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Abstract
We present an event-driven simulation package called QuISP
for large-scale quantum networks built on top of the OM-
NeT++ discrete event simulation framework. Although the
behavior of quantum networking devices have been revealed
by recent research, it is still an open question how they will
work in networks of a practical size. QuISP is designed to
simulate large-scale quantum networks to investigate their be-
havior under realistic, noisy and heterogeneous configurations.
The protocol architecture we propose enables studies of dif-
ferent choices for error management and other key decisions.
Our confidence in the simulator is supported by comparing its
output to analytic results for a small network. A key reason
for simulation is to look for emergent behavior when large
numbers of individually characterized devices are combined.
QuISP can handle thousands of qubits in dozens of nodes on
a laptop computer, preparing for full Quantum Internet simu-
lation. This simulator promotes the development of protocols
for larger and more complex quantum networks.

1 Introduction

The second quantum revolution has steadily been gaining
momentum over the last two decades [19]. Quantum com-
puters are at the forefront with private companies racing to
build ever larger quantum devices demonstrating quantum
supremacy [3, 68]. Quantum networks [58] promise to revo-
lutionize the field of communication by exploiting the rules
of quantum mechanics in order to bring enhanced, and in
some cases completely new, functionality. Some of the main
promises of quantum networks include distribution of secret
keys for secure communication where a malicious party is
doomed to be discovered due to the fundamental laws of quan-
tum mechanics [6, 23]. The possibility of distributed quan-
tum computation where quantum computers are networked
together in order to solve a difficult computational task in a co-
operative fashion [15] is being explored. Blind quantum com-
putation [9] allows a client with limited quantum resources

to delegate their computation to a powerful quantum server
without revealing the input, the computation itself or its out-
put. Enhanced clock synchronization [29, 35] promises to
improve the accuracy of global navigation while distributed
quantum states can be used to construct ultra-sensitive sensor
networks [53, 69]. These applications are likely just the tip
of the iceberg and novel uses of quantum networks will be
discovered.

The fundamental resource behind these marvelous applica-
tions is entanglement [27], the ability of spatially separated
quantum states to be correlated more strongly than classical
states. The primary job of a quantum network is to distribute
these entangled states between two or more parties. The ulti-
mate goal is to build a global Quantum Internet [36, 56, 64]
of entangled quantum devices, all running on heterogeneous
hardware yet still being able to engage in reliable and efficient
quantum communication.

Quantum networks are quickly becoming more than just a
dream, with early quantum key distribution (QKD) networks
having been implemented already [11, 22, 24, 34, 51, 55, 57].
Currently, the race is on to demonstrate feasibility of repeater-
based quantum networks, where entanglement over large
distances is constructed recursively from shorter entangled
links [8, 20], with some of the basic hardware elements being
demonstrated experimentally [4, 32, 52].

Besides the immediate technological challenges facing us
when developing a global quantum network, we have to also
deal with open questions for the future of the Quantum Inter-
net. This is where a quantum network simulator becomes a
crucial research and design tool. Some areas where a good
simulator will be invaluable are: (1) Protocol design. Par-
ticularly testing of detailed protocol design to validate cor-
rect operation and study of the interaction between classical
and quantum portions of the network. (2) Connection archi-
tecture and performance prediction. Proposed generations
of quantum networks [44] exhibit complex behavior mak-
ing analytic prediction of their performance difficult with
realistic parameters. (3) Dynamic behavior. Important open
questions are the stability of quantum networks as conditions
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change over time and the response of protocols to dynami-
cally changing network topology. (4) Emergent behavior. As
the system increases in scale, new and unexpected behavior
may emerge that current naive models of quantum networks
do not take into account. How do competing connections
behave? In particular, are quantum networks subject to con-
gestion collapse, or can short-distance connections starve long
connections? Must we trade connection fidelity (quality) for
performance? Naive models suggest that end-to-end, high
fidelity connections are always possible, but it is still an open
question whether this is true in a dynamic, global network.

Our approach to simulating large-scale quantum networks
using our Quantum Internet Simulator builds on OMNeT++
[63], a modular, component-based architecture simulation
environment. Its focus is on protocol design for complex,
heterogeneous networks at large scale while keeping the phys-
ical layer as realistic as possible. Following on from earlier
simulations of single lines of repeaters [30, 59] and an early
network simulator [2], the past two years have seen a flurry of
activity in the field of quantum network simulation, with the
introduction of a number of simulators such as NetSquid [14],
SeQUeNCe [66] and QuNetSim [18]. These simulators are
limited by focusing on physically realistic simulation of a sin-
gle, small network. QuISP is designed with internetworking in
mind while maintaining full physical realism. Our long-term
goal for the simulator is to be able to handle an internetwork
with 100 networks of 100 nodes each, with each network
running independent error management protocols, hardware
parameters, and topology.

The manuscript is structured as follows. First, we provide
basic concepts of quantum information processing and our
new quantum state representation proposal towards to large
quantum simulation in Section 2. We then introduce the back-
ground design of quantum network architecture in Section 3.
Our main proposal for our quantum networking simulator is
described in Section 4. We give the detailed explanation of ba-
sic design principles and the current implementation of QuISP.
Finally, we demonstrate experiments to show the correctness
and performance of QuISP in Section 5 before concluding in
Section 6. Additional details on configuring the simulator and
the mathematics of our new error basis simulation are in the
appendices.

2 Quantum

In this section, we give a brief overview of the basics of
quantum information processing and discuss our approach to
scalable simulation of quantum networks.

2.1 Quantum Information Processing
Quantum networks encode information into quantum states
[46]. The simplest and also the most commonly used quantum
system is a qubit. It is comprised of two basis states, a |0〉

(pronounced “ket 0”) and a |1〉 (pronounced “ket 1”). Unlike
a classical bit that is either a 0 or a 1, the qubit can be in a
superposition of the two base states, written as α|0〉+β|1〉,
where α and β are known as complex probability amplitudes.
They give the relative likelihood that the state of a qubit is a |0〉
or |1〉. In particular, the state |+〉= (|0〉+ |1〉)/

√
2 is an equal

superposition of |0〉 and |1〉. This superposition principle
extends to multiple qubits as well. In particular, qubits A and
B can be in a superposition α|0〉A|0〉B +β|1〉A|1〉B. This is a
rather special state because it is impossible to write it as a
product of local qubit states of A and B. Such states are known
as entangled states and are at the heart of most quantum
technologies. A particular entangled state used ubiquitously
in quantum communication is when α = β = 1/

√
2, known

as a Bell pair.
The basic way to transform the state of a qubit is via Pauli

operators X , Y , and Z. Pauli X is the quantum analogue of a
bit-flip. It flips the state of a qubit X |0〉= |1〉 and vice versa.
Pauli Z does not have a classical counterpart as it introduces a
phase, namely Z|1〉= eiπ|1〉=−|1〉. This phase is important
when the qubit is in a superposition state since Z|+〉= (|0〉−
|1〉)/

√
2 is experimentally distinguishable from |+〉.

Quantum state tomography [1] is the process of charac-
terizing the quantum state by measuring identical copies in
different bases in order to reconstruct a statistical description
of the state known as the density matrix. It is key to extracting
useful information about the quantum state, particularly its
fidelity which is a measure of how close the actual output of a
quantum protocol is to its desired one.

The state of a qubit can be transmitted in a quantum net-
work using quantum teleportation without physically sending
the system encoding the qubit [7]. Consider a client wishing
to communicate the state of qubit CQ1 to a server. They must
share two qubits in a Bell pair, denoted by CQ2 and SQ. The
client performs a Bell-state measurement (BSM) on qubits
CQ1 and CQ2, and sends the classical result of this measure-
ment to the server who performs a conditional correction on
its qubit SQ. This ensures that the state of qubit SQ is the same
as that of qubit CQ1 was initially. The entanglement between
qubits CQ2 and SQ is consumed during the measurement and
therefore must be reestablished prior to any further quantum
teleportations. Note that entanglement does not imply any
directionality so the server can transmit its qubit back to the
client provided they share a Bell pair.

Quantum teleportation can be extended to pairs of entan-
gled qubits, in which case it is known as entanglement swap-
ping [28]. Consider two entangled pairs, denoted by A-B1
and B2-C as depicted in Figure 1. Measurement in the Bell
basis of qubits B1 and B2 will result in qubits A and C becom-
ing entangled. Entanglement swapping is the basic building
block of quantum repeater networks as it allows end-to-end
entangled connection between distant nodes to be established.

Sharing entanglement between neighboring nodes of a
quantum network is not a deterministic process due to noise
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Table 1: Classical representations of quantum states and their scaling
Representation Description Scaling

Full state vector
every entry 000...0 to 111...1;
pure states (no error) only O(2n)

Dirac’s bra-ket notation
sparse representation of state vector
(also used for variable names) � O(2n) but grows sharply to O(2n)

von Neumann’s
density matrix

pure or mixed (error) states
(sparse representations also possible) O(4n)

Stabilizer [26]
shorthand for specific states, specifies
constraints on states (eigenoperators) O(n) to O(n2)

Tensor network [40, 48] tree-based, memoization-like [42]
dependent on the amount of entanglement:
up to 56 qubits, maybe 100 for very special
cases achievable [10, 50]

Error basis track only errors, not states
(useful for developing quantum error correction)

O(n) for Pauli (symmetric) errors;
complex processing for others

A B1 B2 C

A C

1. Measure in Bell basis

2. Send measurement results
as a classical message

3. Apply an operation
according to the result

Node A Node B Node C

Figure 1: Once an intermediate node shares entangled pairs
with its neighbors it measures the two shared qubits B1 and
B2 in the Bell basis, resulting in qubit A becoming entangled
with qubit C.

and losses in the fiber. Even once the entanglement is estab-
lished its quality deteriorates over time due to decoherence of
quantum memories. One of the jobs of a quantum network is
to manage these errors via entanglement purification [5]. In
this protocol, two imperfect entangled pairs can be converted
probabilistically into a single entangled pair of higher fidelity.

2.2 Simulating in the Error Basis

Quantum systems are exceptionally fragile and susceptible to
errors due to interaction with the environment. Furthermore,
distant nodes in a quantum network communicate via ex-
change of single photons, meaning photon loss in the optical
fiber becomes a major source of errors. It is therefore cru-
cial that a quantum network simulator models all physically
relevant sources of errors accurately.

Calculating the state of a quantum system by hand or clas-
sical computer can be done using one of several representa-

tions, with differing purposes and scaling, as shown in Table 1.
Many important states can be written down using shorthand
methods such as the sparse Dirac bra-ket notation or stabiliz-
ers [26], but complete representation of an arbitrary state may
require up to 2n complex numbers when the state is pure, or
error free. Using special techniques on classical supercomput-
ers, computations of special cases involving up to 56 [50] or
81 [10] qubits have been simulated.

Traditional tracking of the evolution of a mixed, or noisy,
quantum state composed of n qubits is substantially harder.
The density matrix can represent any quantum state after any
computation or noise process, but when fully populated, re-
quires 2n×2n complex numbers. In the context of quantum
networks, full density matrix simulation is tractable for 1G
networks, where the simulation must track many independent
quantum states, but each state is composed of at most four
qubits. This approach has been used in numerous simulations,
especially those focused on tuning low-level hardware control
parameters [39,49]. However, this approach quickly becomes
intractable when moving to 2G and 3G networks, where log-
ical Bell pairs are encoded into a large multi-qubit state for
quantum error correction [44]. Simulating only two 2G links
using a 7-qubit error correcting code on each link [31] re-
quires 16×256 bytes, about one exabyte. Simulating a 100
hop long connection could take a mind-boggling 3.2×103011

bytes of memory. Thus, it is imperative to separate simulators
based on their purpose; our goal is to study the architecture
and protocols of networks, rather than the physics of devices
or complete quantum algorithms.

QuISP works on the premise that the desired quantum state
is known and we only have to track deviations from this ideal
state in the form of errors that are affecting it. This approach is
adapted from quantum error correction [17,45] and represents
a novel way of simulating quantum networks. Deviations from
the ideal state can be tracked efficiently leading to scalable
simulation of truly global quantum networks beyond 1G for
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the first time. This scalability is achieved by exploiting the fact
that quantum networks only need to apply a fixed number of
operations and the major sources of errors can be discretized
into a small set. Our approach is tailor-made for quantum
network simulation and is not suitable for simulation of a
universal quantum computer.

The simulator tracks Pauli X , Y , and Z errors discussed
in Section 2. It also tracks relaxation and excitation errors,
denoted by R and E, respectively. Relaxation captures the
process of energy loss due to environmental noise by trans-
forming any initial state to |0〉, while excitation captures the
opposite process where any arbitrary initial state is trans-
formed to |1〉. Finally, the simulator tracks photon loss L as
well. This list does not form an exhaustive set of all possible
possible errors and may be expanded or shrunk depending on
the particular physical scenario under consideration.

The quantum state at time t is represented by a m + 1-
element error probability vector~π(t), where m is the number
of errors that we are tracking. Each element π j represents
the probability that the quantum state has been affected by a
particular error j at time t,

~π(t) =
(
πI πX πY πZ πR πE πL

)
. (1)

The error probability vector is normalized, meaning ∑ j π j = 1.
The evolution of the error probability vector is given by the

transition rate matrix Q. It is a right stochastic matrix with
elements Qi j representing the probability per unit time of tran-
sitioning from error state πi to error state π j, and they satisfy
the normalization condition ∑ j Qi j = 1. The error probability
vector~π(t) a time t is given by

~π(t) =~π(t−1)Q =~π(0)Qt . (2)

The transition rate matrix Q is independent of time and the er-
ror probability vector~π(t) depends only on~π(t−1), meaning
the evolution of the qubit is modelled as a Markov process.
Detailed discussion of the transition matrix can be found in
Appendix B.

The simulator samples the error probability vector ~π(t)
prior to an operation on the qubit and applies the sampled error
type1. The simulation must be repeated to gather statistics
about the real state of the qubit and gain information about
the qubit’s fidelity.

Extension to multi-qubit systems is straightforward. The
state of N qubits in QuISP is described by an N(m + 1)-
element error probability vector where the first m+1 entries
describe qubit 1, second group of m+1 describe qubit 2 and
so on. The full transition rate matrix for N qubits is given by a
block-diagonal matrix composed of N single-qubit transition
rate matrices.

1The current version of the simulator samples the error probability vector
before a measurement or purification is performed. The next version will
extend the sampling to entanglement swapping as well.

Internal BSA

Entangled Photon Pair Source (EPPS)

1. MM

2. MIM

3. MSM
External BSA

Entanglement

Photons (Flying Qubits)

Figure 2: Three quantum link architectures. MM and MIM
differ mainly by the position of the BSA while MSM replaces
the BSA in the middle with an EPPS.

3 Network Design

In this section, we discuss the basic network design that
QuISP assumes.

3.1 Quantum Network Architectures

There is currently no consensus on the best overarching net-
work architecture for quantum networking, though the key
principles are coming into view [38, 61] and some protocol
elements have been proposed [16, 37, 41]. Supporting fur-
ther research in this area is the primary purpose of QuISP.
However, it is becoming clear that some basic hardware and
software components will most likely be shared between fu-
ture candidate architectures. We give a brief outline of these
components in this subsection.

Hardware architecture: There exist a number of poten-
tial candidate physical systems that are suitable for encoding
qubits, broadly divided into two categories. Stationary qubits
or matter qubits are envisioned to store and process informa-
tion at the nodes of a quantum network, acting as the hosts.
Candidate physical systems include nitrogen-vacancy centers
in diamond [52], trapped ions [21], atomic ensembles [67]
and superconducting qubits [43].

Inter-node quantum communication is achieved by using
flying qubits encoded onto single photons travelling through
optical fibers. We refer to these fibers as quantum links. Pho-
tons are ideal information carriers as they do not interact
strongly with their environment and they travel at very high
speeds. Using flying qubits, it is possible to distribute en-
tangled Bell pairs between two distant nodes of a quantum
network. This can be achieved using one of the three existing
quantum link architectures [33] depicted in Fig. 2. Memory-
Memory (MM) link connects two quantum nodes directly
where either node is equipped with a Bell-state analyzer
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(BSA), an optical device that performs a Bell-state measure-
ment on two incoming photons. Memory-Interfere-Memory
(MIM) link places the BSA in the middle of the quantum link.
Memory-Source-Memory (MSM) link replaces the the BSA
in the middle of the quantum link with a source of entangled
photonic pair states (EPPS). Despite the architectures appear-
ing fairly similar, they differ significantly in their performance
as well as the technological maturity required to implement
them.

Since quantum communication operates at the single-
photon level, attenuation becomes a major source of error.
Unlike classical bits, qubits cannot be copied and resent ow-
ing to the no-cloning theorem [65], a fundamental property
of quantum mechanics forbidding to deterministically copy
arbitrary states of quantum systems. Amplification at the level
of single photons becomes ineffective as well [12, 13]. This
limits the practical length of quantum links to mere tens of
kilometers.

In order to get around this problem, a new type of node
was introduce known as a quantum repeater [8, 20]. One of
the jobs of a quantum repeater is to share Bell pairs with its
neighboring nodes and implement entanglement swapping in
order to create a Bell pair between these nodes. In this way,
the no-cloning theorem can be sidestepped and photon loss
mitigated, resulting in the possibility of establishing end-to-
end Bell pairs between arbitrarily separated quantum hosts.
Figure 3 depicts the hardware and software components of a
quantum repeater.

A particularly important component of the quantum re-
peater is the Quantum Network Interface Card (QNIC). The
QNIC is the quantum analogue of a classical NIC with one
major difference being that a QNIC is able to apply quan-
tum operations to the store quantum information, making it
a quantum computer with limited capabilities. In particular,
the QNIC is capable of applying single-and two-qubit gates
as well as single- and two-qubit measurements.

Software architecture Classical software running on a
quantum repeater will play a crucial role when designing effi-
cient repeater-based quantum networks. Our proposed soft-
ware architecture, Quantum Repeater Software Architecture
(QRSA), as shown in Figure 3, consists of five software com-
ponents.

• Connection Manager (CM): CM manages the connec-
tion from the Initiator to the Responder. Once a connec-
tion setup request is initiated at an Initiator, it is passed to
a Responder through a specific path. At this point, inter-
mediate nodes provide the required information, such as
QNIC interface information. The most important task for
the Connection Manager is to generate RuleSets, which
we discuss in Section 3.2.

• Hardware Monitor (HM): HM is responsible for moni-
toring quantum links between the neighboring network

NIC NIC

Quantum Repeater Software Architecture (QRSA)

Classical Link

QNIC
Qubits

Mux Mux

Real-Time Controller (RC)

Connection
Manager (CM)

Rule Engine
(RE)

Hardware
Monitor (HM)

Routing Daemon
(RD)

Quantum Link QBus

Figure 3: Our target quantum repeater architecture. The top
blue section denotes QRSA composed of five distinct software
components discussed in the main text. The arrows out of
each component represent directions of messages. The bottom
orange sections are QNICs which contains multiple stationary
qubits to hold quantum information, and manipulate these
qubits to extend entanglement via entanglement swapping.

nodes. In quantum networking, the quality of links is crit-
ical to the final quality of the end-to-end Bell pair. The
HM collects information about fidelity and generation
rate that is used by RD and CM.

• Rule Engine (RE): The main responsibility of the RE
is executing RuleSets issued by the CM. To achieve
this, the RE constantly monitors the quantum resources
available and manages these resources. The results of
executed actions are reported back to the RE, and are
also distributed to partner nodes where appropriate. RE
updates the state of qubits based on incoming messages
from itself and other nodes.

• Real-Time Controller (RC): RC is in charge of initializ-
ing physical qubits and coordinating their photon emis-
sions for the purpose of entanglement distribution. The
RC selects which qubits are scheduled to emit photons
and at what time. After the qubits no longer take part in
entanglement distribution, the RC reinitializes them. RC
is device drivers and lower-level software with a hard real
time component, interfacing directly to the hardware.

• Routing Daemon (RD): RD’s responsibility is to create
and maintain the routing table for the quantum interfaces.
It exchanges information with RDs in neighboring nodes
in accordance with a standardized routing protocol. It
conveys the information about route and QNIC identi-
fiers required to reach other end node (destination) to
other components of the QRSA.
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Purification Purification

ES ESWait Wait

ES WaitWait

Tomography
(Measure)

Tomography
(Measure)

Purification Purification

Purification Purification

InitiatorResponder

RepeaterRouter

Figure 4: Example of RuleSets. Each node in the path has one
RuleSet for the connection. Rules are executed from top to
bottom while communicating to the proper operation partners.
Horizontal arrows represent the partners that are coordinating
actions and vertical arrows represent the order of execution.
ES is entanglement swapping.

These components communicate as needed to convey when
to start operations and the current status of devices.

An end node has almost the same functionality as a repeater,
but it also has an Application component responsible for
performing end-to-end applications.

3.2 RuleSet Protocol

In order to distribute end-to-end entanglement, both end nodes
and quantum repeaters must know what actions to perform,
when to execute them, and what other nodes are taking part in
the process if the actions need to be coordinated. For example,
the repeater must know the nodes that it shares Bell pairs with
when executing entanglement swapping since the results of
the procedure must be shared with those nodes.

To this end, the RuleSet protocol was proposed in [41],
which QuISP supports. The goal of this protocol is decen-
tralized, autonomous but coordinated actions of the quantum
repeaters with minimal classical inter-node communication.
Figure 4 is an example of RuleSet structure. The RuleSet
is a collection of Rules such purification and entanglement
swapping. These RuleSets are built in the connection setup
phase discussed in Section 3.3, and executed in a specified
order. After being acted upon, the Bell pairs belonging to a
particular Rule are passed to the next in sequence.

Figure 5 describes the details of RuleSet and Rule. Every
Rule has a Condition and corresponding Action. The Actions
are executed upon satisfaction of local conditions, usually
relating to the number and quality of available quantum re-

RuleSet
Rule 1

Condition

Action

1. Check

2. Satisfy 3. Perform

Rule 
Engine

4. Notify

Rule 2

Resource
Table

Action

Resource
Table

Resource
Pool at Rule

Engine

Allocate

Condtion

5. Promote

...

Clause 1

Figure 5: RuleSet execution. 1. Condition clauses checked
one by one. 2. If all condition clauses are met, go to step 3,
otherwise goes back to step 1 and wait for next allocation of
resources. 3. Rules start performing actions. 4. The action
notifies the result to the RuleEngine. 5. RuleEngine promotes
the resource from one Rule to the next.

sources (Bell pairs). In quantum networking, shared Bell pairs
must be managed by each node in a coordinated fashion and
appropriately structured RuleSets provide this required con-
sistency in terms of quantum operations.

Condition Clauses are composed of single or multiple con-
ditions to be met before the Action is executed. For example,
if node A requires two entangled states with node B to per-
form one action, A must track the number of shared entangled
states with B. In such a situation, the Condition used is the
Enough Resource Clause, which is satisfied when the number
of total entangled pairs shared with the proper partner is larger
than a threshold (In this case, the threshold is two). Other than
Enough Resource Clause, there are several clauses supported
in this simulator.

An Action Clause is a set of operations including resource
assignment changes, qubit manipulation, and classical mes-
sage transfer. Once Condition Clauses are met, the corre-
sponding action is immediately executed. For example, Swap
refers to the resource table that belonging to the Rule and rec-
ognizes the corresponding qubits. Then, this action chooses
one state entangled to its left and one entangled to its right
and applies Bell state measurement. Informing the partners of
the result of the Bell state measurement is one responsibility
of the action.
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Connection Setup 
Request

Accumulate interface information 
of intermediate nodes

RuleSets

Initiator Responder

Requirements
Interface info

Link cost

Figure 6: Connection setup process to establish agreements
between initiator and responder

3.3 Connection Setup

The connection setup is the step requires to gather all the
information to create RuleSets to be executed for nodes that
will be participating in the end-to-end Bell pair generation.
The connection setup process used in QuISP is adapted from
protocol outlined by Van Meter and Matsuo [60]. Figure 6
shows the procedure of the connection setup. It involves a two
pass process, gathering the link information along the path
starting from the node that tries to establish the connection
(Initiator) and planning the RuleSet to be distributed among
the nodes along the path at the other half of the connection
(Responder).

The first part, at the Initiator node, it receives the require-
ment for the connection from application level, like the quality
of the connection (fidelity of the end-to-end Bell pair) and
the number of Bell pairs. In this outbound pass, every node
along the path will include their link characteristics into the
message, reserve the QNIC, and relay this connection setup
message to the next hop. If the QNIC cannot be reserved
because it is already in use for another connection, the node
will reject the request and the connection setup reject message
will be sent to all the previous nodes along the path.

When the connection setup message arrives at the Respon-
der node, the Responder’s job is to plan out how each node
should execute their share of work in order for the end-to-end
Bell pair creation to succeed. After planning out and creating
RuleSets for all nodes, the Responder sends Connection Setup
Response with the RuleSets back to all nodes along the path.

4 The Simulator

In the previous section, we explained the network design
underlying QuISP. Here we introduce its implementation and
use, with an example simulation.

4.1 Goals and requirements

The long-term goals for developing QuISP are supporting
1G, 2G, and 3G quantum networking (generations classified
by the type of error handling) and internetworking in a scal-
able manner to establish highly reliable protocols for each
generation. In the higher generations of quantum networking,
thousands of qubits will work together when creating a sin-
gle end-to-end logical Bell pair. Furthermore, this simulator
will allow us to replicate the dynamic behavior of quantum
networks and internetworks with complex network topolo-
gies, including the concepts of heterogeneity and network
boundaries.

As noted in the introduction, our long-term goal is 100
networks of 100 nodes each. With inter-repeater spacing as
low as 10km for some hardware architectures, long chains
of repeaters between routers will be necessary to achieve
distance. With low initial link performance, the router-level
topology will have to be rich in order to provide adequate
connectivity and resource availability. We expect this scale
of simulation to aid in assessing an internetwork with such
real-world constraints.

4.2 Basic Design Principles

We now highlight the main principles that we used as a guide
in designing QuISP.

Realism. The simulation should provide accurate informa-
tion about the physical states that are being distributed in the
quantum network. This in turn provides accurate information
about the fidelity of the distributed states. Emphasis in the
design of QuISP has been placed on realistic noise models.
Qubits stored in quantum memories will undergo decoher-
ence processes that wash away their quantum properties and
result in deteriorating fidelity. Photon loss in fiber is a major
source of error and therefore must be accounted for in the
simulator. Early simulation work assumed 2n hops, all of the
same length and fidelity [30, 59], but that is not realistic.

The implementation of the physical layer simulation must
be kept cleanly separated from the implementation of software
for the nodes themselves. The router software can know only
what it would know in the real world: information it can
learn from classical measurement outputs from the quantum
hardware and from exchanging messages with other nodes.

Scalability. One of the main goals of this simulator is the
study of large-scale quantum networks and their emergent
complex behavior. Scalability concerns come in two flavors:
the number of qubits involved in a single quantum state, and
the number of nodes, links and connections in the whole
network. General multi-qubit states are difficult to simulate
classically. Our novel approach of working in the error ba-
sis discussed in Section 2.2 allows us to simulate quantum
networks at the cost of only a few classical bits per qubit,
and makes QuISP suitable for simulation of truly large-scale
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quantum networks of any generation.

Flexibility. This simulator has been designed to offer the
user a great deal of customizability. Currently, there exist a
number of physical systems that are considered to be promis-
ing candidates for implementing the physical layer of a quan-
tum network. However, all these candidate systems differ
substantially in terms of parameters such as memory coher-
ence times and operation clock rates. QuISP allows the user
to customize the error types that affect the physical layers as
well as the individual parameters corresponding to error rates.
This ensures that QuISP is capable of accurately simulating
any current and future quantum hardware. Furthermore, the
topology of the quantum network can be defined easily and
this simulator comes with a set of predefined number of qubits
per node and topologies as well.

4.3 Event Simulation with OMNeT++

OMNeT++ is a C++-based discrete event simulator primar-
ily for classical networking simulations [47, 54, 62, 63]. The
OMNeT++ model consists of modules that communicate via
messages. The first batch of messages is created during mod-
ule initialization. Their destination can be any other modules
connected to the sender module or to self. Upon receiving a
message, which constitutes an event, the module processes the
message and usually creates another batch of messages to be
sent. The only proper way to trigger execution of a function
in a certain module is by receiving messages. It is assumed
that the processing of events takes zero time and that nothing
of significance occurs between two events. The simulation
ends when there are no messages left to be processed or the
simulation reaches the time limit set by the user. The simu-
lation time is tracked by the timestamp of events, which is
determined by the time a message is scheduled to be sent.

Modules and messages in OMNeT++ are provided
by the cSimpleModule and cMessage class, accordingly.
cSimpleModule is the active component in OMNeT++ and
its functionality can be extended by adding C++ code or by
composing multiple simple modules into a compound mod-
ule.

Furthermore, QuISP also provides a graphical user inter-
face from the OMNeT++ IDE to manipulate the network
topology stored in a NED file, which defines network devices
in very structured manner. An example of a NED file is shown
in Appendix A. The simulator also allows the user to change
the initial simulation parameters or variables on launch us-
ing an INI configuration file. It is also possible to visualize
many stats, such as the changes of parameters during the sim-
ulation. These functions allow us to debug and check if the
simulation works properly and to make intuitive performance
measurements.

OMNeT++

Simulator

cComponent

cModule cChannel

cMessage

Quantum
Channel

Flying Qubits

Classical
Message

Application RuleSets

cDatarateChannelcSimpleModule

StationaryQubit

QRSA .ned

.ned

.ned

.ned

.ini

User

Figure 7: The implementation of QuISP. Users can provide
simulation configurations as an INI file that can change vari-
ables of defined modules. Basic software components and
channels are implemented as subclasses of cSimpleModule
and cDatarateChannel. Messages and flying qubits emit-
ted from those components are defined in .msg files, which
are converted to program source when they are compiled by
OMNeT++.

4.4 Basic Implementation

A concise diagram outlining our implementation is shown
in Figure 7. Software modules (QRSA, Application, etc.)
are built on top of cSimpleModule, which supports stan-
dard message handlers. Stationary Qubit is also a subclass
of cSimpleModule, but it holds its quantum properties as
its variables and behaves as quantum memory. Those soft-
ware components can emit registered classical packets such
as ConnectionSetupRequest written in cMessage. Flying
qubits can be thought of as an emitted message from Station-
ary Qubit. Thus a flying qubit is implemented as an extension
of a classical packet passed through quantum channels.

A quantum channel as a carrier of the flying qubit is im-
plemented as a subclass of cDatarateChannel. The errors
affecting flying qubits are calculated based on the distance
between two nodes.

4.5 Supported Functionality

QuISP currently supports end-to-end tomography-based qual-
ity analysis of connections as the application. The output of
the simulation is the characteristics of the path used for each
connection, explained in detail in Section 5.

The user can define complex topologies easily. Almost
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every factor that plays a role in the link characteristics such as
node placement, distance between nodes, link types, number
of buffer qubits in each interface, channel error and loss rate,
and the efficiency of most components that contribute to 1G
and 2G technologies can be set individually or from defaults.

The simulator also supports options for selecting how the
end-to-end Bell pair is generated. The order of entanglement
swapping can be chosen between the usual binary tree like
structure [8] or swap-once-ready at each node. The user can
also tinker with the number of rounds of purification per-
formed before entanglement swapping takes place and choose
one of the four types of purification methods [8, 25] we cur-
rently provide.

Since most of the groundwork for the RuleSet-based pro-
tocol has been implemented, curious users can modify the
simulator code, write their own entanglement swapping policy
or purification method, and experiment with how to achieve
higher quality connections.

4.6 Configurable Parameters

As we mentioned in the previous section, users can make their
decisions on the error rate, the number of purifications, the
way of entanglement swapping. Currently, there are more than
50 types of parameters that can be given through the INI file.
The following parameters are most likely to be configured by
users.

• Network. The name of the network written in the NED
language, specifying the number and types of nodes and
the network topology.

• Channel errors. The errors on a quantum channel. This
specifies how much and what types of errors in a partic-
ular distance. Currently, all Pauli errors and photon loss
errors are supported, and users can specify the ratio of
each error.

• Memory errors. In addition to Pauli errors, we support
relaxation and excitation errors. As the simulation time
passes, this error accumulates on each qubit.

• Gate errors. In a realistic situation where we assume that
devices are imperfect, there are always small operational
errors in quantum gates. We can handle errors on basic
gate sets (Pauli gates, Hadamard, Controlled-X).

• Measurement errors. Quantum memories must be mea-
sured to get internal information which affects the quan-
tum state itself. Measurement errors are composed of
Pauli errors.

• BSA errors. It is possible to have different errors for inter-
nal and external BSAs. Tunable parameters are photon
loss, photon detection rate, and dark count probability.

• Photon emission success probability. The probability
that a quantum memory successfully emits a photon
which is then captured by the fiber.

• Traffic pattern. A configurable parameter for traffic gen-
eration pattern. Currently, this simulator supports single
traffic generation from one node to the other random
node and multiple traffic generation from all end nodes
to randomly selected nodes.

• Measurement count. The number of measurement in
tomography. When the required precision of tomography
is higher, the number of measurement needs to be larger.

4.7 Simulation Output
The simulator returns the performance statistics at the end of
simulation when the target configuration contains tomography.
The output files contain the following information.

• Fidelity. Calculated by the software tomography process,
this indicates the quality of Bell pairs between two end
nodes.

• Bellpair per sec. The number of Bell pairs generated in
one second (in simulation time).

• Tomography time. The time until the entire tomography
process finishes.

• Tomography measurements. The number of measure-
ments of tomography.

Besides these properties, the output statistics include more
link information. An example output is given in Listing 2 in
Section 4.8.

4.8 Example Simulation
We demonstrate the workflow to simulate end-to-end entan-
glement generation between Initiator and Responder on the
network shown in Figure 8.

First, we prepare a NED file corresponding to the target
network. (See Appendix A for more details.) The nodes are
defined as submodules of the network. After enumerating
all involved nodes, we define both classical and quantum
connections between these nodes.

1 [Config Example_end_to_end_tomography]
2 network = Example_Network
3 sim-time-limit = 15s
4 seed-set = 1
5 **.buffers = 100
6 **.TrafficPattern = 2
7 **.EndToEndConnection = true
8 **.distant_measure_count = 8000
9 **.emission_success_probability = 0.8

10 **.Measurement_error_rate = 0.0450074
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Figure 8: Example network configuration in QuISP, with mul-
tiple link types and one connection marked in red. The outer-
most computer icons represent end nodes that perform appli-
cations. Between two end nodes, there are repeaters, routers
and BSAs when the link type is MIM.

11 **.Measurement_X_error_ratio = 0.018
12 **.Measurement_Y_error_ratio = 0.06
13 **.Measurement_Z_error_ratio = 0.06

Listing 1: Example configurations in INI file

Second, we prepare an INI file. The INI file shown in
Listing 1 represents a simulation that is performed on the
Example_Network topology (network) with 100 qubits for
each QNIC (buffers), and all qubits have some amount
of measurement errors (Measurement_error_rate). The
success probability of photon emission from one quantum
memory is 0.8 (emission_success_probability). The
paths are generated randomly (TrafficPattern), and end
nodes measure 8000 Bell pairs for tomography at the end
of Rule execution (distant_measure_count). This simu-
lation stops after some amount of time in the simulation
(sim-time-limit). Other than these variables, the default
values (for example no errors on the link) are used for the
simulation.

Once a user compiles the source, the simulation starts. All
nodes are booted with the above parameters. QRSA is started,
and if indicated tomography on the links (used to populate link
information for routing) begins. For application traffic, each
end node acts as an Initiator, randomly selects one other end
node to be the Responder, and issues a "Connection Setup
Request". For example, for the path highlighted in red in
Figure 8, the Initiator issues a Connection Setup Request and
sends it to the Responder.

The simulation automatically stops and invokes post-
processing functions to make statistics. An example output
file is shown in Listing 2. Note that the fidelity in the listing is
obtained from a density matrix constructed via quantum state

tomography run by the application, and therefore corresponds
to what real-world software would actually determine from
its tests.

1 EndNode[0]<-->QuantumChannel{
2 cost=0.00160205;
3 distance=28km;
4 fidelity=0.983016;
5 bellpair_per_sec=645.955;
6 tomography_time=10.83666473934;
7 tomography_measurements=7000;
8 actual_meas=7000;
9 GOD_clean_pair_total=6887;

10 GOD_X_pair_total=1;
11 GOD_Y_pair_total=1;
12 GOD_Z_pair_total=111;
13 }<-->EndNode[0];
14 F=0.983016;
15 // Error probabilities
16 X=-0.000188593;
17 Z=0.0169845;
18 Y=0.000188593;
19 ...

Listing 2: Result of example simulation between two
EndNodes.

5 Correctness and performance

Based on the previous discussions on the simulator’s design
and usage, we now investigate its validity and performance.
First, we give a simple numerical experiment to check whether
the result out of the simulator agrees with theoretical values.
After that, we extend the scale of the experiment to measure
the performance.

5.1 Correctness
In order to test the correctness of QuISP we set up a small
linear network composed of two end nodes A and C, with a
single repeater B as depicted in Figure 1. The end nodes are
separated from the repeater by equal distance d.

To make this test analytically tractable, we consider a sim-
plified error model for the quantum link by assuming only
Pauli X errors may affect the flying qubits with probability
PX per kilometer of the fiber. This error model may transform
the ideal Bell pair |Φ+〉= (|00〉+ |11〉)/

√
2 into a new state

|Ψ+〉= (|01〉+ |10〉)/
√

2 and vice versa. The state of the two
qubits after the flying qubit reaches repeater B is given by a
statistical mixture of |Φ+〉 with probability pclean, and |Ψ+〉
with probability 1− pclean, where

pclean =
1
2

[
1+(1−2PX )

d
]
. (3)

Upon arrival of the flying qubits to the repeater node B they
are measured together in the Bell basis. This results in the
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Figure 9: The comparison between theoretical and empirical
result of fidelity of the final state for a small network. In the
empirical result, the average and standard deviations of 10
data points are depicted as error bars.

desired state |Φ+〉 between qubits A-C if both pairs A-B1
and B2-C are clean or if both suffered from an error [58].
Therefore the fidelity of qubit pair A-C is given by

FAC = p2
clean +(1− pclean)

2. (4)

We simulated this network with Px = 0.02 and 7000 mea-
surements. We repeated the simulation ten times. The result-
ing mean empirical fidelity and its standard deviation are
shown in Figure 9 alongside the theoretical fidelity FAC. We
varied the distance d from 1 to 10 kilometers. The empirical
result matches the theoretical prediction.

5.2 Scalability
In order to show that QuISP can scale up to the goals men-
tioned in Section 4.1, we investigated the performance of
QuISP in terms of events processed per second and the du-
ration of CPU time taken to generate one end-to-end Bell
pair. These results can indicate the relation between the scale
of experiments and the time it takes to run the simulation.
Although the total number of events depends on multiple fac-
tors such as the complexity of the protocol, network size, and
number of buffer qubits each node has, it can give us some
indications regarding the total work required.

For these tests, we decided to use the Docker environment
QuISP provides. Table 2 details the simulation environment.

The work required to run the simulation can be broken
down into three main parts: routine background task for link
generation, connection setup, and RuleSet execution. The total
simulation duration will be the aggregation of time required
for each connection to establish, and each connection is scaled
by number of hops, number of Bell pairs required, and the suc-
cess probability of link generation. Since the load of RuleSet

Table 2: Simulation Environment
Machine MacBook Pro 16-inch 2019 model
Guest OS Ubuntu 18.04 on Docker
Host OS macOS Big Sur (11.5.2)

CPU
2.3GHz 8-Core 9th Gen. Intel Core i9
(8 cores assigned to Docker)

Memory
32 GB 2667MHz DDR4
(10 GB assigned to Docker)

...
N repeaters

Figure 10: Linear network with different number of repeaters.
One repeater has two QNICs and both end nodes have one
QNIC.

execution is directly related to the number of connections for
any network size and connection setup is a very lightweight
task, we decided to show the performance of QuISP using the
simplest case, a linear topology with one connection.

Figure 10 is the network that we use for performance analy-
sis. We performed quantum state tomography using 200 E2E
Bell pairs between these two end nodes with the probability of
link generation at 0.32. We can adjust the number of repeaters
between two end nodes, with the E2E distance growing as we
add links. Each repeater has two QNICs with nQ qubits per
QNIC. The end nodes contain one QNIC with nQ qubits. The
total number of qubits is therefore N = 2nQ(nR +1), where
nR is the number of repeaters.

The RuleSet structure we used in this benchmark is similar
to the one depicted in Figure 4. The Bell pairs are purified
once before undergoing entanglement swapping at every step.
The order of the entanglement swapping was chosen to be the
binary tree structure [8]. The purification is also done on the
end-to-end Bell pair shared between the two end nodes before
tomography.

Figure 11 shows the average CPU time (in seconds) per
end-to-end Bell pair generated. When the number of repeaters
increases, the amount of time to generate one end-to-end
Bell pair increases because it includes far more operations
(more entanglement swapping operations and more rounds of
purification) than that with the smaller number of repeaters. In
theory, the scaling of work required for generating end-to-end
Bell pair with N repeaters is linearithmic (O(N logN)). We
can clearly see that the scaling of our simulation time grows
no worse than polynomially.

We also investigated the number of events processed per
second. Figure 12 shows the number of events per second for
different network sizes and number of qubits inside QNICs.
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Figure 11: CPU time to generate one end-to-end Bell pair
with different number of repeaters. Five data points for each
network and the number of buffer qubits with different seed
values.

Increasing the number of repeaters results in longer simula-
tion time in the scaling as we expected. On the other hand,
doubling the buffer qubits inside a QNIC (from 100 to 200)
resulted in around twice the simulation time even though the
total number of processed events are similar. This indicates
that QuISP might have some kind of unintended overhead
which scales linearly on the number of buffer qubits, which
we expect to fix in a near-term release.

6 Conclusion

This paper proposed a discrete event simulator for a large-
scale quantum network on top of OMNeT++. QuISP is based
on two essential aspects, the RuleSet protocol and error ba-
sis simulation. The RuleSet protocol allows us to establish
end-to-end connections that operate fully asynchronously and
autonomously. Error basis is a new representation of the quan-
tum state, which only tracks the transition of errors rather
than the full quantum state, enabling simulation that scales
efficiently in both qubits involved in a single quantum state
and in number of network nodes, links and connections.

We provided evidence that suggests QuISP properly models
the real world by comparing simulation results with analytic
results for a small network. We also assessed the performance
of QuISP in terms of the actual CPU time and the number
of events handled per second. While this cost varies with
configuration, simulation cost does not row explosively, and
simulations finish fast enough for researchers to explore as-
pects of the design space smoothly.

The simulator is a work in progress, but is complete enough
for use as a research tool, and indeed our group has several

Figure 12: The number of events per second on different
networks and with differing numbers of qubits.

projects running in parallel, each of which begins by defining
the Rules that govern a new type of network functionality.
Our current advanced projects are extending the functionality
to include 2G, all-optical, multi-party protocols and internet-
working.

Planned improvements can be split into three categories:
core functionality, performance, and extensions. Connection
teardown is incomplete, and routing, while correctly handling
heterogeneity, is static; these limit our ability to compare mul-
tiplexing schemes effectively, and will be remedied soon. Per-
formance measurements suggest substantial room to improve,
and we expect to reach our goal of simulating an internet of
100 networks of 100 nodes each.

All of this is, of course, in pursuit of a functional, robust,
extensible, and above all useful Quantum Internet. To get
there, we must design and test architecture and protocols with
emphasis on scale and heterogeneity. We expect that QuISP
will contribute to advancing this design and implementation.
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Availability

The simulator source code, documentation and sample config-
urations are fully available online as an open-source project.
Feedback, requests for features, and code contributions are
welcome. Our mission is not only to build an advanced simu-
lator, but also to make it easy to use for quantum networking
research and as a teaching and learning tool. We are also alpha
testing a web browser-based simulation interface created by
compiling OMNeT++ into Web Assembly (wasm), allowing
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new users to learn about quantum networking without dealing
with the complex build environment of OMNeT++.
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A NED (Network Definition) in OMNeT++

1 network Example_Network {
2 submodules:
3 EndNode[11]: QNode {
4 address = index;
5 nodeType = "EndNode";
6 }
7 Router[5]: QNode {
8 address = 100 + index;
9 nodeType = "Router";

10 }
11 Repeater[6]: QNode {
12 address = 200 + index;
13 nodeType = "Repeater";
14 }
15 Hom[8]: HoM {
16 address = 300 + index;
17 }
18 connections:
19 Router[0].port++ <--> ClassicalChannel{

distance=19km; } <--> Router[1].port++;
20 ...
21 Router[0].quantum_port++ <-->

QuantumChannel { distance = 19km; } <-->
Router[1].quantum_port_receiver++;

22 ...

23 }

Listing 3: Ned file for example network

Network definition (NED) provided by OMNeT++. network
symbol defines the network with submodules listed in it.

Listing 3 is an example of NED syntax that defines the
network with several quantum devices. Here, we have 11
EndNode, 5 Router, 6 Repeater and 8 HoM initialized with
vectors of each module. The connections between these
components are defined under connections which spec-
ify the port to be used and the type of channel such as
ClassicalChannel to connect them.

The devices involved in the network are also defined as
NED style language by nesting them as submodules and pass-
ing the parameters they require.In this examaple, address,
nodeType and distance are given by network. The atomic
components such as BSA, StationaryQubit are defined as
simple, and the combination of simple modules such as
QNode, Router are defined as module.

B Transition matrix Q

The transition matrix Q allows us to evolve the er-
ror probability vector in time and is given by

Q =



PI PX PY PZ PR PE PL
PX PI PZ PY PR PE PL
PY PZ PI PX PR PE PL
PZ PY PX PI PR PE PL
0 0 0 0 PI +PZ +PR PX +PY +PE PL
0 0 0 0 PX +PY +PR PI +PZ +PE PL
0 0 0 0 0 0 1


, (5)

where Pj represents the error probability per unit time. It
captures the nature in which quantum errors interact with
each other. For example, a qubit affected by a Pauli X error
can be transformed into a clean qubit by another Pauli X error
acting on it. This is reminiscent of how two classical bit flip
errors cancel each other. Other errors may interact in more
complicated ways. For example, a qubit that has been affected
by the energy relaxation error R will stay in the same state if
no further error occurs, or a Pauli Z occurs, or a the relaxation

process takes place again. This is captured by the transition
matrix element Q55 = PI +PZ +PR. Some error states cannot
be reached from certain error states. In particular, a qubit that
has decohered via the relaxation or excitation process cannot
go back to being affected by a simple Pauli error. This is
captured by Qi j = 0. In this sense, the most destructive type
of error is photon loss L captured by the fact that Q7 j = 0
except for Q77 = 1. Once a qubit is lost it we cannot recover
it.
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