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Abstract

Quantum computing is an information processing paradigm
that uses quantum-mechanical properties to speedup compu-
tationally hard problems. Gate-based quantum computers
and Quantum Annealers (QAs) are two commercially avail-
able hardware platforms that are accessible to users today.
Although promising, existing gate-based quantum computers
consist of only a few dozen qubits and are not large enough for
most applications. On the other hand, existing QAs with few
thousand of qubits have the potential to solve some domain-
specific optimization problems. QAs are single instruction
machines and to execute a program, the problem is cast to a
Hamiltonian, embedded on the hardware, and a single quan-
tum machine instruction (QMI) is run. Unfortunately, noise
and imperfections in hardware result in sub-optimal solutions
on QAs even if the QMI is run for thousands of trials.

The limited programmability of QAs mean that the user
executes the same QMI for all trials. This subjects all trials
to a similar noise profile throughout the execution, resulting
in a systematic bias. We observe that systematic bias leads
to sub-optimal solutions and cannot be alleviated by execut-
ing more trials or using existing error-mitigation schemes.
To address this challenge, we propose EQUAL (Ensemble
QUantum AnneaLing). EQUAL generates an ensemble of
OMIs by adding controlled perturbations to the program QMI.
When executed on the QA, the ensemble of QMIs steers the
program away from encountering the same bias during all
trials and thus, improves the quality of solutions. Our eval-
uations using the 2041-qubit D-Wave QA show that EQUAL
bridges the difference between the baseline and the ideal by
an average of 14% (and up to 26%), without requiring any
additional trials. EQUAL can be combined with existing error
mitigation schemes to further bridge the difference between
the baseline and ideal by an average of 55% (and up to 68%).

1. Introduction

Quantum computing is an information processing paradigm
that leverages quantum mechanical properties of quantum
bits (qubits) to store and process information and promises
significant computational advantages for many hard prob-
lems [29,36,53,83]. There exist different models for the phys-
ical realization of this computational paradigm such as gate

model quantum computers and quantum annealers [4,64]. Cur-
rently, prototypes of both gate model [23,35,38] and anneal-
ing [42] types are available and some of them can already out-
perform modern supercomputers for some tasks [7,48,92,94].

Gate-based quantum computers, such as IBM and Google
machines, use discrete quantum gate operations to manipulate
qubits such that the state of the qubits evolve to produce the
desired outcome as the program proceeds. Such systems with
about 50-plus qubits are already available [6,23,57]. To solve a
problem on a gate-based quantum computer, we map it to an ef-
ficient quantum algorithm, map the high-level program qubits
to the physical qubits of the device, translate the instructions
into a series of low-level quantum gates, and execute them,
as shown in Figure 1(a). Although these types of systems
promise significant computational advantages in the near-term,
they must grow in size for practical applications [64,77,92].

Unlike gate model quantum computers that can be pro-
grammed to solve different classes of problems, Quantum
Annealers (QAs) are single-instruction machines that can only
solve a specific discrete optimization problem by minimizing
the energy of a physical system, called Hamiltonian [4,24].
To solve a problem on a QA, (a) we cast it to a Hamilto-
nian, (b) embed it to match the topology of the QA device,
(c) obtain the resulting single Quantum Machine Instruction
(OM1I), (d) execute the single QMI, and (e) repeatedly run the
same QMI multiple times [56], as shown in Figure 1(b). The
outcome with the lowest energy is deemed as the solution.

As QAs can only minimize a specific objective function,
any other problem must be cast/reduced to this Hamiltonian.
Casting computes the coefficients of the Hamiltonian such that
the global minima of the Hamiltonian represents the global
optima of the problem of interest [13, 54, 56]. Embedding
maps the problem graph to the topology of the QA. As QAs
have limited connectivity between qubits, embedding encodes
a program qubit with higher connectivity by using a chain of
physical qubits. The problem of limited connectivity exists
even on most existing gate-based quantum computers and can
be overcome by inserting SWAP operations [60, 88,95]. How-
ever, a similar approach is impractical for QAs as they can
only execute a single QMI. Unlike gate-based systems, QAs
available today with 5000-plus qubits [6, 42, 55] are much
larger, scale faster, and have the potential to power a wide
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Figure 1: Steps involved in solving a problem using (a) gate-model quantum computers and (b) quantum annealers. (c) Energy
histogram of a 2000-qubit optimization benchmark executed on D-Wave QA (in logscale). The QA can quickly identify the region
of the ground state energy (overlapping region) but the solution is far from the global optima due to systematic bias.

range of real-world applications—including, but not limited to,
planning [80], scheduling [90,91], constraint satisfaction prob-
lems [16], Boolean satisfiability (SAT) [13, 84], matrix factor-
ization [68], cryptography [39, 74], fault detection and system
diagnosis [75], compressive sensing [12, 14], control of auto-
mated vehicles [43], finance [27], material design [49], and
protein folding [59]. Although promising, QA hardware suf-
fers from various drawbacks such as noise, device errors, lim-
ited programmability and low annealing time, which degrade
their reliability [4,9,56]. Addressing these limitations requires
device-level enhancements that may span generations of QAs.
Therefore, software techniques to improve the reliability of
QA is an important area of research [19,21,25,33,34,41,67].

Despite recent hardware and software enhancements, ex-
isting QAs may fail to find the global minima for certain
problems [9]. For example, Figure 1(c) shows the energy his-
togram of a 2000-qubit optimization problem on a D-Wave
QA. We can think of QA as a machine that samples from a
Boltzmann distribution such that samples with lower energy
values are exponentially more likely to be observed [9, 93].
In theory, QA can find the optimal solution with a very high
probability [65]. However, in this example, we observe that
although the QA can quickly identify the region of the global
optima, the best solution from the QA is far from the global
optima. As users run only a single QMI, the program is sub-
jected to a similar noise profile for all trials, resulting in a
systematic bias. Our experiments show that running more
trials or relying on existing error-mitigation schemes cannot
overcome this bias. Unfortunately, systematic bias produce
incorrect solutions far from the global optima and limits the
reliability of QAs for practical applications.

In this paper, we propose Ensemble Quantum Annealing
(EQUAL), an effective scheme for mitigating systematic bias
and improving the reliability of QAs by running an ensemble
of QMIs with controlled perturbations. EQUAL is based on
the insight that running the same QMI for all trials projects
QAs to a very similar noise profile and bias. Instead, EQUAL
uses an ensemble of QMIs that subjects the system to different
noise profiles and biases. Generating effective ensembles of

QMIs is non-trivial and our design focuses on addressing it. !
To generate ensembles, EQUAL creates new Hamiltonians,
called Perturbation Hamiltonians, and adds them to the orig-
inal problem Hamiltonian. Every perturbation Hamiltonian
adds noise to the original Hamiltonian and the QMI obtained
from this process is a perturbed variation of the original QMI.
The challenge in this step is that adding extremely small per-
turbations will have no impact on the systematic bias, whereas
adding large perturbations can significantly change the land-
scape of the original Hamiltonian. In the worst case, the final
perturbed Hamiltonian may correspond to a problem com-
pletely different from the one at hand. Thus, there exists a
trade-off between the ability to eliminate systematic bias and
the correctness of a Hamiltonian. Ideally, we want a per-
turbed Hamiltonian that can eliminate systematic bias without
altering the characteristics of the problem Hamiltonian signif-
icantly. To address this challenge, EQUAL exploits the fact
that QAs only allow a limited precision of coefficients for a
Hamiltonian due to hardware limitations. For every ensemble,
EQUAL draws the coefficients of the corresponding perturba-
tion Hamiltonian randomly at a range just below the supported
precision so that adding the Perturbation Hamiltonian may
only shift the coefficients of the QMI (post truncation) to one
of the neighboring quantization levels and not impose signifi-
cant changes to the landscape of the original Hamiltonian.
We also analyze existing error-mitigation approaches for
QAs. Our characterization experiments on D-Wave shows
that the SQC [9] post-processing technique is highly effective
for D-Wave. We compare EQUAL with SQC and show that
the two schemes can be combined for even greater benefit.
The resulting design, EQUAL+, provides significantly better
fidelity than EQUAL and SQC standalone. As the SQC post-
processing relies only on classical computations, EQUAL+
does not incur any additional trials compared to EQUAL.
Our evaluations on D-Wave’s 2041-qubit QA show that
EQUAL bridges the difference between the baseline and the

!The problem of systematic bias is similar to correlated errors on gate-
model quantum computers that can be addressed by mapping programs to
different sets of physical qubits on the same machine [86], inserting different
SWAP routes [86], or using different machines [71]. The equivalent step for
QAs would be to use multiple embeddings. However, this is not viable for
QA and we discuss the details in Section 6.



ideal by an average of 14% (and up to 26%). EQUAL+ further
bridges the difference between the baseline and the ideal by
an average of 55% (and up to 68%).

Overall, this paper makes the following contributions:

1. We show that there is a systematic bias associated with
each QMI, running on QA, that deviates the annealing pro-
cess from achieving the ground state of the corresponding
Hamiltonian and produces sub-optimal solutions.

2. We propose EQUAL (Ensemble Quantum Annealing) to
mitigate the bias by forming multiple perturbed copies of a
given QMI and running each for a subset of trials.

3. We propose an effective method to generate the perturbed
copies while retaining the structure of the problem by leverag-
ing the hardware imperfections from limited precision.

4. We propose EQUAL+ that combines EQUAL with existing
SQC error-mitigation to further improve the reliability.

2. Background and Motivation

2.1. Quantum Computing

Quantum computing is a computational paradigm that stores
and processes information using quantum bits or gubits. The
state of a qubit |y) can be represented as a superposition of its
two basis states |0) and |1) using a vector: |y) = o¢|0) + 3 |1),
where o and 3 are complex probability amplitudes associated
with the basis states. Similarly, an N-qubit system exists in a
superposition of 2V basis states. This exponential scaling in
state space with a linear increase in qubits enables quantum
advantage. Currently, two types of quantum platforms are
available to users through cloud services [6, 23, 57]—gate-
based quantum computers and quantum annealers.

Gate-based Quantum Computers: A gate-based quantum
computer executes a predefined sequence of quantum gate op-
erations to transform the initial state of the qubits to the desired
state by changing the superposition. The sequence of quantum
gates is known as a quantum circuit. Quantum computers from
IBM, Google, and others use gate-based model.

Quantum Annealers: Quantum annealing is a meta-heuristic
for solving combinatorial optimization problems that runs on
classical computers [5,24,30,44,65,66]. Quantum Annealers
are single instruction machines for solving combinatorial op-
timization problems. Unlike gate model quantum computers,
where we directly change the state of qubits via quantum gates,
QAs control the environment, and qubits evolve to remain
in the ground state (i.e., a configuration with the lowest en-
ergy value) of a Hamiltonian (or energy/cost function) [4,24].
Quantum annealers, such as the ones from D-Wave, are analog
systems that can only minimize the following energy function:
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Figure 2: (a) Evolution of Quantum Annealers (QAs) over time
(b) A cropped view of the D-Wave 2041-qubit QA with its con-
nectivity graph where the nodes denote qubits and edges rep-
resent couplers (or connectivity between two qubits).
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where N is the number of qubits, h; € R specifies the linear
coefficient of qubit i, J; ; € R represents the coupler weight
between qubits i and j, and z; is the variable that can take its
value from {—1,+1} [9, 13,56]. Ever since the introduction
in 2011, QAs have rapidly scaled in size up to few thousand
of qubits, as shown in Figure 2(a) and promise significant
computational advantage for a wide range of applications.

2.2. Operation Model of QA

To execute a program on a QA, the problem is cast to a Hamil-
tonian such that its global minimum represents the optimal
solution of the problem at hand. This step computes the co-
efficients h and J, denoted in Equation (1), corresponding
to the quantum machine instruction (QMI) to be executed
on the QA. Executing the QMI on a QA returns a sample
z ={z0,21,...,Zy_1 } as a potential minimum of the corre-
sponding energy function. Unfortunately, executing a QMI
only once may not result in the ground state of the Hamiltonian
due to noise in the system [9]. Thus, in practice, the process
of executing the single QMI is repeated for thousands of trials.
The sample with the lowest energy is reported as the solution.

2.3. The Opportunity: Solving Large Problems with QA

Google Sycamore is a state-of-the-art 54-qubit gate-based
quantum computer that can outperform even the most power-
ful supercomputer for some tasks [7]. We compare the perfor-
mance of the D-Wave 2041-qubit QA and Google Sycamore
for 18 different Max-Cut problems. The Max-cut problems
used in this evaluation correspond to the fully-connected
Sherrington-Kirkpatrick (SK) Model [81] and uses up to 17
qubits [37,79,89]. These are some of the hardest benchmarks
on Sycamore as fully connected graphs require many SWAP
operations to overcome the limited connectivity. Running the
same benchmarks on the D-Wave QA requires only 102 qubits
(less than 1% of the qubits). Figure 3 shows the value of the
solution obtained from both machines.

We use the same weighted graphs from prior work [37] that
result in negative cut values. The performance of the D-Wave
QA is comparable to Google Sycamore and both of them are
successful in finding the optimal cut at small problem sizes.
However, the performance of Google Sycamore degrades with
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Figure 3: Comparison of 54-qubit Google Sycamore [37] and
2041-qubit D-Wave Quantum Annealer.

increasing problem size [37] due to an increase in SWAPs
and circuit depth. Furthermore, due to the limited capacity
of 54-qubits, the problem size for Sycamore is limited to
no more than 54 nodes. However, as QAs are much larger
(2000-5000 qubits), we can use them to solve larger problems
more relevant to real-world applications and exceed the size
of near-term gate-based quantum computers. For example,
Figure 4 shows the performance of the D-Wave QA for Max-
Cut problems corresponding to the SK Model using up to 60
qubits. For each problem, the D-Wave QA can find the optimal
cut value. To determine the optimal cut value, we evaluate all
possible combinations for problems using up to 25 qubits and
use the best estimate for the larger problems.
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Figure 4: Performance of D-Wave QA for larger Max-Cut prob-
lems corresponding to the SK Model

2.4. The Challenge: Hardware and Software Limitations

Although QAs look promising for various applications, several
challenges limit us from solving real-world problems on them.

2.4.1. Hardware-Level Challenges

Limited coherence/annealing time: The probability of find-
ing the ground state of a Hamiltonian using a QMI increases
exponentially with increasing annealing time [4] and theoreti-
cally, many hard problems may require large annealing time.
Unfortunately, the annealing time on current QAs is in the
order of microseconds [9,56] as qubits can retain their state
only for a short span of time. Increasing the annealing time on
QA hardware causes qubits to decohere and lose their state.

Noise and limited connectivity: Thermal noise and opera-

tional errors add unwanted perturbations during annealing and
prevent QAs from reaching the ground state of a Hamilto-
nian [4]. QAs also suffer from sparse connectivity between
qubits, as shown in Figure 2. To address the same drawback
on gate-model quantum computers, compilers insert SWAP
instructions that interchange the state of physically adjacent
qubits [60, 88,95]. However, QAs cannot use a similar ap-
proach as they use only one QMI. Instead, we embed the
problem graph to match the target device topology where mul-
tiple physical qubits represent a program qubit with higher
connectivity. This can reduce the effective capacity of QAs.

Limited precision and range of coefficients: Casting a prob-
lem to a Hamiltonian and generating the corresponding QMI
coefficients can require a double-precision representation.
However, large precision impacts the performance of the
digital-to-analog converters (DACs) used on the real QAs
which slows the annealing process. Therefore, existing QAs
trade-off precision to achieve lower annealing times and trun-
cate the QMI coefficients post casting to match the precision
supported in hardware. This subjects the QMI to quantization
errors, and the reduced precision QMI actually executed on
a QA can be slightly different from the QMI that we origi-
nally intended to run, leading to a ground state that may not
represent the solution of the problem at hand [9, 26, 78].

2.4.2. Software-level Challenges

Limited programmability: QA can only minimize a specific
objective function and any input problem must be cast to
a Hamiltonian. Unfortunately, casting is non-trivial due to
lack of standardized algorithms and often comes with some
approximations [13,56]. Additionally, QAs can only execute a
single QMI that performs the annealing step and therefore, fine-
grained optimizations at the instruction-level are infeasible.

Limitations of Embedding: To overcome limited connec-
tivity, a problem graph is embedded in the QA to match
the device topology. Finding the best embedding is NP-
hard [18,21,25,34] and existing algorithms can take several
hours despite approximations. Also, our studies show they
often fail for large programs.

2.5. Impact of Trials on Energy Residual

In theory, QAs should find the global optima of a problem
with high probability [4,65]. However, in reality, QAs often
fail to find the global optima for large problems due to noise
and imperfect control. Moreover, the limited programmability
of QAs forces users to run a single QMI for thousands of trials,
resulting in a bias. As a user runs a single QMI for all trials,
the noise profile is similar throughout execution, resulting in
similar quality outcomes due to the inherent bias in the noise
profile. We refer to this bias as Systematic Bias.

Figure 5 shows the Energy Residual (ER) [46,47] for an
optimization problem on D-Wave QA. ER compares the gap
between the energy of the solution from a noisy QA and the
global minima. The energy of the best solution from a noisy



QA remains far from the global optima even after running 1
million trials. This non-zero ER occurs due to systematic bias,
and is particularly severe for large problems.

T 40 == QA Hardware

o == = |deal

2 30

4

5 201

2101 Gap
0~—I———I———I———I———I— ——I

0 200K 400K 600K 800K 1 million

Number of Trials

Figure 5: Energy Residual of an optimization problem on D-
Wave QA with increasing number of trials.

2.6. Goal of this Paper

Hardware and software limitations of QAs cause programs to
encounter a systematic bias during execution which cannot be
bypassed by executing more trials. Ideally, we want QAs to be
free from systematic bias. In this paper, we propose Ensemble
Quantum Annealing (EQUAL) that uses an ensemble of QMIs
(with different biases) to mitigate systematic bias. We discuss
the evaluation methodology before discussing our solution.

3. Evaluation Methodology
We discuss the evaluation infrastructure used in this paper.
3.1. Quantum Platform and Baseline

For our evaluations, we use the 204 1-qubit quantum annealer
from D-Wave Systems via Amazon BraKet cloud service [6].
We use the default annealing time (i.e., 20 pseconds) and
schedule recommended for this system. For the baseline, we
use 100,000 trials for each benchmark. For EQUAL, trials are
equally split between QMIs. Thus, EQUAL requires the same
number of trials as the baseline.

3.2. Benchmarks

We use random weighted Max-Cut problems, similar to Quan-
tum Approximate Optimization Algorithms [28] used on gate-
based quantum computers. For the benchmarks, we draw
the Hamiltonian coefficients of the QMIs from the standard
normal distribution (a mean of 0 and standard deviation of
1). This approach is a common practice used in prior works
related to benchmarking QAs [9, 11, 19,24, 78]. To avoid the
impact of embedding on our evaluations, we directly use the
connectivity graph of the D-Wave QA. Thus, the number of
program qubits in benchmarks is equal to the number of phys-
ical qubits on the QA. As the size of benchmarks significantly
exceeds the size of existing gate-model quantum computers,
we cannot compare our results with them.

3.3. Figure-of-Merit

We evaluate the reliability of QA using Energy Residual
(ER). The best solution from a QA is the outcome with the
minimum energy. ER computes the energy gap between the
minimum energy (E,;,) obtained on a QA with respect to the
global energy minimum (E,,p.) of the application as follows:

Energy Residual (ER) = |Emin — Eglopar| - 2

Ideally, when the best solution obtained on a QA corresponds
to the ground state of the problem Hamiltonian, ER is zero.
Thus, a lower value (closer to zero) for ER is desirable.

The challenge in computing the ER for random large bench-
marks spanning 2000+ qubits is that finding the ground state of
the Hamiltonian is non-trivial. To overcome this challenge and
still enable a fair comparison, we perform intensive classical
computations using state-of-the-art tools [10] and approximate
the global optimum of our benchmark problems. Recent stud-
ies have shown that this algorithm can estimate the ground
state of Chimera based Hamiltonians [21,42] (such as the ones
considered in our paper) with a very high probability. >

4. EQUAL: Ensemble Quantum Annealing

The vulnerability of a program to systematic bias results from
limited programmability and the current execution model of
QAs where the same QMI is executed for thousands of trials.
This subjects each trial to a similar noise profile on the QA and
the entire execution suffers from the same inherent bias. Our
proposed solution EQUAL—Ensemble Quantum Annealing—
takes a different approach. Instead of a single QMI, EQUAL
generates an ensemble of QMIs that subjects the program
execution to different noise profiles and therefore, different
systematic biases. When results are aggregated, ensembles
enable us to improve the quality of solutions.

4.1. Challenges in Generating Ensembles in EQUAL

There is potential to generate ensembles during any one of
the three phases that a problem goes through before execution
on a physical QA hardware: (1) casting, (2) embedding, and
(3) QMI generation. Generating ensembles during casting
was previously studied in the context of Boolean satisfiability
(SAT) [13] and binary compressive sensing [12] problems on
QAs. Unfortunately, these methods exploit the features of
the application-specific casting algorithms. Therefore, this
approach has limited applicability and is hard to generalize for
QAs. The other alternative approach is to use an ensemble of
embeddings for a given problem. However, this approach too
has its limitations. Firstly, finding the best embedding is an
NP-hard problem in itself [18,21,25,34]. Secondly, current
embedding schemes for QAs use several approximations and

2The techniques used to derive the best estimate of the ground state energy
of a Hamiltonian requires intensive classical computing resources and could
take up-to days for problem sizes with a few thousand qubits. We discuss
more on this in Section 6
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lowest energy value. EQUAL can also optionally leverage existing post-processing error mitigation schemes (EQUAL+).

may or may not be able to determine an ensemble of embed-
dings of similar quality [18,21,25,34]. Our studies show that
existing embedding algorithms often fail to find an adequate
number of embeddings, particularly for problems at scale that
require 2000+ qubits. Thirdly, even if it is possible to find
multiple embeddings, they are often of inferior quality and
require larger chains of physical qubits to represent a program
qubit with higher connectivity. This makes the embedding
significantly more vulnerable to noise compared to the best em-
bedding. Thus, generating ensembles at the embedding step is
non-trivial. Instead, EQUAL focuses on generating ensembles
at the instruction-level and produces multiple QMIs.

4.2. Overview of Design

Figure 6 shows an overview of EQUAL. It relies on adding
controlled perturbations to the original QMI. For each ensem-
ble, EQUAL generates a Perturbation Hamiltonian, denoted
by . Each of these Perturbation Hamiltonians creates a new
QMI when added to the original Hamiltonian. For example, if
EQUAL generates m ensembles of QMIs, it generates m per-
turbation Hamiltonians, namely &y, 8, ..., 5,. The ensemble
QMIs—QMI;, QMI; to QMI,,—are obtained by adding the
original Hamiltonian (say H) and the respective perturbation
Hamiltonians. In other words, the ensemble of QMIs now cor-
responds to the perturbed versions of the original Hamiltonian.

4.3. Generating Ensembles via Controlled Perturbations

Creating an effective perturbation Hamiltonian is non-trivial.
If the perturbations add too little noise, the resulting Hamil-
tonian will be too close to the problem Hamiltonian and en-
counter similar bias. Alternately, too large perturbations re-
sult in a Hamiltonian significantly different from the problem
of interest and can produce infeasible results. For example,
Figure 7(a) shows the landscape of an example optimization
problem?’. Figure 7(b) shows that injecting an extremely noisy
perturbation Hamiltonian significantly changes the landscape
of the original problem. Thus, there is a trade-off between
the effectiveness of a perturbation Hamiltonian to reduce bias
and its ability to alter the problem Hamiltonian. To address

3Minimize x? 4y for x,y € [-2,2].

@)}

this challenge and generate an effective ensemble of QMIs,
EQUAL exploits the device-level characteristics of QAs.

Figure 7: (a) Landscape of an example optimization problem.
(b) The resultant landscape differs significantly from (a) when
an extremely noisy perturbation is imposed. (This figure is
for illustrative purposes only. Hamiltonians and QAs can only
deal with discrete optimization problems.)

4.3.1. Exploiting Hardware Characteristics of QAs

Recollect that casting a problem to a Hamiltonian can re-
quire double-precision representation of the Hamiltonian co-
efficients. Unfortunately, real QAs can only support a small
range and precision of coefficients due to the limitations im-
posed by the digital to analog converters (DACs) used on QAs.
If the precision of the coefficients are too large, the DACs are
too slow which eventually slows the controlling modules of
QAs and is not desirable. To bridge this gap, post the casting
step, the coefficients of the QMI are truncated to match the
precision supported by the hardware. While this is a limitation
on QAs, EQUAL leverages it to its advantage and draws the
coefficients of the perturbation Hamiltonian randomly at a
range that is below the supported precision so that adding the
perturbation Hamiltonian only shifts the coefficients of the
QMI (post truncation) to one of the neighboring quantization
levels and thus, does not significantly alter the problem land-
scape. More specifically, let b be the number of bits used for

representing coefficients of a physical QA. For every ensem-
1
20
and set all coefficients of the Perturbation Hamiltonian to be r.

ble, EQUAL draws a uniform random number r € {2,,%,



4.3.2. Profiling QAs to estimate Hardware Precision

Unfortunately, the precision of the coefficients supported on
real devices is unavailable to programmers. Determining this
precision is vital for the performance of EQUAL. Drawing the
perturbation Hamiltonian coefficients far below the supported
precision introduces large noise and may alter the Hamilto-
nian landscape significantly. Alternately, drawing them far
above the supported range may not have any effect post trunca-
tion. To tackle this challenge, EQUAL profiles the QA using
random benchmarks to estimate the precision supported by
QAs. In this experiment, we truncate all coefficients of the
benchmark for 2,3, ..., 16 bits precision and execute the corre-
sponding QMIs. Figure 9 shows the relative Energy Residual
of the truncated QMIs with respect to the original problem
(without truncation). Our profiling experiments with multi-
ple benchmarks show that the hardware is likely limited by
7-8 bits of precision. Thus, EQUAL generates coefficients of

ensembles in [2%, 2%} .
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Figure 9: Relative Energy Residual of QMIs with truncated co-
efficients with respect to the original problem QMI for bits val-
ues of precision. (Lower is better)

4.4. Execution on QA Hardware

EQUAL splits the trials between the ensemble of QMIs
equally, including the original QMI (without perturbation),

(a) Benchmark B1

N
©

(b) Benchmark B2

and executes them separately on the QA hardware. Our de-
fault design uses 10 ensembles of QMlIs, and allocates 10,000
trials for every ensemble. We do a more rigorous sensitivity
analysis for the number of trials and ensembles in Section 5.8.

By default, the outcome with lowest energy is deemed as the
solution for problems executed on QAs. In the baseline, this
corresponds to the outcome with the lowest energy obtained
by executing the original QMI. As EQUAL executes multiple
QMIs, the outcome with the lowest energy among all the QMIs
is returned as the solution. Also, as EQUAL runs the ensemble
of perturbed QMIs in addition to the original program QMI,
the final solution is guaranteed not to perform worse than
the baseline, assuming there are no sampling errors. Note
that the solution with the minimum energy corresponds to an
outcome that may come from a single QMI. For the baseline
this corresponds to the original QMI, whereas for EQUAL
it comes from one or more of the QMIs in the ensemble.
However, which QMI corresponds to the best solution is not
known a-priori and EQUAL must execute the entire ensemble.

4.5. Results for Energy Residual

Energy Residual (ER) computes the gap between the energy
obtained from the best outcome on a QA with the global op-
tima. Figure 8 compares the ER of the individual benchmarks
for baseline and EQUAL. We observe that the ER quickly
saturates in the baseline for all benchmarks, whereas improves
for EQUAL as more QMIs are executed. As the QMIs are gen-
erated using random controlled perturbations, some of them
may result in higher ER compared to the baseline due to a
different noise profile at run time. However, the ensemble
overall enables EQUAL to reach a better solution. In the worst
case, EQUAL performs similar to baseline as the original pro-
gram QMI is executed too. We observe that the fidelity of the
baseline saturates with more trials, whereas the diversity of
EQUAL helps it keep on improving with additional trials.

(c) Benchmark B3
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Figure 8: Trends in Energy Residual for the baseline and EQUAL for all the benchmarks.
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Figure 10: Histogram of energy values from the outcomes on the QA for benchmark B1 using the Baseline and EQUAL. The
solution from EQUAL is closer to the ideal solution compared to the baseline solution (d, < d;). The histograms for the baseline
and EQUAL largely overlaps which indicates that EQUAL does not significantly alter the problem Hamiltonian.

Figure 11 shows the ER of EQUAL for our benchmarks
executed on D-Wave 2041-qubit QA relative to the baseline.
We observe that EQUAL bridges the difference between the
baseline and the ideal by an average of 14% (and up to 26%).
QAs deal with industry-scale optimization problems where
even a minuscule improvement has a tremendous impact in
terms of practical advantage such as saving millions of dol-
lars [1,22,27] in the context of scheduling and planning ap-
plications or finding better candidates for drug discovery [59]
and material science [49]. Thus, the quality of solutions is of
utmost importance.
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Figure 11: Energy Residual of six random benchmarks on D-
Wave QA hardware using EQUAL relative to the baseline.

4.6. Case-Study: How EQUAL Reduces Systematic Bias

Figure 10 shows the histograms of the energy values obtained
by running benchmark B1 for the baseline and EQUAL. The
goal of QAs is to obtain the outcome corresponding to the
ground state energy. We observe that the optimal solution is at
a distance d; from the ground state and EQUAL produces a
solution at distance d5 that is closer to the ground state energy
(d2» < dp) by minimizing the impact of bias. We also observe
that distributions for both the baseline and EQUAL overlap
largely, indicating that the ensemble of QMIs do not largely
alter the original Hamiltonian corresponding to our problem.
We make similar observations for other benchmarks.

An ideal QA is a machine that samples from the Boltzmann
distribution, whereas the distribution obtained from a real QA
hardware is different due to noise. The best solution obtained

by a QA depends on the overlapping region between the ideal
and the noisy distributions. From Figure 10, we observe two
potential approaches to get closer to the global optima. First,
by flattening the energy histogram of the Hamiltonian such
that it covers a broader search space. Second, by shifting the
energy histogram towards the ideal solution. Note that both of
these techniques must ensure that the properties of the original
program Hamiltonian remain unaltered. EQUAL uses the
first approach. The performance of EQUAL can be improved
further if we could shift the histogram closer to the ideal
solution. We explore combining EQUAL with existing error
mitigation schemes to obtain the advantage of both flattening
the histogram and shifting the histogram towards the ground
state.

5. Combining EQUAL with Error-Mitigation

Ensembles are generated by only adding controlled perturba-
tions to the problem Hamiltonian. Therefore, they have limited
capability to shift the noisy distribution from a QA towards
the ideal distribution even if a large number of ensembles are
used. Alternately, large perturbations may significantly change
the landscape of the problem. Instead, we take an orthogonal
approach and explore existing error-mitigation schemes that
introduce a shift in the energy histogram.

5.1. Primer on Error-Mitigation Schemes for QA

Error-mitigation schemes for QAs can be classified into (1)
software and (2) hardware schemes. Software schemes refer
to optimizations performed during the casting and embedding
steps (pre-processing techniques) or modifications on the out-
comes obtained from QAs (post-processing techniques). On
the other hand, hardware-based schemes control the device-
level parameters on QAs to reduce the impact of errors.

We characterize the impact of these error-mitigation tech-
niques individually and combined with each other to under-
stand their effectiveness in (1) eliminating systematic bias on
their own and (2) shifting the noisy distribution of the QA
towards the ideal distribution. For our analysis, we choose
(a) spin reversal transform, (b) longer inter-sample delay, and
(c) single-qubit correction. Spin-reversal transform is a repre-



sentative candidate for a software pre-processing technique.
On the other hand, inter-sample delay is a device-level control
available to programmers to reduce the correlation between
consecutive trials on a QA. Lastly, Single-Qubit Correction
(SQC) [9] is a post-processing technique which leverages the
insight that for a given QMI, QAs can quickly recognize the
neighborhood of the ground state even if they fail to get to the
ground state [9]. We perform characterization studies for these
three error mitigation schemes (see Appendix A) and found
that SQC is the most effective scheme, and therefore we use
SQC as the error mitigation scheme for our study.
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Figure 12: Single Qubit Correction Post-Processing [9]

5.2. Overview of SQC Post-Processing

SQC is analogous to the gradient descent scheme but only
applicable to discrete optimization problems. Instead of com-
puting the gradient for determining the direction of the move
in every iteration, SQC uses a greedy approach and moves to
a neighbor (i.e., an outcome that is one Hamming distance
away from the current solution) with the lowest energy value.
Figure 12 illustrates the overview of an iteration of SQC. For
each candidate outcome generated by executing the QMI, SQC
finds the one Hamming distance away neighbors and computes
their energy values. If any neighbors can obtain a lower energy
value than the candidate itself, the neighbor is retained and
the current solution is discarded. When multiple neighbors
obtain lower energy values, the best neighbor is retained. The
process is repeatedly executed until we cannot find any new
neighbor that has better quality.

5.3. EQUAL+: Combining EQUAL and SQC

Figure 13 shows an overview of EQUAL+. EQUAL+ applies
SQC on the outcomes of each QMI and obtains the best out-
come for each QMI. The process is performed for each QMI
in parallel. Once applying SQC on each QMI converges, the
final output of EQUAL+ is picked as the candidate with the
lowest energy among all the individual best candidates from
the QMIs. The time to converge depends on several factors
such as the size of the problem, number of outcomes, quality
of the outcomes. However, our evaluations show that EQUAL+
converges within a few seconds even for large benchmarks
such as the ones used in our evaluations.

Using this greedy approach helps locate neighbors from
current outcomes that were not produced by the QA originally.
With each neighbor located, EQUAL+ shifts the outcome dis-
tribution towards the ideal solution (global optima). Note that

‘ Ensemble-m
[ Ensemble-3
\ Ensemble-2 Select Best
Ensemble-1 Outcome Output
from all QMlIs

Best

Figure 13: Overview of EQUAL+ design. It applies the SQC
post-processing algorithm on the outcomes from each QMI in
parallel. Finally, it selects the best outcome from all the QMIs
as the output solution.

although SQC is effective on its own, the diversity of EQUAL+
is essential to improve its search space. The capability of SQC
alone to introduce new outcomes is limited by the quality of
outcomes from the QMI. In EQUAL+, the ensembles enable
us to explore a much larger neighborhood compared to apply-
ing SQC alone. In the end, EQUAL+ may discover a solution
from one of the weakest outcomes corresponding to one of the
weakest QMIs (sub-optimal outcome that did not correspond
to the best solution in any of the QMIs).

Note that EQUAL+ is versatile, and any other post-
processing candidate that introduces the desired shifting prop-
erty in the energy distribution may be used. We use SQC for
its performance and low time complexity.

5.4. Analysis of Overheads

We discuss the overheads for both EQUAL and EQUAL+.
EQUAL generates the ensemble of QMIs prior to execution
on the QA. As the perturbed Hamiltonian only adjusts the co-
efficients of the original problem QMI, the ensemble does not
need to re-perform the casting or embedding step. Although
embedding can take up to several hours and may fail for certain
Hamiltonians, this overhead and limitation is entirely avoided
by EQUAL. EQUAL also requires the programmer to esti-
mate the precision of the hardware using a set of profiling
experiments. However, profiling need not be done for each
application. As the precision supported is only device-specific,
profiling once for each QA hardware is enough and the same
information can be re-used for multiple applications. For exe-
cution on the QA, EQUAL requires the same number of trials
as the baseline and therefore, does not incur any overhead of
additional trials.

EQUAL+ incurs some additional overheads for the post-
processing step as it applies the SQC heuristic algorithm on all
the outcomes obtained from all the QMIs. The space complex-
ity of the post-processing phase in EQUAL+ is linear with the
number of qubits [9]. As SQC is iteratively applied on every
outcome of a QMI, the time complexity depends on the num-
ber of outcomes which is equal to the number of trials in the
worst-case (assuming each trial generates a unique outcome).
The post-processing for each QMI is done in parallel. Our
studies show that EQUAL+ converges within a few iterations
and the post-processing step for EQUAL+ only takes a few
seconds. Therefore, the overheads are acceptable.
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Figure 14: Histogram of energy values from the outcomes on the QA for benchmark B1 using EQUAL and EQUAL+.

5.5. Results for Energy Residual

Figure 15 shows the Energy Residual of EQUAL+ relative
to the baseline. We also compare against EQUAL and SQC
standalone. We observe that EQUAL+ improves the ER by
0.45 compared to the baseline on average and by up to 0.32.
In other words, EQUAL+ improves the quality of solutions by
55% on average and up to 68%.
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Figure 15: Energy Residual using EQUAL+ relative to the base-
line. We also compare with EQUAL and SQC standalone.

5.6. Results for Validation of Precision Selection

We draw the perturbation Hamiltonian coefficients in the range
¥ ®
confirm that this approach is robust by conducting additional
studies at application level. Figure 16 shows the ER of some
benchmarks relative to baseline when the precision range is
varied. We confirm that 8 to 9 bits of precision is more robust
compared to others and on average outperforms the others.

based on profiling across a wide range of values. We

5.7. Case-Study: How EQUAL+ reduces Systematic Bias

Figure 14 shows the histograms of energy values of benchmark
B1 for EQUAL and EQUAL+. We observe that the optimal
solution is at a distance d; from the ground state energy in
EQUAL. EQUAL+ exploits the shifting property of SQC to
obtain a solution at distance d»> and is closer to the ground
state energy (d> < dy). Note that EQUAL+ shifts the overall
histogram towards the ideal solution and achieves the intended
goal. As EQUAL+ applies post-processing on the outcomes
from the QMIs, the introduced shift in the histogram does not
alter the original problem Hamiltonian.
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Figure 16: Energy Residual of random benchmarks on D-Wave
QA hardware using EQUAL relative to the baseline for different
values of bit precision used for generating QMIs.

5.8. Impact of Number of Ensembles

We study the impact of the number of ensembles on the effec-
tiveness of EQUAL using a single benchmark problem. For
a given trial budget of 100K trials, we choose two modes for
EQUAL. In the first instance, we use 10 QMIs and run each of
them for 10K trials each. In the second instance, we use 100
QMIs and run each of them for 1K trials each. Figure 17 shows
the ER for the baseline and these two instances of EQUAL.
Note that we access the QA device through cloud services
and a more rigorous sensitivity analysis in terms of QMIs and
trials is challenging. We observe that executing more QMIs
introduces more randomness and makes them vulnerable to
sampling errors. EQUAL with 10 QMISs achieve a sweet spot
between the baseline and EQUAL with a large number of en-
sembles such that we have both diversity as well as sufficient
trials for each QMI to reduce sampling errors.
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Figure 17: Energy Residual for benchmark (B1). The baseline
executes a single QMI for all 100K trials. EQUAL has 10 QMIs
for 10K trials each or 100 QMIs executed for 1K trials each.



6. Related Work

Both gate-model quantum computers and QAs promise sig-
nificant advantages for a wide range of applications [7, 12—
14,16,17,27,28,39,43,45,49,59,68,74-76, 80, 84,90, 91].
Thus, developing error-mitigation policies is an active area of
research for both QAs and gate-model quantum computers.
We discuss prior works and compare against schemes that use
ensembles.

6.1. Priors works using Ensembles

The potential of ensembles has been explored for both gate-
model quantum computers and QAs.

Ensemble policies for Gate-model quantum computers:
Systematic bias in QAs is similar to correlated errors on gate-
based quantum computers. To tackle these errors on gate-
model quantum computers, recent studies propose the use of
ensemble of mappings that maps a program to different sets of
physical qubits and SWAP routes on the same [86] or different
machines [71]. This process produces functionally identical
copies of the same program but are only executed differently.
Leveraging a similar approach for EQUAL is non-trivial due
to the complexities involved in the embedding process, partic-
ularly for problems at scale. Obtaining alternate embeddings
is non-trivial, may fail or result in inferior quality. Instead,
EQUAL uses an ensemble of QMIs by introducing controlled
perturbations while minimizing the alterations in the function-
ality of the original problem Hamiltonian.

Ensemble policies for QAs: Using ensembles in QAs have
been investigated at the casting level for two different appli-
cations. However, as each application uses its own casting
algorithm, this approach cannot be generalized. EQUAL on
the other hand, avoids such application-specific assumptions
and is applicable irrespective of the problem at hand. In an-
other study, Mohseni et al. proposed a multi-level embedding
scheme that uses a diverse encoding of qubits to generate en-
sembles [58]. However, this approach reduces the capacity of
the QA significantly. It is also not scalable as it introduces
overheads to the embedding step, which already takes several
hours for current systems. Moreover, our studies show that
finding alternate embeddings frequently fail or result in embed-
dings of inferior quality for large problems. EQUAL avoids
these overheads by introducing diversity post embedding.

6.2. Software error mitigation policies

These techniques are either applied prior to the execution of
the QMI (pre-processing) or after the QMI is executed (post-
processing). Pre-processing schemes transform the problem
QMI at the casting or embedding level such that it is less
vulnerable to errors during execution time [9, 12, 13,73]. Pre-
processing schemes are analogous to compiler-level optimiza-
tions on gate-model quantum computers [2,3,15,31,32,50-52,
60,61,61-63,69-71,82,85-88,95]. Unlike QAs, gate-model
quantum computers have higher programmability and allow
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programmers to leverage fine-grained optimizations at the in-
struction scheduling level. Post-processing schemes for QAs
exploit the fact that even if a QA cannot generate the solution
with the lowest energy, it quickly locates the neighborhood
where the optimal solution might reside. By modifying the
outcome obtained from the QA using classical heuristic algo-
rithms, post-processing schemes can significantly improve the
quality of solutions [9, 19, 33]. One of the most promising
post-processing schemes is Multi-Qubit Correction (MQC) [9].
We use this scheme to obtain the best known estimate of the
ground state energy in our evaluations. However, this algo-
rithm requires significant classical computational overheads
and may take up to days to obtain a better quality solution.
Nonetheless, the performance of MQC depends on the quality
of the outcomes obtained from the QA and both EQUAL and
EQUAL+ can benefit from it. Post-processing algorithms can
significantly improve the application fidelity even for gate-
based quantum computers [20,40,71,72].

6.3. Hardware-level error mitigation

Recent studies have proposed improvements to the annealing
process itself [4, 65] but implementing them requires fabri-
cating newer QAs. Few other schemes reduce the impact of
noise on the annealing process. Examples include controlling
the delay between two consecutive trials and qubit prepara-
tion times [41]. Exposing the hardware characteristics and
enabling device-level controls to the programmer has been
shown to be effective even for gate-model systems [8].

7. Conclusion

Quantum Annealers (QAs) have thousands of qubits and are
promising for a wide range of applications. Unfortunately, QA
suffers from both hardware and software limitations. There-
fore, there is increasing interest in developing software policies
to tackle these limitations. However, our studies show that
executing a program on a QA makes it vulnerable to a system-
atic bias that cannot be overcome by increasing the number of
trials or relying on existing error-mitigation schemes.

This paper proposes EQUAL—Ensemble Quantum
Annealing—a software framework that creates multiple per-
turbed copies of an input problem by injecting controlled
perturbations to the original problem Hamiltonian. By exe-
cuting an ensemble of quantum machine instructions (QMIs),
EQUAL projects the program to different noise profiles and
therefore, different biases. Our evaluations using the 2041-
qubit D-Wave QA show that EQUAL bridges the difference
between the baseline and the ideal by an average of 14% (and
up to 26%), without requiring any additional trials. We also
propose EQUAL+ that exploits the properties of existing er-
ror mitigation schemes for enhanced performance. EQUAL+
bridges the difference between the baseline and the ideal by
an average of 55% (and up to 68%).



A. Appendix: Characterizing Error Mitigation

While designing EQUAL+, we have various options regarding
how to combine existing error-mitigation schemes. To under-
stand suitable candidates, we perform several characterization
experiments whose results are described next.

A.1. Spin-Reversal vs. Single Qubit Correction

Spin-Reversal Transform (SRT) is a pre-processing which flips
randomly selected qubits to mitigate analog errors of QAs [73].
Figure 19 shows the Energy Residual of a benchmark executed
on D-Wave QA when spin reversal transform is applied stan-
dalone and in the presence of SQC. We observe that both spin
reversal and SQC reduces the ER, and the performance of
SQC is comparable to spin-reversal transform.
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Figure 18: Energy Residual of a random benchmark with Spin
Reversal Transform and Single Qubit Correction.

A.2. Inter-Sample Delay vs. Single Qubit Correction

Increasing the Inter-Sample-Delay (ISD) which increases the
delay between successive QA reads to reduce the inter-sample
correlations. Figure 19 shows the ER of a benchmark exe-
cuted on D-Wave QA under default ISD and when the ISD
is increased. We also study the performance in the presence
of SQC. We observe that similar to spin-reversal transform,
while longer ISD reduces the ER, SQC outperforms and can
be combined for further benefits.
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Figure 19: Energy Residual of a random benchmark with
longer ISD and Single Qubit Correction.

We leverage the insights from this study to investigate if
EQUAL can benefit from post-processing too. The additional
advantage of relying on post-processing schemes is that it does
not add any overheads in the casting or embedding step.

12

Acknowledgements

Ramin Ayanzadeh was supported by the NSF Computing In-
novation Fellows (CI-Fellows) program. Poulami Das was
supported by the Microsoft Research PhD fellowship. This
research was partially supported by the Office of the Vice
Chancellor for Research and Graduate Education at the Univer-
sity of Wisconsin—Madison with funding from the Wisconsin
Alumni Research Foundation.

References
[

[—

Ravindra K Ahuja, Claudio B Cunha, and Giiven¢ Sahin. Network
models in railroad planning and scheduling. In Emerging theory, meth-
ods, and applications, pages 54—101. INFORMS, 2005.

Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Circuit
compilation methodologies for quantum approximate optimization
algorithm. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 215-228. IEEE, 2020.
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. An effi-
cient circuit compilation flow for quantum approximate optimization
algorithm. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1-6. IEEE, 2020.

Tameem Albash and Daniel A Lidar. Adiabatic quantum computation.
Reviews of Modern Physics, 90(1):015002, 2018.

Patricia Amara, D Hsu, and John E Straub. Global energy mini-
mum searches using an approximate solution of the imaginary time
schrodinger equation. The Journal of Physical Chemistry, 97(25):6715—
6721, 1993.

Amazon. Amazon Braket - Explore and experiment with quantum
computing:. https://aws.amazon.com/braket/, 2022. [Online;
accessed 22-July-2021].

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C
Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL
Brandao, David A Buell, et al. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574(7779):505-510,
2019.

Abe Asfaw, Thomas Alexander, Paul Nation, and Jay Gambetta. Get to
the heart of real quantum hardware. https://www.ibm.com/blogs/
research/2019/12/giskit-openpulse/, 2019. [Online; accessed
08-August-2022].

Ramin Ayanzadeh, John Dorband, Milton Halem, and Tim Finin. Multi-
qubit correction for quantum annealers. Scientific Reports, 11,2021.
Ramin Ayanzadeh, John Dorband, Milton Halem, and Tim Finin. Multi
qubit correction (mqc) for quantum annealers, 2021. Python imple-
mentation of MQC.

Ramin Ayanzadeh, Milton Halem, John Dorband, and Tim Finin.
Quantum-assisted greedy algorithms. arXiv preprint arXiv:1912.02362,
2019.

Ramin Ayanzadeh, Milton Halem, and Tim Finin. An ensemble ap-
proach for compressive sensing with quantum annealers. In I[GARSS
2020-2020 IEEE International Geoscience and Remote Sensing Sym-
posium, pages 3517-3520. IEEE, 2020.

Ramin Ayanzadeh, Milton Halem, and Tim Finin. Reinforcement
quantum annealing: A hybrid quantum learning automata. Scientific
Reports, 10(1):1-11, 2020.

Ramin Ayanzadeh, Seyedahmad Mousavi, Milton Halem, and Tim
Finin. Quantum annealing based binary compressive sensing with
matrix uncertainty. arXiv preprint arXiv:1901.00088, 2019.

George S Barron and Christopher J Wood. Measurement error
mitigation for variational quantum algorithms. arXiv preprint
arXiv:2010.08520, 2020.

Zhengbing Bian, Fabian Chudak, Robert Brian Israel, Brad Lackey,
William G Macready, and Aidan Roy. Mapping constrained optimiza-
tion problems to quantum annealing with application to fault diagnosis.
Frontiers in ICT, 3:14, 2016.

Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Sal-
vatore Mandra, Bryan O’Gorman, Alejandro Perdomo-Ortiz, Andre
Petukhov, John Realpe-Gémez, Eleanor Rieffel, et al. A nasa perspec-
tive on quantum computing: Opportunities and challenges. Parallel
Computing, 64:81-98, 2017.

Tomas Boothby, Andrew D King, and Aidan Roy. Fast clique minor
generation in chimera qubit connectivity graphs. Quantum Information
Processing, 15(1):495-508, 2016.

[2

—

3

—_

[4

finar}

[5

—_

[6

—

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]


https://aws.amazon.com/braket/
https://www.ibm.com/blogs/research/2019/12/qiskit-openpulse/
https://www.ibm.com/blogs/research/2019/12/qiskit-openpulse/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

Ajinkya Borle and Josh McCarter. On post-processing the results
of quantum optimizers. In International Conference on Theory and
Practice of Natural Computing, pages 222-233. Springer, 2019.
Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C Mckay,
and Jay M Gambetta. Mitigating measurement errors in multi-qubit
experiments. arXiv preprint arXiv:2006.14044, 2020.

Jun Cai, William G Macready, and Aidan Roy. A practical heuristic
for finding graph minors. arXiv preprint arXiv:1406.2741, 2014.
Brian Carlson, Yonghong Chen, Mingguo Hong, Roy Jones, Kevin Lar-
son, Xingwang Ma, Peter Nieuwesteeg, Haili Song, Kimberly Sperry,
Matthew Tackett, et al. Miso unlocks billions in savings through the
application of operations research for energy and ancillary services
markets. Interfaces, 42(1):58-73, 2012.

International Business Machines Corporation. Universal Quantum
Computer Development at IBM:. http://research.ibm.com/ibm-
q/research/,2021. [Online; accessed 22-July-2021].

Arnab Das and Bikas K Chakrabarti. Colloquium: Quantum anneal-
ing and analog quantum computation. Reviews of Modern Physics,
80(3):1061, 2008.

Prasanna Date, Robert Patton, Catherine Schuman, and Thomas Potok.
Efficiently embedding qubo problems on adiabatic quantum computers.
Quantum Information Processing, 18(4):1-31, 2019.

John E Dorband. Extending the d-wave with support for higher preci-
sion coefficients. arXiv preprint arXiv:1807.05244,2018.

Nada Elsokkary, Faisal Shah Khan, Davide La Torre, Travis S Hum-
ble, and Joel Gottlieb. Financial portfolio management using d-wave
quantum optimizer: The case of abu dhabi securities exchange. Techni-
cal report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
States), 2017.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm. arXiv preprint arXiv:1411.4028,
2014.

RP Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21(6), 1982.

AB Finnila, MA Gomez, C Sebenik, C Stenson, and JD Doll. Quantum
annealing: a new method for minimizing multidimensional functions.
Chemical physics letters, 219(5-6):343-348, 1994.

Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Win-
kler, Nelson Leung, Yunong Shi, David I Schuster, Henry Hoffmann,
and Frederic T Chong. Partial Compilation of Variational Algorithms
for Noisy Intermediate-Scale Quantum Machines. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 266-278. ACM, 2019.

Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and
Frederic T Chong. Optimized Quantum Compilation for Near-Term
Algorithms with OpenPulse. arXiv preprint arXiv:2004.11205, 2020.
John K Golden and Daniel O’Malley. Pre-and post-processing in
quantum-computational hydrologic inverse analysis. Quantum Infor-
mation Processing, 20(5):1-18, 2021.

Timothy D Goodrich, Blair D Sullivan, and Travis S Humble. Optimiz-
ing adiabatic quantum program compilation using a graph-theoretic
framework. Quantum Information Processing, 17(5):1-26, 2018.
Google. Google Quantum Al https://quantumai.google/, 2022.
[Online; accessed 22-July-2021].

Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 212-219, 1996.

Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger,
Frank Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami
Barends, Sergio Boixo, et al. Quantum approximate optimization
of non-planar graph problems on a planar superconducting processor.
Nature Physics, 17(3):332-336, 2021.

Honeywell. Honeywell Quantum Solutions. https://
www.honeywell.com/us/en/company/quantum, 2021. [Online; ac-
cessed 22-July-2021].

Feng Hu, Lucas Lamata, Mikel Sanz, Xi Chen, Xingyuan Chen, Chao
Wang, and Enrique Solano. Quantum computing cryptography: Find-
ing cryptographic boolean functions with quantum annealing by a 2000
qubit d-wave quantum computer. Physics Letters A, 384(10):126214,
2020.

IBM. Measurement Error Mitigation. https://giskit.org/
textbook/ch-quantum-hardware/measurement—error—
mitigation.html, 2010. [Online; accessed 26-July-2020].

D-Wave Systems Inc. D-wave ocean software documentation. https:

//docs.ocean.dwavesys.com/en/stable/, 2022. [Online; ac-
cessed 22-July-2021].

13

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

D-Wave Systems Inc. The first and only quantum computer built for
business. https://www.dwavesys.com/, 2022. [Online; accessed
22-July-2021].

Daisuke Inoue, Akihisa Okada, Tadayoshi Matsumori, Kazuyuki Ai-
hara, and Hiroaki Yoshida. Traffic signal optimization on a square
lattice with quantum annealing. Scientific reports, 11(1):1-12, 2021.
Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in
the transverse ising model. Physical Review E, 58(5):5355, 1998.
Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,
Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and quantum
magnets. Nature, 549(7671):242-246, 2017.

Hamed Karimi and Gili Rosenberg. Boosting quantum annealer per-
formance via sample persistence. Quantum Information Processing,
16(7):166, 2017.

Hamed Karimi, Gili Rosenberg, and Helmut G Katzgraber. Effec-
tive optimization using sample persistence: A case study on quantum
annealers and various monte carlo optimization methods. Physical
Review E, 96(4):043312, 2017.

Andrew D King, Jack Raymond, Trevor Lanting, Sergei V Isakov,
Masoud Mohseni, Gabriel Poulin-Lamarre, Sara Ejtemaee, William
Bernoudy, Isil Ozfidan, Anatoly Yu Smirnov, et al. Scaling advantage
over path-integral monte carlo in quantum simulation of geometrically
frustrated magnets. Nature communications, 12(1):1-6, 2021.

Koki Kitai, Jiang Guo, Shenghong Ju, Shu Tanaka, Koji Tsuda, Ju-
nichiro Shiomi, and Ryo Tamura. Designing metamaterials with quan-
tum annealing and factorization machines. Physical Review Research,
2(1):013319, 2020.

Hyeokjea Kwon and Joonwoo Bae. A hybrid quantum-classical
approach to mitigating measurement errors. arXiv preprint
arXiv:2003.12314, 2020.

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the Qubit Mapping Prob-
lem for NISQ-Era Quantum Devices. arXiv preprint arXiv:1809.02573,
2018.

Junde Li, Mahabubul Alam, and Swaroop Ghosh. Large-scale quan-
tum approximate optimization via divide-and-conquer. arXiv preprint
arXiv:2102.13288, 2021.

Seth Lloyd. Universal quantum simulators. Science, pages 1073-1078,
1996.

Andrew Lucas. Ising formulations of many np problems. Frontiers in
physics, 2:5, 2014.

C McGeoch and P Farre. The d-wave advantage system: An overview.
Technical report, Tech. Rep. (D-Wave Systems Inc, Burnaby, BC,
Canada, 2020).

Catherine C McGeoch. Theory versus practice in annealing-based
quantum computing. Theoretical Computer Science, 2020.
Microsoft. Azure Quantum - Quantum Service | Microsoft Azure.
https://azure.microsoft.com/en-us/services/quantum/
#product-overview, 2022. [Online; accessed 22-July-2021].
Naeimeh Mohseni, Marek Narozniak, Alexey N Pyrkov, Valentin Ivan-
nikov, Jonathan P Dowling, and Tim Byrnes. Error suppression in
adiabatic quantum computing with qubit ensembles. npj Quantum
Information, 7(1):1-10, 2021.

Vikram Khipple Mulligan, Hans Melo, Haley Irene Merritt, Stewart
Slocum, Brian D Weitzner, Andrew M Watkins, P Douglas Renfrew,
Craig Pelissier, Paramjit S Arora, and Richard Bonneau. Designing
peptides on a quantum computer. bioRxiv, page 752485, 2020.
Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T
Chong, and Margaret Martonosi. Noise-adaptive compiler mappings
for noisy intermediate-scale quantum computers. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 1015-1029,
2019.

Prakash Murali, Norbert M Linke, Margaret Martonosi, Ali Javadi
Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete. Architect-
ing noisy intermediate-scale quantum computers: a real-system study.
IEEE Micro, 40(3):73-80, 2020.

Prakash Murali, Norbert Matthias Linke, Margaret Martonosi,
Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete.
Full-stack, real-system quantum computer studies: Architectural com-
parisons and design insights. In 2019 ACM/IEEE 46th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 527-540.
IEEE, 2019.

Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-
Abbhari. Software Mitigation of Crosstalk on Noisy Intermediate-Scale
Quantum Computers. arXiv preprint arXiv:2001.02826, 2020.


http://research.ibm.com/ibm-q/research/
http://research.ibm.com/ibm-q/research/
https://quantumai.google/
https://www.honeywell.com/us/en/company/quantum
https://www.honeywell.com/us/en/company/quantum
https://qiskit.org/textbook/ch-quantum-hardware/measurement-error-mitigation.html
https://qiskit.org/textbook/ch-quantum-hardware/measurement-error-mitigation.html
https://qiskit.org/textbook/ch-quantum-hardware/measurement-error-mitigation.html
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://www.dwavesys.com/
https://azure.microsoft.com/en-us/services/quantum/#product-overview
https://azure.microsoft.com/en-us/services/quantum/#product-overview

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

(741

[75]

[76]

(771
(78]
[79]

[80]

[81]

(82]

[83]

[84]

[85]

Michael A Nielsen and Isaac L Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2010.

Hidetoshi Nishimori and Kabuki Takada. Exponential enhancement of
the efficiency of quantum annealing by non-stoquastic hamiltonians.
Frontiers in ICT, 4:2, 2017.

Masayuki Ohzeki and Hidetoshi Nishimori. Quantum annealing: An
introduction and new developments. Journal of Computational and
Theoretical Nanoscience, 8(6):963-971, 2011.

Shuntaro Okada, Masayuki Ohzeki, Masayoshi Terabe, and Shinichiro
Taguchi. Improving solutions by embedding larger subproblems in a
d-wave quantum annealer. Scientific reports, 9(1):1-10, 2019.

Daniel O’Malley, Velimir V Vesselinov, Boian S Alexandrov, and
Ludmil B Alexandrov. Nonnegative/binary matrix factorization with a
d-wave quantum annealer. PloS one, 13(12):0206653, 2018.

Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari.
{UREQA}: Leveraging operation-aware error rates for effective
quantum circuit mapping on nisq-era quantum computers. In 2020
{USENIX} Annual Technical Conference ({USENIX}{ATC} 20),
pages 705-711, 2020.

Tirthak Patel and Devesh Tiwari. Disq: a novel quantum output state
classification method on ibm quantum computers using openpulse. In
Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1-9, 2020.

Tirthak Patel and Devesh Tiwari. Veritas: accurately estimating the
correct output on noisy intermediate-scale quantum computers. In
SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-16. IEEE, 2020.

Tirthak Patel and Devesh Tiwari. Qraft: reverse your quantum circuit
and know the correct program output. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 443-455, 2021.

Elijah Pelofske, Georg Hahn, and Hristo Djidjev.
the spin reversal transform on the d-wave 2000q.
arXiv:1906.10955, 2019.

WangChun Peng, BaoNan Wang, Feng Hu, YunJiang Wang, XianJin
Fang, XingYuan Chen, and Chao Wang. Factoring larger integers
with fewer qubits via quantum annealing with optimized parameters.
SCIENCE CHINA Physics, Mechanics & Astronomy, 62(6):60311,
2019.

Alejandro Perdomo-Ortiz, Joseph Fluegemann, Sriram Narasimhan,
Rupak Biswas, and Vadim N Smelyanskiy. A quantum annealing
approach for fault detection and diagnosis of graph-based systems. The
European Physical Journal Special Topics, 224(1):131-148, 2015.
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J Love, Alan Aspuru-Guzik, and Jeremy L O’brien.
A variational eigenvalue solver on a photonic quantum processor. Na-
ture communications, 5(1):1-7, 2014.

John Preskill. Quantum computing in the nisq era and beyond. arXiv
preprint arXiv:1801.00862, 2018.

Kristen L Pudenz, Tameem Albash, and Daniel A Lidar. Quantum
annealing correction for random ising problems. Physical Review A,
91(4):042302, 2015.

Google Al Quantum and Collaborators. Sycamore qaoa experimental
data. 7 2020.

Eleanor G Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B Do,
Elicia M Prystay, and Vadim N Smelyanskiy. A case study in pro-
gramming a quantum annealer for hard operational planning problems.
Quantum Information Processing, 14(1):1-36, 2015.

David Sherrington and Scott Kirkpatrick. Solvable model of a spin-
glass. Physical review letters, 35(26):1792, 1975.

Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I
Schuster, Henry Hoffmann, and Frederic T Chong. Optimized compi-
lation of aggregated instructions for realistic quantum computers. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 1031-1044, 2019.

Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303—
332, 1999.

Juexiao Su, Tianheng Tu, and Lei He. A quantum annealing approach
for boolean satisfiability problem. In Proceedings of the 53rd Annual
Design Automation Conference, page 148. ACM, 2016.

Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and Mar-
garet Martonosi. Cutqc: using small quantum computers for large
quantum circuit evaluations. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 473-486, 2021.

Optimizing
arXiv preprint

14

[86]

[87]

[88]

[89]
[90]

[91]

[92]

[93]

[94]

[95]

Swamit S Tannu and Moinuddin Qureshi. Ensemble of diverse map-
pings: Improving reliability of quantum computers by orchestrating
dissimilar mistakes. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 253-265, 2019.
Swamit S Tannu and Moinuddin K Qureshi. Mitigating measurement
errors in quantum computers by exploiting state-dependent bias. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 279-290, 2019.

Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created
equal: a case for variability-aware policies for nisq-era quantum com-
puters. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 987-999, 2019.

Quantum Al team and collaborators. Recirq, October 2020.

Tony T Tran, Minh Do, Eleanor G Rieffel, Jeremy Frank, Zhihui Wang,
Bryan O’Gorman, Davide Venturelli, and J Christopher Beck. A hybrid
quantum-classical approach to solving scheduling problems. In Ninth
annual symposium on combinatorial search, 2016.

Davide Venturelli, Dominic JJ Marchand, and Galo Rojo. Quantum
annealing implementation of job-shop scheduling. arXiv preprint
arXiv:1506.08479, 2015.

Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven,
Travis S Humble, Rupak Biswas, Eleanor G Rieffel, Alan Ho, and
Salvatore Mandra. Establishing the quantum supremacy frontier with a
281 pflop/s simulation. Quantum Science and Technology, 5(3):034003,
2020.

Walter Vinci, Tameem Albash, and Daniel A Lidar. Nested quantum
annealing correction. npj Quantum Information, 2(1):1-6, 2016.
Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen,
Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, et al.
Strong quantum computational advantage using a superconducting
quantum processor. arXiv preprint arXiv:2106.14734, 2021.

Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient
methodology for mapping quantum circuits to the ibm gx architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 38(7):1226-1236, 2018.



	1 Introduction
	2 Background and Motivation
	2.1 Quantum Computing
	2.2 Operation Model of QA
	2.3 The Opportunity: Solving Large Problems with QA
	2.4 The Challenge: Hardware and Software Limitations
	2.4.1 Hardware-Level Challenges
	2.4.2 Software-level Challenges

	2.5 Impact of Trials on Energy Residual
	2.6 Goal of this Paper

	3 Evaluation Methodology
	3.1 Quantum Platform and Baseline
	3.2 Benchmarks
	3.3 Figure-of-Merit

	4 EQUAL: Ensemble Quantum Annealing
	4.1 Challenges in Generating Ensembles in EQUAL
	4.2 Overview of Design
	4.3 Generating Ensembles via Controlled Perturbations
	4.3.1 Exploiting Hardware Characteristics of QAs
	4.3.2 Profiling QAs to estimate Hardware Precision

	4.4 Execution on QA Hardware
	4.5 Results for Energy Residual
	4.6 Case-Study: How EQUAL Reduces Systematic Bias

	5 Combining EQUAL with Error-Mitigation
	5.1 Primer on Error-Mitigation Schemes for QA
	5.2 Overview of SQC Post-Processing
	5.3 EQUAL+: Combining EQUAL and SQC
	5.4 Analysis of Overheads
	5.5 Results for Energy Residual
	5.6 Results for Validation of Precision Selection
	5.7 Case-Study: How EQUAL+ reduces Systematic Bias
	5.8 Impact of Number of Ensembles

	6 Related Work
	6.1 Priors works using Ensembles
	6.2 Software error mitigation policies
	6.3 Hardware-level error mitigation

	7 Conclusion
	A Appendix: Characterizing Error Mitigation
	A.1 Spin-Reversal vs. Single Qubit Correction
	A.2 Inter-Sample Delay vs. Single Qubit Correction


