
Quantum circuit optimization for multiple QPUs
using local structure

Edwin Tham
Entangled Networks Ltd.

Toronto, ON, M4R 1A2, Canada
Email: edwin@entanglednetworks.com

Ilia Khait
Entangled Networks Ltd.

Toronto, ON, M4R 1A2, Canada

Aharon Brodutch
Entangled Networks Ltd.

Toronto, ON, M4R 1A2, Canada

Abstract—Interconnecting clusters of qubits will be an essential
element of scaling up future quantum computers. Operations
between quantum processing units (QPUs) are usually signif-
icantly slower and costlier than those within a single QPU,
so usage of the interconnect must be carefully managed. This
is loosely analogous to the need to manage shared caches
or memory in classical multi-CPU machines. Unlike classical
clusters, however, quantum data is subject to the no-cloning
theorem, which necessitates a rethinking of cache coherency
strategies. Here, we consider simple strategies of using EPR-
mediated remote gates and teleporting qubits between clusters
as necessary – generally expensive operations that we seek to
minimize. Crucially, we develop optimizations at compile-time
that leverage local structure in a quantum circuit, so as to
minimize inter-cluster operations at runtime. We benchmark our
approach against existing quantum compilation and optimization
routines, and find significant improvements in circuit depth and
interconnect usage.

I. INTRODUCTION

Quantum information processing (QIP) hardware have un-
dergone rapid advances in both quality and quantity in recent
years [1]–[3]. Nevertheless, most useful algorithms and rou-
tines that might be executed on a quantum computer continue
to require resources that surpass the scale of current-generation
quantum processing units (QPUs). The resource shortfall can
be sheer number of qubits on a QPU (i.e. “width”), number of
quantum operations being performed before noise and errors
accrued become overwhelming (i.e. “depth”), or both. These
resource shortfalls are potentially further exacerbated if error-
correction schemes are employed.

Simply adding more qubits to a QPU is an obvious way to
overcome width limitations. Yet in practice, we are prevented
by technical obstacles from doing so indefinitely. In most
QPU architectures, there are known limits beyond which,
naively scaling up qubit-count yields diminishing returns. For
instance, in trapped-ion QPUs adding more ions into a trap
either increases the complexity or the duration of two-qubit
gate operations, and necessitates cooling cycles that undo
heating inadvertently introduced in the course of computation
and read-out. In another example, solid-state QPUs (e.g.
superconducting transmon qubits) grow in surface area with
respect to the number of qubits it contains, inevitably running
up against high substrate and manufacturing defect rates.

One avenue for increasing qubit count beyond the size limits
inherent to many single-QPU systems is simply to interconnect

multiple QPUs of bounded size. In classical computing, this
is somewhat analogous to interconnecting “chiplets” – usu-
ally classical processing units (CPUs) residing on monolithic
silicon dies – into a system-on-chip (SoC), or linking up
fully functional computers with fast network interfaces. In
either case, one ends up with a device with greater combined
execution resources.

A crucial distinction when adopting a multi-QPU paradigm
in quantum computing is that communication between QPUs
must be mediated by quantum channels rather than classical
ones. In some implementations, that quantum channel is
realised simply by moving a physical qubit from one QPU to
another. However, quantum mechanics also allows for a pre-
shared “mediator” or “resource” state (usually some highly
entangled quantum state). This state is distributed between
QPUs and, when it is used alongside classical communication
and teleportation-like mechanisms, can act as a quantum
channel. Leveraging this fact, some multi-QPU schemes es-
chew physical transport of qubits between QPUs in favour
of mechanisms for generating and distributing these resource
states.

Properly considering and optimizing for the behaviour of
these quantum channels requires careful compiler design. One
aspect of the optimization is to ensure, as much as possible,
that related data (e.g. those that must be operated on together)
remain on the same QPU. This minimizes operations that
straddle multiple QPUs, which are often slower and costlier
than those that are resident on a single QPU.

II. BACKGROUND

A. Flavours of quantum interconnect

One method for interconnecting multiple QPUs is to trans-
port a qubit physically. This process is generally slow and
inefficient. We refer interested readers to [4] for one example
where trapped-ions are shuttled between traps in quantum
charge-coupled devices (QCCD), and to [5], [6] for discussions
on converting a microwave photon, which couples to a solid-
state superconducting QPU, into an optical one that can be
transported via fiber. With QCCDs, shuttling operations are
6 − 15 times slower than operations “native” to a single
QPU. Microwave-to-optical transducers on the other hand are
lossy and currently are limited to single-digit efficiencies.

ar
X

iv
:2

20
6.

09
93

8v
2

 [
qu

an
t-

ph
]

 8
 S

ep
 2

02
2

Initial trivial state

QPU 1 QPU 2

Step 1

Communication
register

𝑎 𝑏

0 0

𝑎 𝑏

use interconect

1

2
0 ⊗ 0 + 1 ⊗ |1⟩ = |Φ+⟩

Fixed mediator state

Computation
registers

Step 2 ……

……

……

……

Figure 1. Illustration of an interconnect being used to generate a resource
state between two separate quantum processing units (QPUs). In this example
each QPU contains a number of data qubits (blue) and one interconnect qubit
(gray). The interconnect (right hand figure) collects a single photon from each
interconnect qubit and interferes it in order to entangle the two interconnect
qubits. The resulting entangled state can be used as a resource to enable
quantum communication.

For compilation purposes therefore, these transport operations
represent a bottleneck to be minimized.

An alternative to physical transport is to leverage entangled
resource states and classical communication [7]. Figure 1
shows an example of two QPUs linked by an interconnect,
whose function is simply to generate an entangled resource
state. That resource state can be used to mediate interactions
across the two QPUs using only local operations and classical
communication (LOCC). We will briefly describe how this
works. Consider the so-called Φ+ Bell- or Einstein-Podolsky-
Rosen (EPR) state:∣∣Φ+

〉
=

1√
2

∑
k∈{0,1}

|k〉1 |k〉2 (1)

The susbscript in each ket in the summand indicates that the
ket addresses states in QPU 1 (or 2) respectively. Now suppose
one is interested in performing a coherent XOR (also known
as a controlled-σX or “CNOT”) operation, defined as:

XORa,b : |a〉 |b〉 7→ |a〉 |a⊕ b〉 (2)

where ⊕ denotes addition modulo 2. Supposing the states
|a〉 and |b〉 reside on QPUs 1 and 2 respectively, the desired
XOR operation stipulated here can be mediated by that |Φ+〉
resource state as follows. Start with the initial state:

|ψ〉 = |a〉1
∣∣Φ+

〉
|b〉2

= |a〉1 ⊗

 1√
2

∑
k∈{0,1}

|k〉1 |k〉2

⊗ |b〉2 (3)

Do an XOR between |a〉1 and 2nd register (half of Φ+ that
resides on QPU 1); as well as between the 3rd register (half
of Φ+ that resides on QPU 2) and |b〉2:

XOR : |ψ〉

7→ |a〉1 ⊗

 1√
2

∑
k∈{0,1}

|k ⊕ a〉1 |k〉2

⊗ |b⊕ k〉2 (4)

Now suppose we measure the 2nd register and find the
classical bit k ⊕ a = m, which implies k = a ⊕ m. The
rules of quantum measurements implies that the quantum state
immediately collapses to:

|a〉1 ⊗ [|k ⊕ a〉1 |k〉2]⊗ |b⊕ k〉2
= |a〉1 ⊗ [|m〉1 |a⊕m〉2]⊗ |b⊕ a⊕m〉2 (5)

If QPU 1 can classically communicate the bit m with QPU
2, then the latter can perform a bit-flip conditioned upon that
bit, which yields:

|a〉1 ⊗ [|m〉1 |a⊕m〉2]⊗ σmX |b⊕ a⊕m〉2 (6)
= |a〉1 ⊗ [|m〉1 |a⊕m〉2]⊗ |b⊕ a〉2 (7)

Finally, we can apply a Hadamard operator to the 3rd register
and measure it (obtaining a classical bit n) to disentangle
remnants of the EPR-state, leaving us with:

(−1)(a⊕m)n |a〉1 ⊗ |b⊕ a〉2 (8)

The stray phase here can be corrected by applying σnZ , which
QPU 1 can do if the bit n is communicated by QPU 2. Note,
the result is the desired output of the original XOR operation
defined in 2. We had effected this XOR between qubits on
separate QPUs by consuming an EPR state and exchanging
only one pair of classical bits between QPUs 1 and 2.

A host of other constructions that use EPR resource states
to yield common operations (e.g. bit-swap, Tofolli, etc.) can
similarly be derived. Particularly noteworthy is basic telepor-
tation [8], which most closely mimics simply moving a qubit
like physical transport would.

Ultimately, key to being able to perform any EPR-mediated
operations between QPUs is the ability to produce and dis-
tribute the resource states to begin with. To that end, optical
schemes had been demonstrated that can generate EPR-states
between trapped ions at up to ∼ 200 Hz [9]–[11]. This is
faster than some QCCD shuttling operations, but is still very
slow compared to native single-QPU operations [12].

B. Quantum compilation

The essential remit of a compiler is to reconstruct a program
to be better suited for execution on hardware, while preserv-
ing its functionality. In the context of quantum computing,
programs are often specified as quantum circuits constructed
from basic gates. The quantum compiler must ensure that all
gates specified within the quantum circuit are supported in
hardware. For single-qubit gates, this is a matter of finding
decompositions of a unitary matrix in U(2) in a hardware-
compatible basis.

Gates involving more qubits (like the XOR discussed in
Section II-A) incur an additional complication: Many QPUs do
not support two-qubit operations between arbitrary qubit pairs.
This is usually conveyed succinctly as a “coupling map”, an
undirected graph Gcmap where vertices represent qubits and
edges represent supported two-qubit operations. If a desired
gate (say a U(4) operation) addresses a pair of qubits that are
not directly coupled in hardware (i.e. vertices in Gcmap not

connected by an edge), a simple basis change is insufficient.
Instead, a common tack is to find an indirect route between
relevant vertices in Gcmap, and then re-synthesize the desired
gate in terms of supported operations along that route. If Gcmap
is disjoint, that is some vertices are simply unreachable from
some others, then certain two-qubit (or multi-qubit) operations
are simply impossible on that hardware.

This process of resolving two-qubit gates onto a given
hardware topology can result in many additional operations
being introduced (O(4d) for remote operations, O(3d) for a
swap-based approach without reverse swap; here d is length
of the indirect route between qubits targeted by the two-qubit
operation). The resulting hardware-mapped circuit therefore
can have significantly increased depth [13]. Much work had
been devoted to finding hardware-efficient two-qubit gate re-
synthesis, given a circuit [14]–[16]. Slightly less obvious is
the fact that the number of additional gates introduced during
re-synthesis can vary wildly depending on how qubits in a
quantum circuit (i.e. “logical” qubits) are assigned to particular
vertices in Gcmap (i.e. “physical” qubits). There is every chance
that a naive assignment (e.g. simply assigning logical qubit
0 → physical qubit 0, 1 → 1, 2 → 2, and so on) will
be sub-optimal. An important aspect of quantum compilation
therefore includes the construction of a logical to physical
qubit map that yields an efficient circuit.

Unfortunately, finding an optimal assignment is potentially
a hard classical problem. The space of possible logical →
physical qubit maps is N !/(N −M)!, where N (M) is the
total number of physical (logical) qubits, which rules out a
brute-force search for large circuits or QPUs. More formally,
suppose we construct a coupling map analogous to Gcmap
but specified not by hardware topology but rather from two-
qubit gate density in a quantum circuit; call this graph Gcirc.
Then, finding the optimal assignment in some cases reduces
to finding a graph isomorphism between Gcirc and subgraphs
of Gcmap. This is generally NP-complete and not tractable
when N and M are large and neither graph is very sparse
or disjoint [17], [18]. In the rest of the manuscript, we will
describe “gentler” graph problems relevant to our compilation
approach.

III. COMPILATION TECHNIQUE

A. Choice of Topology

While the qubit assignment problem (mapping logical →
physical qubits) generally construed in Section II-B is not
tractable, particular instances of the problem may be satis-
factorily solved in practice [17], [18]. For our purposes in this
manuscript however, we will avoid the isomorphism problem
entirely by focusing only on hardware topologies that are
“well clustered”. These are characterised by graphs that admit
clusters of qubits that possess denser intra-cluster couplings
and comparatively fewer inter-cluster ones.

Given the context of multi-QPU architectures that we are
considering, this sort of hardware topology is natural. In
Section II we described various realisations of inter-QPU
operations, all of which are bottlenecked in rate and cost given

currently available hardware. The assumption, that intercon-
nects will remain a scarce resource within multi-QPU architec-
tures, is likely a reasonable one for the foreseeable future. An
extreme example is embodied in monolithic ion-trap devices in
which native intra-QPU couplings are fundamentally all-to-all
(so that Gcmap generally has O(N2) edges), while inter-QPU
couplings either through distributed EPR-pairs or shuttled ions
will likely remain sparse (possibly O(N)) due to rate limits
and cost of multiplexing many simultaneous Hong-Ou-Mandel
interactions [10]. In limiting our focus to “well-clustered”
hardware topologies, the central thesis is that it becomes far
more important optimize for the expensive or scarce resource
(i.e. usage of inter-QPU couplings), rather than any and all
couplings more generally.

To be more precise, how “well-clustered” a given coupling
map is can be evaluated using several measures, one being the
graph conductance φG. Supposing one attempts to partition the
graph Gcmap into k disjoint clusters corresponding to separate
QPUs, then for 1 ≤ j ≤ k, conductance is defined as:

φG(j) = min
~v

~vTj (D −A)~vj

~vTj D~vj
, (9)

for our purposes, A is the adjacency matrix which i, j-th entry
is 1 if the i-th and j-th vertices are joined by an edge; D is
a degree matrix s.t. Dij = δij

∑
k Ajk; and ~vj is an indicator

vector whose k-th entry is 1 if the k-th vertex belong in
the j-th cluster and is 0 otherwise. A well-clustered graph
admits a partitioning s.t. φG(j) is low for all j. As a means
for quickly evaluating whether a hardware topology is well-
suited for our compilation approach, φG is convenient since
it is known to be upper-bounded by the k-th eigenvalue of
the Laplacian L = D − A through an extension to Cheeger’s
inequality [19]. The eigenvalues of L, in turn, can be computed
directly without first having to find the partitions that specify ~v.
Another important measure for our purposes is the association
ratio:

RG(j) =
~vTj A~vj

~vT~v
(10)

We consider our methods to be applicable for hardware
topologies that exhibit small φG, and especially applicable
where φG decreases with increasing qubit count N and
roughly static RG.

B. Global QPU assignment

One consequence of choosing to optimize inter-QPU oper-
ations, is that we are now concerned mainly with the problem
of assigning logical qubits to QPUs rather than to physical
qubits. Suppose, from an input quantum circuit, we construct
a coupling graph (Gcirc) s.t. its adjacency matrix entry Aij is
simply the number of 2-qubit gates between qubits i and j.
Without loss of generality assume that there are no multi-qubit
gates beyond two-qubit ones1. Then, minimizing the number

1If an input circuit were to contain multi-qubit gates, universality results
ensure that we can always efficiently decompose them into more elementary
blocks consisting of single- and two-qubit gates at most [20], [21]

of inter-QPU operations in a k-QPU architecture is equivalent
to minimizing the cost function:

CKL =

k∑
j=1

~vTj Lcirc~vj , (11)

where L is the Laplacian matrix for Gcirc as defined in
Section III-A, and the indicator vector ~vj takes value 1 in
its r-th entry if the r-th logical qubit is assigned to QPU-j,
and 0 otherwise. Finding ~vj’s that minimize CKL is precisely
equivalent to solving the so-called “minimum-cut” problem.

Since the size of QPUs are usually fixed, an additional
constraint must be added during minimization of CKL:

~vTj ~vj = Size of QPU j. (12)

Generally, a cardinality-constrained “minimum-cut” problem
is substantially harder than the unconstrained variant. How-
ever, approximate solvers can efficiently generate satisfactory
solutions in practice [22]–[24]. A technique that we adopt
and implement here is spectral partitioning. Consider the case
where the sizes of all QPUs are the same, i.e. ~vTj ~vj = s is
constant for all j, and the corresponding minimization problem
is of the “Kernighan-Lin” variety [25]. Since L = D − A is
Hermitian, the Courant-Fisher theorem implies that orthonor-
mal eigenvectors (~uj = ~vj/

√
s) of sL corresponding to the

first k lowest eigenvalues minimizes CKL while satisfying the
cardinality constraint [26]. While the theorem holds strictly
only when ~uj ∈ CN , in practice spectral partitioning nev-
ertheless yields good approximate solutions when entries in√
s~uj must be rounded to 0 or 1. Partitioning in the case of

clusters of unequal sizes have also been studied [24], [27].
Once a good partitioning is found, we assign logical qubits

from the input quantum circuit to a random qubit within
the target QPU (as specified by {~vj}), whereupon a more
traditional swap insertion method as described in Section II-B
is used if any one QPU has an internal topology sparser
than all-to-all. Note, while we use the language of inter-
and intra-QPU here, the preceding discussion is applicable
even if the architecture does not strictly speaking contain
interconnected QPUs, so long as it satisfies the conditions laid
out in Section III-A.

For the interested reader, previous (static/global) qubit map-
ping strategies have been proposed and implemented [28],
[29]. Our approach differs in that it focuses on the minimiza-
tion of inter-QPU operations specifically, so we are able to
leverage efficient graph-CUT solvers to better handle large
QPUs/circuits.

C. Local optimization

In Section III-B, the coupling map Gcirc had been con-
structed by considering all two-qubit gates in the quantum
circuit. For an initial assignment of logical qubits to QPUs,
it is reasonable to look at the circuit as a whole. However,
such a construction strips out the chronological order in which
operations are performed during execution of the quantum
circuit. Since most quantum gates are not commutative (so

chronological order matters), and because a significant source
of bottlenecks is slow inter-QPU operation times (see Sec-
tion II-A), it is important to ensure that heuristic we might
use for that optimization takes into account temporal structures
and correlations in the program being executed.

To give a simple concrete example, suppose a quantum
circuit prescribes many two-qubit gates between qubits q1 and
q2 as well as between q1 and q3. Globally, this implies a strong
preference for q1, q2, and q3 all to be clustered. However, if q1
and q3 interactions are chronologically localized to times much
later than q1 and q2 interactions (suppose they are temporally
separated by much more than relevant hardware timescales),
then there is no longer any reason to insist that q2 and q3 be
clustered – there is no cost to q2 being “far away” by the time
q1, q3 couplings need to be realised.

In order to exclude spurious clustering constraints from
interactions that are temporally too far separated, we elected
to re-construct Gcirc based only on a subset of operations in
the quantum circuit. To do this, we reasonably assume that
the target hardware is sufficiently well-characterized such that
operation times for various gates are known. That way, each
operation stipulated in the quantum circuit can be assigned
an expected time-to-execution, tgate. We then specify a rolling
time interval, [tstart, tstart + ∆t). We then construct a Gcirc by
considering only gates that occur within that rolling window
(i.e. tstart ≤ tgate ≤ tstart + ∆t). That circuit graph is then sub-
jected to the same minimum cut treatment as in Section III-B.

Discussions of specific techniques for selecting optimal
parameters that define the rolling window is outside the scope
of this manuscript. For the purposes of ensuing experimen-
tal results, one effective choice is simply to select ∆t to
correspond to the largest limiting timescale of the target
hardware, such that the availability of execution resources (like
distributed EPR-states) is unlikely to depend on operations
performed more than ∆t ago. In turn, a set tstart can simply
be chosen so as to produce disjoint time windows that cover
the quantum circuit from start to end of execution.

Once an approximate minimum-cut is found on a (tempo-
rally) localized Gcirc, we can compare the new QPU assign-
ment it implies to the existing one (for the first rolling window,
the existing assignment is the one found from the global graph
in Section III-B). A decision is then made as to whether
to effect a QPU re-assignment (by means of EPR-mediated
teleportation, swap or physical transport) or to simply leave
the current assignment as-is relying instead on logical swap
insertions and/or EPR-mediated CNOT (see Section II-A).

We point out that for small ∆t and/or very deep quantum
circuits, one may have to perform partitioning of many graphs.
Fortunately, graphs corresponding to distinct time windows
can be partitioned in embarrassingly parallel fashion. Since
most quantum algorithms are useful only when they have
bounded runtime, the number of time windows in our local
optimization scheme is similarly bounded.

IV. BENCHMARK

A. Methodology

In order to test our optimization methods, we imple-
mented the techniques discussed in Section III-C as a
Python/NumPy/Numba library (referred to as “MultiQopt”
below). In order to standardize inputs, we implemented in-
terfaces to the IBM’s QISkit software development kit (SDK)
so that quantum circuits can be defined in terms of QISkit [30]
circuit objects or as Quantum Assembly (QASM) 2.0 strings
[31]. Since graph partitioning is central to our technique, our
implementation can call external partitioners like KaHyPar
[23] and MeTiS [22] as well as an internal spectral partitioner.

In addition to a quantum circuit, the target hardware topol-
ogy (Gcmap) can be optionally supplemented with a “role-
assignment” for various physical qubits. Among other things,
physical qubits can be explicitly assigned to particular QPU
objects, and qubits can can be earmarked for “special use” like
holding an EPR state. The output of our implementation is an
optimized QISkit circuit object, along with logical-to-physical
qubit assignment lookup tables and possibly custom QISkit
instructions for EPR-mediated operations.

We compiled quantum routines from a suite of benchmark
circuits [32], [33], targeting an architecture consisting of two
clusters of all-to-all coupled QPUs interconnected with two
EPR-mediated interconnects. Given an input quantum circuit
occupying N -qubits, we set the size of each target QPU to
dN/2e + 2 (the added two qubits on each QPU serves as
an EPR-state reservoir). This architecture choice is deliber-
ate as it falls in the regime where assumptions behind our
optimizations hold. But more importantly, it is representative
of an architecture that trapped-ion quantum computer builders
foresee in the near-future [11].

For comparison, we also compiled the same circuits target-
ing the same architecture with QISkit (using compile option
“optimization level=3”, stipulating maximum optimizations at
the expense of longer compile times) [30]. In all cases, the
target “native” gates were selected to be the set {rx, rz, h, cx}.
Here, cx is the CNOT operation defined in 2 and:

rx(2θ) = eiσxθ =

[
cos θ i sin θ
i sin θ cos θ

]
(13)

rz(2θ) = eiσzθ =

[
e−iθ 0

0 eiθ

]
(14)

h =
1√
2

[
1 1
1 −1

]
. (15)

The benchmark environment is an AMD Ryzen 5 5600X
machine with 16GB DDR4-3600 memory, with Arch Linux
kernel 5.15.1. Some additional development environment in-
formation include Python-3.8, NumPy-1.21.1, Numba-0.54,
and QISkit-0.26. The outputs of all compilers were then
analyzed for (a) total number of two-qubit gates (b) total
number of “expensive” interconnect uses, here defined to be
any two-qubit operation that spanned the two all-to-all coupled
qubit clusters and (c) compilation time.

of

 in
te

r-
Q

P
U

 o
pe

ra
tio

ns
 (l

ow
er

 is
 b

et
te

r)

0

100

200

300

400

8-bit add
GF(2⁴) m

ult
GF(2⁶) m

ult
GF(2⁸) m

ult
GF(2¹⁰) mult

8+1 bit Grover

Original QISkit MultiQopt

Benchmark results vs. QISkit

Figure 2. Benchmark result showing number of inter-cluster operations,
comparing MultiQopt to QISkit (ver. 0.26). The original circuit (gray) which
was compiled onto an all-to-all connected architecture is re-compiled onto the
target dual QPU architecture using QISkit (turqoise) and MultiQopt (orange).
Compilation with MultiQopt shows a significant reduction in the number of
inter-cluster operations.

To
ta

l t
w

o-
qu

bi
t g

at
es

0

500

1000

1500

2000

2500

8-bit add
GF(2⁴) m

ult
GF(2⁶) m

ult
GF(2⁸) m

ult
GF(2¹⁰) mult

8+1 bit Grover

Original QISkit MultiQopt

Benchmark results vs. QISkit

Figure 3. Benchmark result showing total two-qubit gates, comparing Multi-
Qopt to QISkit (ver. 0.26). The original circuit (gray) which was compiled onto
an all-to-all connected architecture is re-compiled onto the target dual QPU
architecture using QISkit (turqoise) and MultiQopt (orange). Compilation with
MultiQopt shows a significant reduction in the number of two qubit operations.

B. Results

We show results for several familiar circuits (an adder,
multipliers of various sizes, a Grover routine) in Figure 2 and
Tables I - III. Benchmark results for additional input programs
are shown in the Appendix. Additionally, current and more
extensive sets of benchmark results can be found online at
[34].

In Figure 2, we see a clear improvement over QISkit in
the quantity of interest, the total number of interconnect uses.
Additionally, we also show in Figure 3 that this gain is not
won at the cost of total two-qubit gates – the latter remains
significantly lower with our approach compared to QISkit. We
attribute this behaviour to the fact that our approach is natu-
rally suited to mapping classes of graphs that are “clustered”
as we’ve described in Section III-A, whereas QISkit’s heuristic
algorithm, SABRE, isn’t. Table I lists additional details about
each input program in their uncompiled form as read from
their respective QASM files. Logical qubits are assumed to

Table I
BENCHMARK BASELINES, SHOWING TWO-QUBIT GATE COUNTS ON

SEVERAL SUBROUTINES AS DEFINED IN THEIR RESPECTIVE INPUT QASM
FILES. *THE BASELINE “INTER-QPU” COUNT IS BASED ON A TRIVIAL

MAP BETWEEN LOGICAL AND PHYSICAL QUBITS.

Base
#-qb Total 2-qb InterQPU*

8-bit add 24 409 49
GF(24) mult 12 99 64
GF(26) mult 18 221 144
GF(28) mult 24 405 256
GF(210) mult 30 609 400
8+1 bit Grover 9 288 192

Table II
BENCHMARK RESULTS FOR MULTIQOPT

MultiQopt Global pass w/ local optimization RuntimeInterQPU Total 2-qb InterQPU
8-bit add 22 433 16 0.73s

GF(24) mult 49 157 41 0.41s
GF(26) mult 109 329 87 1.47s
GF(28) mult 199 646 164 4.36s
GF(210) mult 301 921 229 8.82s
8+1 bit Grover 48 304 24 1.13s

map to physical ones in naive fashion; since no attempt is
made to map to the target hardware topology, total two-qubit
gates tends to be lower in the “original” input circuit owing to
the lack of additional swap operations being inserted (see Sec-
tion II-B). Table II shows results for our MultiQopt optimizer.
The column labelled “Global pass” shows results with just the
initial global QPU assignment pass (Section III-B) whereas the
column labelled “local optimization” shows the full compila-
tion run that includes local optimizations (Section III-C). The
former does not report a separate column of total two-qubit
gates because by construction, that is not affected by the global
pass. Finally, Table III shows corresponding results for QISkit
(ver. 0.26). Since QISkit outputs exhibit significant run-to-run
variation in inter-QPU two-qubit operations, we also report the
spread, aggregating results over 30 repeated runs.

V. DISCUSSION AND CONCLUSION

We have discussed a multi-QPU centric quantum circuit
compilation and optimization approach, premised upon the
idea that inter-QPU operations are likely to remain expensive
and scarce for the foreseeable future, despite being essential
to the serious scaling up of quantum computers. Recognizing
local structures in input quantum circuits allows for more
flexible optimizations. Our approach also reduces to well-
understood graph theoretic problems that admit approximate
solutions that can be found efficiently for large classes of
common graphs.

When targeting architectures likely to be typical in multi-
QPU architectures in the near future, our benchmarks indicate
our optimization approach yields significantly simpler circuits.
Despite its multi-QPU centric background however, well-
known bounds suggest that even monolithic QPU architec-
tures with fairly common topologies may well benefit from

Table III
BENCHMARK RESULTS FOR QISKIT 0.26 (AGGREGATED OVER 30 RUNS).

Qiskit 0.26 transpile (opt=3)
Total 2-qb InterQPU Runtime

8-bit add 630 42± 12 2.69s
GF(24) mult 310 55± 8 1.34s
GF(26) mult 757 120± 15 2.75s
GF(28) mult 1444 188± 14 5.12s
GF(210) mult 2217 250± 25 7.83s
8+1 bit Grover 652 164± 27 2.77s

our methods; but we leave benchmarking of these alternate
topologies for a future work.

Some readers may recognize optimizations like mid-
execution QPU re-assignment as being vaguely analogous to
runtime optimizations that aim to maximize cache coherency
and residency in multi-CPU classical architectures. Indeed,
they share the common goal of minimizing QPU (or CPU)
idle time by attempting to ensure relevant data is nearby
when or where they at needed. Unlike classical measures,
however, quantum information possess uniquely quantum id-
iosyncrasies; the no-cloning theorem for example implies that
except in very narrow circumstances quantum data almost
always needs to be moved, not copied. But QIP also allows for
the use of shared resource states that can be used after-the-fact
to generate large arbitrary entangled states without the various
QPUs having to interact any further, but for the exchange of
classical bits.

All of this necessitates careful (re-)thinking of optimization
strategies for multi-QPU systems. The present manuscript
represents a promising step in that direction.

REFERENCES

[1] E. Pelofske, A. Bärtschi, and S. Eidenbenz, “Quantum volume in
practice: What users can expect from nisq devices,” arXiv preprint
arXiv:2203.03816, 2022.

[2] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin,
M. Brink, L. Capelluto, O. GÃŒnlÃŒk, T. Itoko, N. Kanazawa,
A. Kandala, G. A. Keefe, K. Krsulich, W. Landers, E. P. Lewandowski,
D. T. McClure, G. Nannicini, A. Narasgond, H. M. Nayfeh, E. Pritchett,
M. B. Rothwell, S. Srinivasan, N. Sundaresan, C. Wang, K. X. Wei,
C. J. Wood, J.-B. Yau, E. J. Zhang, O. E. Dial, J. M. Chow,
and J. M. Gambetta, “Demonstration of quantum volume 64 on a
superconducting quantum computing system,” Quantum Science and
Technology, vol. 6, no. 2, p. 025020, mar 2021. [Online]. Available:
https://doi.org/10.1088/2058-9565/abe519

[3] C. H. Baldwin, K. Mayer, N. C. Brown, C. Anderson, and
D. Hayes, “Re-examining the quantum volume test: Ideal distributions,
compiler optimizations, confidence intervals, and scalable resource
estimations,” Quantum, vol. 6, p. 707, may 2022. [Online]. Available:
https://doi.org/10.22331

[4] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses,
M. Allman, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer et al.,
“Demonstration of the trapped-ion quantum ccd computer architecture,”
Nature, vol. 592, no. 7853, pp. 209–213, 2021.

[5] L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang,
and H. X. Tang, “Superconducting cavity electro-optics: a platform
for coherent photon conversion between superconducting and photonic
circuits,” Science advances, vol. 4, no. 8, p. eaar4994, 2018.

[6] X. Han, W. Fu, C.-L. Zou, L. Jiang, and H. X. Tang, “Microwave-optical
quantum frequency conversion,” Optica, vol. 8, no. 8, pp. 1050–1064,
2021.

https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.22331

[7] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-
scale ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709–
711, 2002.

[8] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and
A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390,
no. 6660, pp. 575–579, 1997.

[9] C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.-M.
Duan, and J. Kim, “Large-scale modular quantum-computer architecture
with atomic memory and photonic interconnects,” Physical Review A,
vol. 89, no. 2, p. 022317, 2014.

[10] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,”
Science, vol. 339, no. 6124, pp. 1164–1169, 2013.

[11] D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr,
P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer et al.,
“Development of quantum interconnects (quics) for next-generation
information technologies,” PRX Quantum, vol. 2, no. 1, p. 017002, 2021.

[12] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3305–3310, 2017.

[13] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 7, pp. 1226–1236, 2018.

[14] M. Amy, P. Azimzadeh, and M. Mosca, “On the controlled-not complex-
ity of controlled-not–phase circuits,” Quantum Science and Technology,
vol. 4, no. 1, p. 015002, 2018.

[15] A. Kissinger and A. M.-v. de Griend, “Cnot circuit extraction
for topologically-constrained quantum memories,” arXiv preprint
arXiv:1904.00633, 2019.

[16] B. Nash, V. Gheorghiu, and M. Mosca, “Quantum circuit optimizations
for nisq architectures,” Quantum Science and Technology, vol. 5, no. 2,
p. 025010, 2020.

[17] V. Carletti, A. Saggese, P. Foggia, and M. Vento, “Challenging the
time complexity of exact subgraph isomorphism for huge and dense
graphs with vf3,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 804–818, 2017.

[18] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Introducing VF3: A
new algorithm for subgraph isomorphism,” pp. 128–139, 2017.

[19] J. R. Lee, S. O. Gharan, and L. Trevisan, “Multiway spectral partitioning
and higher-order cheeger inequalities,” Journal of the ACM (JACM),
vol. 61, no. 6, pp. 1–30, 2014.

[20] C. M. Dawson and M. A. Nielsen, “The solovay-kitaev algorithm,” arXiv
preprint quant-ph/0505030, 2005.

[21] D. Gottesman, “The heisenberg representation of quantum computers,”
arXiv preprint quant-ph/9807006, 1998.

[22] G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997, retrieved from the University of
Minnesota Digital Conservancy, https://hdl.handle.net/11299/215346.

[23] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and
C. Schulz, “K-way hypergraph partitioning via n-level recursive bisec-
tion,” in 2016 Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 2016, pp. 53–67.

[24] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE transactions on pattern
analysis and machine intelligence, vol. 29, no. 11, pp. 1944–1957, 2007.

[25] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970.

[26] Y. Ikebe, T. Inagaki, and S. Miyamoto, “The monotonicity theorem,
cauchy’s interlace theorem, and the courant-fischer theorem,” The Amer-
ican Mathematical Monthly, vol. 94, no. 4, pp. 352–354, 1987.

[27] V. Satuluri and S. Parthasarathy, “Scalable graph clustering using
stochastic flows: applications to community discovery,” in Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009, pp. 737–746.

[28] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 1001–1014.
[Online]. Available: https://doi.org/10.1145/3297858.3304023

[29] J. X. Lin, E. R. Anschuetz, and A. W. Harrow, “Using spectral
graph theory to map qubits onto connectivity-limited devices,” ACM
Transactions on Quantum Computing, vol. 2, no. 1, pp. 1–30, apr
2021. [Online]. Available: https://doi.org/10.1145

[30] Qiskit. Accessed on February 2nd 2022. [Online]. Available: https:
//qiskit.org

[31] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[32] Feynman repository on github. Accessed on November 17th 2021.
[Online]. Available: https://github.com/meamy/feynman

[33] Amy, Matthew, “Formal methods in quantum circuit design,” Ph.D.
dissertation, 2019. [Online]. Available: http://hdl.handle.net/10012/
14480

[34] “Multiqopt benchmarks.” [Online]. Available: https://www.
entanglednetworks.com/multiqopt

APPENDIX A: ADDITIONAL BENCHMARK RESULTS.

Tab. IV shows benchmark results for a large variety of other
input quantum programs and sub-routines. As described in the
main text, we show MultiQopt compared with QISkit 0.26,
called with the same target hardware topologies.

https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145
https://qiskit.org
https://qiskit.org
https://github.com/meamy/feynman
http://hdl.handle.net/10012/14480
http://hdl.handle.net/10012/14480
https://www.entanglednetworks.com/multiqopt
https://www.entanglednetworks.com/multiqopt

B
as

e
Q

is
ki

t
0.

26
tr

an
sp

ile
(o

pt
=3

)
E

N
,g

lo
ba

l
pa

ss
on

ly
E

N
,w

ith
lo

ca
l

op
tim

iz
at

io
n

#-
qb

To
ta

l
2-

qb
In

te
rQ

PU
To

ta
l

2-
qb

In
te

rQ
PU

R
un

tim
e

In
te

rQ
PU

R
un

tim
e

To
ta

l
2-

qb
In

te
rQ

PU
R

un
tim

e
B

ar
en

co
(x

3)
5

24
16

41
1
3
±

4
0.

28
9s

8
0.

00
61

79
s

28
4

0.
06

11
37

s
B

ar
en

co
(x

4)
7

48
32

94
2
5
±

1
6

0.
63

1s
16

0.
01

10
19

s
56

8
0.

16
33

77
s

B
ar

en
co

(x
5)

9
72

48
15

6
4
4
±

1
1

1.
06

09
36

s
16

0.
01

68
97

s
76

8
0.

26
01

33
s

B
ar

en
co

(x
10

)
19

19
2

12
8

46
5

1
3
0
±

2
5

3.
39

5s
16

0.
06

01
16

s
19

6
12

0.
75

71
9s

Q
C

L
A

(m
od

7)
26

38
2

69
79

4
7
7
±

3
4

5.
67

6s
56

0.
06

90
19

s
39

2
32

2.
02

13
52

s
Q

C
L

A
(c

om
7)

24
15

5
24

21
2

1
0
±

6
1.

96
2s

12
0.

02
65

69
s

18
8

10
0.

34
58

78
s

Q
SL

A
(m

ux
3)

15
80

26
15

5
2
2
±

4
1.

35
6s

15
0.

01
61

84
s

86
6

0.
21

12
s

H
W

B
(x

6)
7

11
6

55
22

7
5
6
±

2
3

1.
47

9s
52

0.
02

32
93

s
12

6
28

0.
76

76
94

s
H

am
m

in
g

(l
ow

)
17

23
6

52
65

2
1
2
1
±

1
6

4.
53

1s
44

0.
05

65
74

s
24

0
41

1.
44

78
38

s
H

am
m

in
g

(m
ed

iu
m

)
17

53
4

66
12

47
2
7
1
±

4
9

8.
59

3s
53

0.
13

96
46

s
55

4
36

4.
90

49
s

G
F(

27
)

m
ul

t
21

30
0

19
6

10
13

1
4
5
±

1
9

6.
79

9s
14

9
0.

05
72

28
s

34
4

10
9

4.
44

11
29

s
G

F(
55

)
m

ul
t

9
48

30
12

2
2
2
±

6
0.

82
9s

12
0.

01
03

17
s

52
7

0.
12

08
45

s
M

Q
-T

of
fo

li
(x

3)
5

18
12

34
1
1
±

4
0.

23
8s

4
0.

00
51

02
s

20
2

0.
03

55
5s

M
Q

-T
of

fo
li

(x
4)

7
30

20
59

1
5
±

6
0.

42
0s

8
0.

00
76

05
s

32
2

0.
07

87
23

s
M

Q
-T

of
fo

li
(x

5)
9

42
28

92
2
6
±

9
0.

66
1s

8
0.

01
09

62
s

44
2

0.
10

90
68

s
M

Q
-T

of
fo

li
(x

10
)

19
10

2
68

25
4

6
9
±

1
1

2.
00

1s
8

0.
03

34
35

s
10

4
6

0.
31

45
s

R
C

ad
de

r
(6

-q
b)

14
93

11
15

7
3
1
±

1
7

1.
37

6s
11

0.
01

95
5s

97
6

0.
20

98
32

s
5

m
od

4
5

28
19

46
1
4
±

5
0.

32
0s

14
0.

00
68

38
s

32
7

0.
10

53
1s

C
-s

um
(m

ux
9)

30
16

8
24

42
4

3
2
±

1
1

3.
26

7s
16

0.
02

63
76

s
17

4
14

0.
30

88
04

s
Q

FT
(4

-q
ub

it)
5

46
30

79
2
5
±

1
2

0.
58

8s
20

0.
01

36
31

s
50

8
0.

21
24

07
s

V
B

E
-A

dd
er

10
70

20
11

3
2
2
±

7
0.

89
1s

14
0.

01
39

19
s

72
7

0.
18

92
17

s
M

od
-r

ed
uc

e
11

10
5

31
17

5
3
1
±

1
2

1.
40

3s
30

0.
02

59
29

s
11

1
14

0.
55

74
24

s
Ta

bl
e

IV
E

X
T

R
A

B
E

N
C

H
M

A
R

K
R

E
S

U
LT

S
:Q

IS
K

IT
A

N
D

E
N

C
O

M
P

IL
E

R
.

	I Introduction
	II Background
	II-A Flavours of quantum interconnect
	II-B Quantum compilation

	III Compilation Technique
	III-A Choice of Topology
	III-B Global QPU assignment
	III-C Local optimization

	IV Benchmark
	IV-A Methodology
	IV-B Results

	V Discussion and Conclusion
	References

