
Optimizing Variational Circuits for
Higher-Order Binary Optimization

Zoé Verchère1,2, Sourour Elloumi1,2, Andrea Simonetto1

1 Unité de Mathématiques Appliquées, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
2 CEDRIC, Conservatoire National des Arts et Métiers, 75003 Paris, France

Abstract—Variational quantum algorithms have been advo-
cated as promising candidates to solve combinatorial optimization
problems on near-term quantum computers. Their methodology
involves transforming the optimization problem into a quadratic
unconstrained binary optimization (QUBO) problem. While this
transformation offers flexibility and a ready-to-implement circuit
involving only two-qubit gates, it has been shown to be less
than optimal in the number of employed qubits and circuit
depth, especially for polynomial optimization. On the other hand,
strategies based on higher-order binary optimization (HOBO)
could save qubits, but they would introduce additional circuit
layers, given the presence of higher-than-two-qubit gates.

In this paper, we study HOBO problems and propose new ap-
proaches to encode their Hamiltonian into a ready-to-implement
circuit involving only two-qubit gates. Our methodology relies on
formulating the circuit design as a combinatorial optimization
problem, in which we seek to minimize circuit depth. We also
propose handy simplifications and heuristics that can solve
the circuit design problem in polynomial time. We evaluate
our approaches by comparing them with the state of the art,
showcasing clear gains in terms of circuit depth.

Index Terms—Combinatorial optimization, variational algo-
rithms, higher-order binary optimization, QAOA.

I. INTRODUCTION

Variational quantum algorithms are being investigated as
a promising strategy to solve well-known combinatorial opti-
mization problems on near-term quantum devices. An example
of such algorithms is QAOA [1], [2]. The original paper
by Farhi, Goldstone and Gutmann applies this method to
Max-Cut, a notoriously NP-hard combinatorial problem. From
there, it was quickly understood that QAOA can be used to
approximately solve any Quadratic Unconstrained Binary Op-
timization (QUBO) problems. This understanding established
a simple workflow: start from a given optimization problem,
reformulate it as a QUBO, then use QAOA. In [3], Lucas gives
QUBO reformulations of many well-known NP-complete and
NP-hard problems, including the satisfiability (SAT) problem,
the graph isomorphism problem, and the traveling salesman
problem (TSP). Since then, many variants and applications
have appeared [4]–[10] (and references therein). Whenever
higher-order terms appear, they are reduced to quadratic terms
by the introduction of auxiliary variables. In [11], Herrman et
al. discuss how to introduce such auxiliary variables in a way
that guarantees that the circuit encoding the resulting QUBO
is as shallow as possible.

Even though the QUBO form is quite practical and versatile,
recent work by Glos, Krawiec and Zimboràs [12] shows that
reformulating the original problem at hand as a higher-order
binary optimization (HOBO) problem can be interesting in a
number of ways. Working on the TSP, they show that consid-

ering HOBO reformulations allows for different compromises
between number of qubits and circuit depth needed to encode
the Hamiltonian corresponding to the problem. In the case
of the TSP, they manage to encode a HOBO reformulation
on fewer qubits than the state-of-the-art QUBO reformulation
(O(N log(N)) qubits for N binary variables, against O(N2)),
but at the cost of a deeper circuit.

This increased depth is in part due to the current available
technology. In the QUBO case, there is a rather clear workflow
between the QUBO formulation of the problem and the
parametrized circuit for the corresponding Hamiltonian. A
change of variable lets us change from binary variables into
convenient Pauli operators. The corresponding formulation of
the problem is often called the Ising formulation, due to the
similarities with a model called Ising spin glass in existing
literature [3], [13]. This formulation then informs us on how to
build the circuit moving forward, using only two-qubit gates.
In the case of a HOBO formulation, the corresponding Ising
formulation is also of degree greater than two, implying the
use of d-qubit gates. Such gates are hard to implement, and
must therefore be decomposed into a series of smaller gates,
therefore making the circuit deeper.

In this paper, we propose new ways to design variational cir-
cuits for HOBO problems. We operate under strict hypotheses
as to which gates may be used, thus ensuring the resulting
circuit may directly be implemented on currently available
technology. Our contributions are as follows,
• We reinterpret and formulate the circuit design as a

combinatorial routing problem, that we model as a mixed-
integer linear programming problem, which can minimize the
circuit depth;
• We propose simplifications and heuristics to approximate

the solution of the combinatorial design problem, so to derive
the variational circuit in polynomial time;
• The proposed heuristic is a recursive circuit template,

computable in polynomial time, that can be used to synthetize
the circuit of any HOBO problem of m monomials and degree
D, in O(m 2D) layers;
• We demonstrate the performance of the proposed design

methodologies, comparing them with the state of the art,
highlighting clear gains in terms of circuit depth.

Organization. Sect. II presents the problem formulation.
We derive the circuit design problem in Sect. III, and we
propose simplifications and heuristics in Sect. IV. Sec. V
collects our numerical comparisons, and we close in Sect. VI.

ar
X

iv
:2

30
7.

16
75

6v
1

 [
qu

an
t-

ph
]

 3
1

Ju
l 2

02
3

II. PROBLEM FORMULATION

Our ultimate goal is to solve the following HOBO problem:

min
x∈{0,1}n

f(x) :=
∑
M∈P

[
CM

∏
i∈M

xi

]
, (1)

where P is the polynomial set of all monomials M , CM ∈
R for all M are the monomial coefficients, and xi’s are the
decision variables. In this context, a monomial M is the set of
indices of the variables appearing in the corresponding term of
the objective function. Since the variables are binary, xi = x2

i

for all i, therefore we need not consider adding exponents
on any of the variables. The degree of a monomial M is thus
equal to its cardinality, |M |. The overall degree of the function
f is maxM∈P |M |. If the degree of f is equal to two, then this
problem falls into the QUBO category. If it is greater than two,
then it falls into the HOBO category, which we plan to study.

The first step towards using a quantum variational algorithm
to solve this problem is to derive its (Ising) Hamiltonian. This
can be done by using the variable change xi ← 1−Zi

2 for all i,
where Zi is the Pauli operator that acts on qubit i. This gives
the following diagonal Hamiltonian,

H(Z) :=
∑

M∈PH

[
αM

∏
i∈M

Zi

]
, (2)

where PH represents the polynomial set in the new variables
and αM are the new real-valued coefficients.

We notice that PH is constituted of all the monomials
which are subsets of at least one of the monomials of P ,
the polynomial in binary variables. This is due to the variable
change: let us briefly focus on the case of a single monomial of
degree three, f(x) = x1x2x3. Then, the corresponding Ising
Hamiltonian is H(Z) = (1−Z1

2)(1−Z2

2)(1−Z3

2) = 1
8 (1−Z1 −

Z2 − Z3 + Z1Z2 + Z1Z3 + Z2Z3 − Z1Z2Z3), creating every
subset of the original monomial into monomials in the Ising
Hamiltonian.

Given the Hamiltonian H(Z) in (2), the goal of this paper
is to study how we can encode it into a variational quantum
circuit while minimizing circuit depth.

III. CIRCUIT DESIGN AS ROUTING

We start by noticing that in variational algorithms, such
as QAOA, we do not encode the Ising Hamiltonian H(Z)
directly, but we actually encode an operator: a 2n×2n unitary
diagonal matrix defined as

UH(γ) = e−ȷγH(Z) = exp
(
− ȷγ

∑
M∈PH

αM

∏
i∈M

Zi

)
, (3)

where γ is a free rotation parameter that will be optimized
over classically, and ȷ =

√
−1. In order to design circuits

which may be run on currently available (superconducting)
technology, we place ourselves under strict conditions con-
cerning available gates. We may use only one-qubit Pauli and
phase rotation gates, as well as two-qubit CNOT gates, [14].
Without loss of generality, for circuit design purposes only,
we let γ = 1.

Example 1: To fix the ideas, let us consider a very simple
Ising Hamiltonian, H(Z) = α123Z1Z2Z3. The corresponding
operator is UH = exp(−ȷα123Z1Z2Z3). A known [12], [15]

decomposition of this operator using the allowed gates is
depicted in Figure 1a. The rotation can also be applied on
a provided ancilla qubit as in Figure 1b. ⋄

Example 2: Next, we consider a slightly more complicated
Ising Hamiltonian of the following form:

H(Z) =
∑

I⊂{1,2,3}

[αI

∏
i∈I

Zi].

This Hamiltonian stems from the variable change applied
to f(x) = x1x2x3. Inspired by Gray code (also known as
reflected binary code), in [12], the authors propose the circuit
shown in Figure 1c. Since this last circuit lets us encode a
monomial of degree three of the original binary formulation
of the problem, a first possible design for the whole circuit is
to use this method to generate a circuit for each monomial,
and then put them together end-to-end to obtain a full circuit.
However, this has two obvious downsides.

The first downside is that we may end up repeating some
elements over the course of the whole circuit. For example,
let us consider f(x) = C123x1x2x3 + C234x2x3x4. Using
this method based on Gray code to build one subcircuit per
monomial means that we are building a circuit that encodes
H1(Z) =

∑
I⊂{1,2,3}

(−1)|I|C123

∏
i∈I Zi, and a second circuit

that encodes H2(Z) =
∑

I⊂{2,3,4}
(−1)|I|C234

∏
i∈I Zi, and

putting them together one after the other. Therefore, we will
include twice all the monomials that are common to the two
Ising Hamiltonians, in this case {2}, {3}, and {2, 3}.

The second downside is that every phase rotation happens
on the ancilla qubit, which means that no two phase rotations
can happen at the same time. We believe it is a misuse of
resources, and the same operator could be built on a much
shallower circuit by parallelizing operations. ⋄

From the discussion of the above examples, it seems reason-
able that a better strategy to encode the Hamiltonian should be
achievable. In this paper, we take the point of view of routing.
In fact, from a more high-level abstraction, the circuit in Figure
1a can be seen as a form of routing of the singletons Zi, in
order to form the product Z1Z2Z3 on the third qubit, at which
moment, the appropriate phase rotation gate is applied.

Following this point of view, at the start of the circuit, each
qubit represents its corresponding singleton: Z1 is on qubit 1,
Z2 on qubit 2, Z3 on qubit 3, and so forth. The first CNOT
gate from qubit 1 to qubit 2 replaces the current monomial on
qubit 2 by the product of the monomials on qubit 1 and 2,
that is to say Z2 is replaced by Z1Z2.

This interpretation is also valid for the circuits in Figures 1b
and 1c, where we simply have to consider that the ancilla qubit
starts by representing the constant 1.

This view led us to conceptualize the search for the shal-
lowest circuit for a given Ising Hamiltonian as a combinatorial
optimization problem, where variables and constraints describe
which gates are put on which qubits, and this routing process
of the monomials through the circuit through the use of the
CNOT gates. Let us introduce the following variables and
notations that will help us in modeling our routing problem.

α123

(a) Circuit for UH = exp(−ȷ α123Z1Z2Z3) without
ancilla.

|0⟩ α123 |0⟩

(b) Circuit for UH = exp(−ȷ α123Z1Z2Z3) with an
ancilla.

|0⟩ α3 α23 α2 α12 α123 α13 α1 |0⟩

(c) Circuit for UH = exp(−ȷ
∑

I⊂{1,2,3}
αI

∏
i∈I

Zi), using Gray code and an ancilla.

Fig. 1: Quantum circuits for a few simple Ising Hamiltonians.

Remark 1: As the reader may be aware of, QAOA involves
also a mixing Hamiltonian, and an expected value compu-
tation. Both can be done as usual. The mixing Hamiltonian
can be designed to contain two-qubit gates only, and since
the problem Hamiltonian is diagonal, then the expected value
computation can be performed as usual. Hence, the compli-
cating factor for HOBO problems is the encoding of UH .

A. Preliminaries and notations
As previously mentioned, n is the number of variables in

the problem (and its corresponding Ising formulation), and
PH is the set of monomials in the Ising formulation of the
problem. The total number of available qubits is denoted by
q. It verifies q ⩾ n, and any qubits beyond the n first are
ancillas. The maximum circuit depth considered is called T .
This parameter may be set to the depth of a known circuit
constructed via a simple heuristic. For handy notation we set
[[l,m]] := {l, . . . ,m} for any integer l ≤ m.

We introduce the following supporting binary variables:
• ak : 1 if something happens in the circuit on layer k, 0

otherwise.
• cki,j : 1 if there is a CNOT gate from qubit i to j on layer

k, 0 otherwise.
• rki,v : 1 if there is a rotation gate corresponding to

monomial v on qubit i on layer k, 0 otherwise.
• dki,v : 1 if monomial v is represented on qubit i on layer

k, after applying the gates for that step, 0 otherwise.
• bki,p : 1 if Zp is on qubit i on layer k, after applying the

gates for that step, 0 otherwise.
Since the goal is to reduce circuit depth as much as possible,

we must minimize the sum of active layers, so, we introduce
the following cost function

J({ak}) =
T∑

k=1

ak. (4)

We look now at the routing constraints.

Initial conditions of the circuit: the first n qubits represent
Zi, for all i ∈ {1, . . . , n}. Therefore, the following constraints
are necessary at the start of the circuit, i.e. layer zero,

b0i,i = 1 ∀i ∈ [[1, n]]

b0i,p = 0 ∀i ∈ [[1, n]], ∀p ̸= i

b0i,p = 0 ∀i ∈ [[n+ 1, q]], ∀p ∈ [[1, n]].

(5)

Final conditions of the circuit: uncomputing is required,
as this circuit will be part of a bigger circuit. Therefore, the
following constraints are necessary at time step T ,

bTi,i = 1 ∀i ∈ [[1, n]]

bTi,p = 0 ∀i ∈ [[1, n]], ∀p ̸= i

bTi,p = 0 ∀i ∈ [[n+ 1, q]], ∀p ∈ [[1, n]].

(6)

CNOT or rotation implies activity, and uniqueness: a
layer is active if there is a CNOT gate or rotation gate on that
layer, and a qubit cannot be acted on by more than one gate
per layer. Therefore, we have the following constraints.

q∑
j=1

(cki,j+ckj,i)+
∑
v∈PH

rki,v ⩽ ak, ∀k ∈ [[1, T]], ∀i ∈ [[1, q]].

(7)

No self-control: a qubit may not control itself through the
use of a CNOT gate,

cki,i = 0, ∀k ∈ [[1, T]],∀i ∈ [[1, q]]. (8)

Compute all monomials: all the monomials in the formu-
lation must be treated by the appropriate rotation exactly once,

T∑
k=1

q∑
i=1

rki,v = 1 ∀v ∈ PH . (9)

Monomial check: check whether a given monomial of PH

is represented on a given qubit at a given time step,

dki,v ⩽ bki,p
∀k ∈ [[0, T]],∀i ∈ [[1, q]],∀v ∈ PH ,∀p ∈ v

dki,v ⩽ 1− bki,p
∀k ∈ [[0, T]],∀i ∈ [[1, q]],∀v ∈ PH ,∀p ∈ [[1, n]] \ v

dki,v ⩾
∑
p∈v

bki,p +
n∑

p=1
p/∈v

(1− bki,p) + 1− n

∀k ∈ [[0, T]],∀i[[1, q]],∀v ∈ PH .
(10)

Rotation validity: a rotation corresponding to a given
monomial can only occur if that monomial is properly rep-
resented on a given qubit,

rki,v ⩽ dk−1
i,v ∀k ∈ [[1, T]],∀i ∈ [[1, q]],∀v ∈ PH . (11)

Propagation rule: modelling the behavior of CNOT gates,
and the overall propagation of terms throughout the circuit,
can be best explained as a binary sum ⊕2,

bki,p = bk−1
i,p ⊕2 (

q∑
j=1

ckj,ib
k−1
j,p)

∀k ∈ [[1, T]],∀i ∈ [[1, q]],∀p ∈ [[1, n]].

Note that
q∑

j=1

ckj,ib
k−1
j,p is indeed a binary quantity, due to the

b variables being binary and to the uniqueness constraint. This
binary sum can be rewritten in the following manner:

bki,p = bk−1
i,p +

q∑
j=1

ckj,ib
k−1
j,p − 2bk−1

i,p

q∑
j=1

ckj,ib
k−1
j,p . (12)

This expression can then be linearized at the cost of intro-
ducing additional variables.

B. The routing problem

The circuit design problem (CDP) can then be formulated as
a special routing problem: we route the singletons Zi through
the circuit, using their initial positions and CNOT gates, in
order to compute each monomial of the Hamiltonian, once
in the circuit. As said, the goal is to minimize the depth
of the circuit, subject to all previously described constraints,
modelling the initial positions of singletons, their routing
through CNOT gates, and the presence of a phase rotation gate
for each monomial of the Hamiltonian. Tthe problem reads,

(CDP)

min

a ∈ {0, 1}T , b ∈ {0, 1}nqT ,

c ∈ {0, 1}q2T , d, r ∈ {0, 1}qT |PH |

J({ak})

subject to (5)− (12).

(13)

We immediately note that variables a, b and d can be set to
continuous in [0, 1] instead of binary without loss of generality.
In fact, if c and r take binary values, then the constraints imply
that all other variables also take binary values.

The constraints can also be augmented with trivial
symmetry-breaking conditions, such as ak ⩾ ak+1. This stacks

any activity in the circuit on the preceding layers, thus not
leaving any gaps in the circuit.

As one can expect, the (CDP) routing problem is difficult
to solve to optimality in reasonable amounts of time. Even
for small Ising Hamiltonians with relatively few variables and
monomials, one will have to resort to solver heuristics. For
example, working with Gurobi as a solver, we are able to
solve it in seconds when f is a single monomial of degree
three. When we raise it to degree four, optimality is out of
reach, even allowing for several hours of computational time.
Then, it is key to devise simplifications and heuristics to tackle
the problem fast yet efficiently.

IV. SIMPLIFICATIONS AND HEURISTICS

As explained in the previous section, solving (CDP) to
optimality is often impossible given a reasonable time limit.
However, the formulation is still useful in a variety of ways.
First, by using solver heuristics, we can generate circuits
that can improve on feasible solutions given as a warm
start (e.g., a Qiskit-generated compilation). Second, imposing
further constraints to reduce the search space, we can trade
off optimality for faster resolution.

A. Simplifications: downward CNOTs
One such set of constraints is remarkably simple yet very

effective, and it can also be motivated by current quantum
technology. If we constrain all the CNOT gates to be all in the
same direction, e.g., downward facing, then the search space
is reduced enough to allow us to compute optimal solutions
more efficiently. The constraint reads,

cki,j = 0 ∀k ∈ [[1, T]], ∀i > j ∈ [[1, q]]2. (14)

This constraint imposes that singletons Zi can only travel
“downwards”, to qubits with a higher index. This constraint is
somewhat natural, it is often a constraint in current quantum
technology, and it appears in standard compilation tools (e.g.,
Qiskit orients its CNOTs), see also [14]. Again, working with
Gurobi, this enables us to solve (CDP) when f is a monomial
of degree four in seconds, and even if the solution obtained is
not optimal in terms of depth (as we will show in the result
section), the result is better than Qiskit compilation.

B. Templates
We now explore this simplification further, to devise a

recursive template (i.e., a circuit that can be used for any
monomial of a given degree) that can be generated by an
algorithm in polynomial time, which is able to synthetize
the circuit of any HOBO problem of m monomials and
degree D in O(m 2D) layers. This is key to the practical
implementability of (CDP), and the resulting circuit is still
of reasonable quality. This template was found by computer-
assisted trial-and-error, by using the simplified problem (CDP)
with (14), by fixing T = 2D and minimizing the number
of CNOT gates. The resulting template is far from being
trivial, so its generation may seem convoluted at first. Yet,
it is surprisingly very effective.

Let us consider the design of a template for a circuit without
ancillas for f when f is a monomial of a given degree D.
This circuit requires D qubits. Let us denote this circuit by

1

αD

D − 1

D + 1

D

2D1 2D + 1 2D+1

CD lines 1 to D− 1 up to layer 2D − 1

CD line D where D is now D + 1

First 2D layers

Elements of CD that involve
qubit D alternated with ...

... CNOTs of the first part
and rotations on qubit D+1
which are in reversed order
and D is added

Second 2D layers

Fig. 2: Visual explanation of Algortihm 1. Consider CD as a rectangle R = ((1, 1)→ (D, 2D)). We build CD+1 as a rectangle
R′ = ((1, 1) → (D + 1, 2D+1)) with: first column of R′ has the rotations on the D + 1 singletons; column 2D of R′ has
a CNOT from D to D + 1; rectangle R′′ = ((1, 1) → (D − 1, 2D − 1)) contains CD lines 1 to D − 1 up to layer 2D − 1;
rectangle R′′′ = ((1, 2D +1)→ (D+1, 2D+1)) contains two intertwined circuits: first the elements of CD that involve qubit
D alternated with the CNOTs of the first part and rotations on qubit D + 1 which are in reversed order and D is added.

CD. We can start with C2 (i.e., a QUBO), which we can solve
at optimality and it is given in Figure 3a: a circuit of depth
equal to 4. Imagine now that we have access to CD, D ≥ 2,
we can now generate CD+1 as follows.

Algorithm 1 Template generator

Input: A template for CD in D qubit and 2D layers.
Output: A template for CD+1 in D + 1 qubit and 2D+1 layers.

1: Add all the phase rotation gates αq , q ∈ [[1, D + 1]] on the first
layer

2: Add layers from 2 to 2D−1 of CD applied to qubits q ∈ [[1, D−
1]] ∪ {D + 1}

3: For layer 2D , add a CNOT gate controlled by qubit D acting on
qubit D + 1

4: For layers 2D + 1 till 2D+1 alternate (i) CD applied to qubits
[[1, D]] with rotations only on qubit D, and (ii) the CNOT gates
of the first 2D layers with rotations on qubit D+1. These latter
rotations are in number 2D with element D added and otherwise
taken in reversed order with respect to the first 2D layers.

We further expand on the explanation of the template
generator in Figure 2, and its caption, as well as in Figure 3b
and Figure 3c. Note that in the latter figures, we superpose
rotation gates to CNOT gates (in somewhat a non-traditional
layout) to stress that the rotation and the CNOT happen in
parallel on the same layer.

We are now ready for the following proposition.
Proposition 1: The Template generator in Algorithm 1

outputs a circuit CD+1 given the preceding circuit CD that
has all the rotation gates we need to represent a monomial of
degree D + 1, it verifies all the constraints of (CDP) and it
has exactly 2D+1 layers and 2D+1 unique rotation gates.

Proof. To represent a monomial of degree D+1, we need all the
unique combination of indices up to degree D + 1, of which there
are 2D+1 − 1. With our construction, CD+1 has 2D − 1 rotations
coming from CD plus one considering αD . To this we add all the
rotations on the second 2D layers, i.e., all the rotations on qubit D,
as 2D−1 − 1 and all the ones on qubit D + 1, as 2D−1. Adding up
we obtain a total of unique rotation gates of 2D+1 − 1, as required.

As for the layers: CD+1 has firstly 2D layers by construction, at
which we add all the CNOTs plus rotations of these first 2D layers
a second time, adding another 2D layers, totalling at 2D+1. Note
that the circuit acting on qubit D on the second half can happen in
parallel with the one acting on qubit D+1, so it is not counted here.

Finally, one can verify that all the constraints of (CDP) are imposed
by construction and they hold. ⋄

Proposition 1 suggests that our template generator is also
theoretically quite efficient, using the monomial structure to
compile its resulting unitary matrix on D qubits in 2D layers.
This is in contrast with the O(4D) lower bound for generic
unitary matrices [16]. When considering a degree D monomial
in binary variables, since the reformulation creates 2D − 1
terms to encode, the scaling in O(2D) may be unavoidable.

We can now use the template generator to devise a simple
heuristic to design a variational circuit for a given HOBO
problem. The idea is to consider all untreated monomials, find
out which monomial has its corresponding qubits available
at the earliest point in the circuit, and add to the circuit the
template corresponding to the chosen monomial. Repeat this
procedure until all monomials have been treated. This heuristic
is simple, compiling a circuit featuring m monomials up to
degree D in O(m 2D) layers, and effective in practice. Of
course the O(m 2D) is only an upper bound, especially when
monomials pertain a disjoint set of qubits and they can be
treated simultaneously, as well as other possible simplifica-
tions, which will be considered in future work.

V. RESULTS

We compare the depth of circuits obtained on few instances
with different methods. We use the combinatorial optimization
(CDP) (13) described in Section II, its simplified version
adding the constraints (14), the template generator heuristic of
Algorithm 1, Qiskit [17], and the Gray code approach of [12].
In the case of Qiskit, we design the circuit as if multiple-qubit
gates existed, and then use a pass manager to unroll the circuit
into one-qubit and CNOT gates only, and then use a second
pass to optimize the design.

We consider various monomial and polynomial instances of
varying degree, from QUBOs of degree two, to polynomials
of degree six. In all cases, we report the obtained depth and
used computational resources on a laptop machine with Intel
Core i7-10810U processors (4.9 GHz) with 16 GB of RAM.
For (CDP) and its simplified version, we use Gurobi [18]
as a mixed-integer linear programming solver, we give the
circuit obtained with the template generator as feasible starting

α1

α2 α12

(a) Template circuit C2.
(b) Template circuit C3, with the color code from the algorithm
explanation.

α1

α2 α12

α3 α13 α123 α23

α4 α14 α124 α24 α234 α1234 α134 α34

(c) Template circuit C4.

Fig. 3: Template circuits for binary monomials of D = 2, 3, 4. Note the non-standard visual layout of the superposition of
rotation and CNOT gate (e.g., α12 in C3), which we use to stress that both gates are applied in the same layer.

Table 1: Sample results for the considered instances, showcasing the benefit of our methodologies. We have imposed a 1200 s
time limit. In the case of −, the solver could not improve on the warm start solution or prove its optimality in the time limit.

Qiskit [17] Gray code [12] (CDP) (13) Simpl.ed (CDP) (13) + (14) Templates, Algo. 1

Instance n |P | D Depth CPU [s] Depth CPU [s] Depth CPU [s] Depth CPU [s] Depth CPU [s]

qubo1 4 5 2 17 0.6 35 <0.1 8 481 8 0.3 12 <0.1
qubo2 6 10 2 29 0.6 70 <0.1 16 1200 11 6.9 20 <0.1

monomial3 3 1 3 12 0.5 15 <0.1 8 14 8 0.1 8 <0.1
poly3-1 4 2 3 20 0.6 30 <0.1 9 1200 10 1.6 16 <0.1
poly3-2 5 4 3 41 0.6 60 <0.1 26 1200 16 8.0 32 <0.1

monomial4 4 1 4 26 0.6 31 <0.1 16 1200 16 2.4 16 <0.1
poly4-1 5 2 4 45 0.6 62 <0.1 26 1200 18 1200 32 <0.1
poly4-2 6 4 4 89 0.8 124 <0.1 - - 47 1200 64 <0.1

monomial5 5 1 5 56 0.6 63 <0.1 - - - - 32 <0.1
poly5-1 6 2 5 101 0.7 126 <0.1 - - 57 1200 64 <0.1
poly5-2 7 4 5 206 1.1 252 <0.1 - - - - 128 <0.1

monomial6 6 1 6 118 1.7 127 <0.1 - - - - 64 <0.1
poly6-1 7 2 6 228 1.3 254 <0.1 - - - - 128 <0.1
poly6-2 8 4 6 438 1.9 508 <0.1 - - - - 256 <0.1

solution, and we impose a 1200 s time limit. If the time limit
is reached, optimality is therefore not guaranteed.

Table 1 shows that our approaches outperform Qiskit and the
Gray code method of [12] (which even uses an ancilla qubit) in
all the instances. Given the time limit, the simplified strategy
can be better than (CDP), and our template is surprisingly
very effective in delivering more compact circuits in less than
0.1 seconds. Future research will explore our template more
thoroughly, and mix it with other ideas for heuristics.

VI. CONCLUSION

We have studied how to compile variational circuits
stemming from higher-order polynomial binary optimization

(HOBO) problems. We have formulated the compilation task
as a qubit routing combinatorial problem and proposed ways
to solve it efficiently. In particular, we have found templates
that can compile any HOBO with a recursive algorithm in
polynomial time, sacrificing minimal depth circuits for almost
immediate compilation. The results show that our approach
is effective and promising. Remaining questions include the
resulting circuit’s resilience to noise, which may be studied in
future work.

ACKNOWLEDGEMENTS

This research benefited from the support of the FMJH
Program PGMO, under project number 2022-0010.

REFERENCES

[1] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[2] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
p. 4213, 2014.

[3] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
physics, vol. 2, p. 5, 2014.

[4] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The
theory of variational hybrid quantum-classical algorithms,” New Journal
of Physics, vol. 18, no. 2, p. 023023, 2016.

[5] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven, “Quantum algorithms
for fixed qubit architectures,” arXiv: 1703.06199, 2017.

[6] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices,” Physical Review X, vol. 10, no. 2,
p. 021067, 2020.

[7] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner,
“Improving Variational Quantum Optimization using CVaR,” Quantum,
vol. 4, p. 256, Apr. 2020.

[8] G. Nannicini, “Performance of hybrid quantum-classical variational
heuristics for combinatorial optimization,” Physical Review E, vol. 99,
no. 1, p. 013304, 2019.

[9] C. Gambella and A. Simonetto, “Multiblock ADMM heuristics for
mixed-binary optimization on classical and quantum computers,” IEEE
Transactions on Quantum Engineering, vol. 1, pp. 1–22, 2020.

[10] Y. Chatterjee, E. Bourreau, and M. J. Rančić, “Solving various NP-hard
problems using exponentially fewer qubits on a quantum computer,”
arXiv preprint arXiv:2301.06978, 2023.

[11] R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S. Humble, and
G. Siopsis, “Globally optimizing QAOA circuit depth for constrained
optimization problems,” Algorithms, vol. 14, no. 10, p. 294, 2021.

[12] A. Glos, A. Krawiec, and Z. Zimborás, “Space-efficient binary opti-
mization for variational quantum computing,” npj Quantum Information,
vol. 8, no. 1, pp. 1–8, 2022.

[13] F. Barahona, “On the computational complexity of Ising spin glass
models,” Journal of Physics A: Mathematical and General, vol. 15,
no. 10, p. 3241, 1982.

[14] L. Madden and A. Simonetto, “Best approximate quantum compiling
problems,” ACM Transactions on Quantum Computing, vol. 3, no. 2,
pp. 1–29, 2022.

[15] J. T. Seeley, M. J. Richard, and P. J. Love, “The Bravyi-Kitaev
transformation for quantum computation of electronic structure,” The
Journal of chemical physics, vol. 137, no. 22, p. 224109, 2012.

[16] V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal
two-qubit controlled-NOT-based circuits,” Phys. Rev. A, vol. 69, p.
062321, Jun 2004. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.69.062321

[17] IBM Quantum, “Qiskit: An Open-source Framework for Quantum
Computing,” 2019.

[18] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

https://link.aps.org/doi/10.1103/PhysRevA.69.062321
https://link.aps.org/doi/10.1103/PhysRevA.69.062321
https://www.gurobi.com

	Introduction
	Problem formulation
	Circuit design as routing
	Preliminaries and notations
	The routing problem

	Simplifications and heuristics
	Simplifications: downward CNOTs
	Templates

	Results
	Conclusion
	References

