (a sub-graph of) the target topology graph.

B. Noise-Aware Matching (NAM)

The previous step maps the algorithm’s qubits to a sub-
graph of the topology graph, but it does not consider error rates
of physical qubits in that sub-graph. At the same time, most
topology graphs of today’s larger-scale quantum computers
have a large number of isomorphies and symmetries. For
example, the topology graph from Fig. 1 can be understood
as consisting of two “tiles” (physical qubits 0, . . . , 14, 16 and
physical qubits 10, 12, . . . , 26). Any algorithm mapped to a
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sub-graph from one “tile” can also run on the other. Moreover,
each “tile” is symmetric. For instance, a 5-qubit algorithm
mapped to physical qubits (0, 1, 4, 7, 6) is automatically valid
for physical qubits (10, 12, 15, 18, 17); (15, 12, 10, 7, 6);
(16, 14, 11, 8, 9); (26, 25, 22, 19, 20). Note that larger IBM
computers have even more identical “tiles” and offer more
valid alternatives for each result of step TAPT.

Noise-Aware Matching (NAM) considers up to N alterna-
tive sub-graphs and selects the one with the highest effective
average fidelity. N is a user-defined constant, which trades
the likelihood of finding a good matching against the number
of necessary computations; the latter can be important when
calibration-aware transpilation is used in the incremental mode
and the quantum computer waits until the new sub-graph is
identified. The effective average fidelity of quantum circuit qc
with the calibration data ξ = (fu, fcx, fd) as:

get fidelity(qc, ξ) =
1

3
(
∏
u∈qc

fu +
∏

cx∈qc
fcx +

∏
d∈qc

fd) (3)

where fu, fcx and fd are fidelities of single qubit, cx gate
and readout gate, respectively.

The noise-aware matching (NAM) is described in Algorithm
2. As input we have pre-transpiled circuit, which has satisfied
the connectivity of sub-graph of topology graph, coupling
map, the latest calibration data, the function get fidelity to
calculate the fidelity of circuit, and the number of trials N
(we used N = 15 in our experiments). In order to select high-
fidelity qubits, we perform N trial matchings with Qiskit’s
transpile. With the randomization of Qiskit’s transpilation
procedure, the pre-transpiled circuit is matched to different
physical qubits of quantum computer. Effective average fideli-
ties of the matched circuits on physical qubits are calculated
and the circuit with the highest fidelity is picked. This circuit
contains the information of selected physical qubits in N trials.

Algorithm 2: Noise-Aware Matching (NAM)
Input: Topology-aware pre-transpiled circuit pqc,

Coupling map G(V,E), Calibration data ξ,
Fidelity computation function get fidelity,
Number of trials N

Output: Selected physical qubits
begin

mqc← matched pqc with Qiskit;
cm ← number of cx gates in mqc;
fm ← get fidelity(mqc, ξ);
j ← 0;
while j 6= N do

rqc← re-matched pqc with Qiskit;
cr ← number of cx gates in rqc;
fr ← get fidelity(rqc, ξ);
if cr ≤ cm and fr > fm then

mqc← rqc
end
j ← j + 1;

end
return Physical qubits used in mqc

end

C. Decomposition and Optimization (DO)

After the NAM process, the target qubits used to run the al-
gorithm are fixed. Then the quantum algorithm is decomposed
into the native gate set supported by IBM QX. In this work,
we are using IBM’s computers that support single-qubit gates
and the cx gate as an entangling gate. After decomposition,
we apply optimization techniques Optimize1qGates, Com-
mutationAnalysis, CommutativeCancellation, CXCancellation,
RemoveDiagonalGatesBeforeMeasure and RemoveResetInZe-
roState provided by Qiskit. We repeat this process 15 times
aiming to obtain the final transpiled circuit with the least
number of cx gates. Note that this step is architecture-specific



0.1

0.2

0.3

A
R

(a)

ibmq ehningen

0.1

0.2

0.3

A
R

(b)

ibm cairo

0.1

0.2

0.3

A
R

(c)

ibm auckland

CAQ D S F G N T 0 1 2 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 49 50 51 52SN

0.1

0.2

0.3

A
R

(d)

ibm hanoi

Fig. 11: Approximation ratio of 10 QAOA runs with different transpilation methods on four IBM QX computers. CA:
Calibration-aware (this paper); Q: Qiskit’s built-in transpilation procedure with optimization level 3; D/S/F: SMT-based methods
[31] to minimize depth (D), minimize the number of swap gates (S), to maximize fidelity (F); G: t|ket〉 with initial mapping
based on graph placement [12]; N: t|ket〉 with noise aware placement [12]; T: staq [13]; 00. . . 52: methods composed of
different initial mapping and routing procedures, some including ZX-calculus optimization [34]; SN: swap network [14]. 10
runs of QAOA per data point.

and would need to be adapted for a different platform; for
example, Google’s computers use cz gates as entangled gates.

IV. BENCHMARKING WITH QAOA

In this section, we benchmark the calibration-aware (CA)
transpilation with QAOA on four IBM QX computers,
ibmq ehningen, ibm cairo, ibm auckland and ibm hanoi, all
of which have 27 qubits and the same topology graph, as
shown in Fig. 1. The initial values of QAOA used here
are determined by COBYLA, i.e. the original values labeled
in Fig. 8. We use three sets of metrics: the quality of the
transpilation process (quantified by percental increase of the
circuit’s depth ∆d%, its total number of gates ∆g% and
number of its cx gates ∆gcx% as a result of transpilation);
the runtime of the transpilation procedure; and the quality of
QAOA in terms of approximation ratio and success probability
achieved on a physical quantum computer.

We start with a comparison of CA with a large number of
different transpilation methods with respect to approximation
ratio and success probability. Then, we pick one of the best
methods observed and compare it with CA in-depth. Finally,
we outline the potential benefits of CA for runtime of a
complete QAOA algorithm.

A. Approximation Ratio, Success Probability, cx Gate Count

We implemented a number of transpilation methods and
compared the achieved approximation ratio in Fig. 11. In addi-
tion to CA, this figure includes Qiskit’s built-in transpilation
procedure, SMT-based methods [31], two variants of t|ket〉
[12], staq [13], a total of 53 composite methods depending
on different initial mapping and routing procedures, and swap
network (SN) [14]. CA either outperforms other methods or is
on a par with the best of them for all four quantum computers.

We believe that this advantage is due to CA’s NAM step
considering a number of possible sub-graphs, selecting the
one with the best fidelity according to a more up-to-data
calibration data than other methods. At the same time, the
TAPT step produces a robust depth-optimized solution for
the connectivity constraints, thus limiting errors that stem
from excessive gate-count. We observed that purely fidelity-
oriented transpilation can incur strong variability in gate count
for different ansatz circuits A(θ1), A(θ2), . . .; CA’s DO step
is applying only minimal modifications to the basic solution
from the TAPT step, thus leading to well-aligned transpilation
results for different circuits.

The percental increase in cx gates after transpilation is
reported in Fig. 12. The numbers differ only minimally among



100

200

300

∆g
cx

(%
)

(a)

ibmq ehningen

100

200

300

∆g
cx

(%
)

(b)

ibm cairo

100

200

300

∆g
cx

(%
)

(c)

ibm auckland

CAQ D S F G N T 0 1 2 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 49 50 51 52SN

100

200

300

∆g
cx

(%
)

(d)

ibm hanoi

Fig. 12: Percental increase in the number of cx gates after transpilation (10 QAOA runs, same methods as in Fig. 11).

TABLE II: Comparison of percentage increase in depth ∆d%, the total number of gates ∆g% and the number of cx gates
∆gcx% after transpilation with CA and SF. µ: average value. σ: standard deviation.

∆d% ∆g% ∆gcx%
CA SF CA SF CA SF

IBM QX µ σ µ σ µ σ µ σ µ σ µ σ
ibmq ehningen 126.32 0.0 116.84 31.47 170.00 0.0 104.00 66.78 30.00 0.0 42.00 17.20

ibm cairo 126.32 0.0 110.00 27.49 170.00 0.0 93.20 63.03 30.00 0.0 48.00 18.87
ibm auckland 126.32 0.0 116.84 31.47 170.00 0.0 104.00 66.78 30.00 0.0 42.00 17.20

ibm hanoi 126.32 0.0 116.84 31.47 170.00 0.0 104.00 66.78 30.00 0.0 42.00 17.20

the four quantum computers. Again, CA is consistently best
or among the best methods with respect to this metric, while
other methods produce an increase of up to 330% (more than
four times) in cx gates. CA’s outcome is also much more
stable, since all its ansatz circuits are based on the same high-
quality basic solution provided by the TAPT step, whereas,
e.g., Qiskit (Q) produces quite different transpilation results
for each QAOA run and quantum computer.

Table II shows a detailed comparison of CA with SF in
terms of increase in depth ∆d%, total number of gates ∆g%
and number of cx gates ∆gcx%. The table shows that SF
is a good transpilation method with a slightly better ∆d%,
significantly better ∆g%, but significantly worse ∆gcx%.
SF exposes large-scale variability whereas CA’s results are
repeatable.

To assess the significance of calibration data and the NAM
step, we report in Fig. 13 the approximation ratio and the suc-
cess probability of three methods: topology-aware transpilation

TA, which is CA that stopped after the TAPT step and did
not incorporate any calibration data; SMT-based transpilation
SF [31] that maximizes the circuit’s fidelity and is used for
reference; and the full CA procedure with all its three steps.
CA by far outperforms TA and is also consistently better than
SF, while both TA and CA are less affected by the variability
of the obtained results. We conclude that all three steps of CA
are needed to obtain a high-quality solution.

B. Runtime

One central objective of our calibration-aware (CA) transpi-
lation approach is to reduce the runtime of iterative variational
algorithms. In this section, we compare CA with SMT-based
method in [31] that maximizes the circuit’s fidelity (SF). Table
III reports the average runtimes of CA’s three steps, their sum
(µ) and standard deviation (σ), along with the average runtime
and standard deviation for SF, which is not partitioned into
steps. It can be seen that the overall runtimes of CA and SF
are comparable, suggesting a similar amount of computational
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TABLE III: Comparison of runtime of transpilation with CA
and SF for 10 QAOA runs (in seconds). µ: average runtime.
σ: standard deviation.

CA SF
IBM QX TAPT NAM DO µ σ µ σ

ibmq ehningen 18.13 4.41 2.26 24.80 0.22 30.00 3.65
ibm cairo 23.07 3.59 3.13 29.79 0.26 25.90 1.74

ibm auckland 22.92 3.44 2.31 28.67 0.14 27.94 5.46
ibm hanoi 17.44 4.37 2.50 24.31 0.31 29.89 3.20

effort being invested. However, CA manages to serialize its
computation without a major deterioration of overall runtime.
Furthermore, the standard deviation of total runtime with CA
is an order of magnitude smaller than with SF, which means
less latency due to transpilation.

To illustrate the runtime advantage enabled by CA, assume
we have NA QAOA ansatz circuits to execute. The expectation
value of the total runtime for NA circuits with SF is

µSF(NA) = µSF ×NA (4)

with µSF being the average runtime for one circuit. If the
calibration data changes every m iterations, the expected total
runtime with CA is

µCA(NA) = µTAPT + µNAM ×
⌈
NA

m

⌉
+ µDO ×NA (5)

where µTAPT, µNAM and µDO are average runtimes for TAPT,
NAM and DO process, respectively. For the special case that
calibration data is fixed, we have m = NA and only the last
step DO needs to be executed each time.

The projected runtimes of a complete QAOA run with
NA ∈ {5, 100} ansatz circuits are shown in Table IV. The data
assumes two scenarios: changing error rate (CER), where the
calibration data changes after 5 iterations (m = 5), and fixed
error rate (FER), where the calibration data remains unchanged
(m = NA). We see an improvement of up to one order of

TABLE IV: Comparison of runtime (in seconds) of CA and
SF for NA = 5, 100. CER: Changing error rate after m = 5
iterations. FER: Fixed error rate (m = NA). ∆µ: average time
savings compared to SF.

CA SF ∆µ(%)
NA IBM QX CER FER CER FER

ibmq ehningen 33.83 33.83 149.98 -77.44 -77.44
5 ibm auckland 37.91 37.91 139.71 -72.87 -72.87

ibm cairo 42.33 42.33 129.48 -67.31 -67.31
ibm hanoi 34.32 34.32 149.43 -77.03 -77.03

ibmq ehningen 332.23 248.46 2999.66 -88.92 -91.72
100 ibm auckland 322.67 257.31 2794.29 -88.45 -90.79

ibm cairo 408.21 339.99 2589.61 -84.24 -86.87
ibm hanoi 355.05 272.03 2988.57 -88.12 -90.90

magnitude due to CA’s three-step structure where the most
expensive part of the calculation is executed only once.

C. Conclusion and Comparison

For evaluation, we compared CA approach with several
other methods. The experiments show that applying our
approach yields better and more stable results. The main
advantage of CA is that TAPT needs to be performed only
once and a number of trials in the fast NAM processing qualify
that the implementation is performed on qubits with high
fidelity. Another highlight is that the run time for NA ansatz
circuits is significantly reduced: up to 88.92% with CER and
91.72% with FER for NA = 100. Moreover, with CA we have
stable properties for transpiled circuit, which are shown by the
increase of depth, number of gates and number of cx gates.
All this guarantees that CA produces consistently high quality
on four IBM quantum computers.

V. CONCLUSIONS AND FUTURE WORK

The decisive role of variational algorithms during the
NISQ era justifies a specialized transpilation approach for
such algorithms. Calibration-aware transpilation leverages the
knowledge that subsequent ansatz circuits have the same basic
structure and differ only in their parameters. It naturally adapts
itself to abrupt changes in the error rates of the quantum
computer executing the algorithm, which is a reality today. Our
results show that calibration-aware transpilation strikes a good
balance between quality and stability of transpilation results
and saves time thanks to offloading the heaviest computation
to a procedure that is run one time for all ansatz circuits.

Our findings are confirmed by results for QAOA obtained
on four physical quantum computers with a similar architec-
ture. They are compared with an extensive set of previous
transpilation procedures executed on the same computers and
are put into perspective with simulations assuming standard
error models. We believe that calibration-aware transpilation
is particularly attractive for today’s quantum cloud computers
with their potentially long queuing times: if a circuit is
executed long after it has been transpiled, its calibration data
can become outdated and the actual error rate can get much
worse than expected. Calibration-aware transpiliation enables



incremental operation, where the execution starts almost in-
stantly after calibration, with only lightweight parts of the
transpilation procedure being completed in between.

For the future, we are interested in further improving
the algorithm’s performance, especially for emerging NISQ
computers with 100s or 1000s qubits. Here, quick variants of
the NAM step that leverage the architecture’s symmetries are
essential. Moreover, the TAPT step must be further evaluated
for stability for other variational algorithms and quantum
architectures. Another interesting question is whether we can
make calibration-aware transpilation provably optimal with
respect to one of the targets, despite being divided into
three independent steps. This would make optimal approaches
available for time-critical quantum circuit execution, as the
expensive TAPT step can be performed on a classical computer
before any access to a quantum computer.
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