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Abstract—Quantum circuit cutting has emerged as a promising
method for simulating large quantum circuits using a collection of
small quantum machines. Running low-qubit circuit “fragments”
not only overcomes the size limitation of near-term hardware,
but it also increases the fidelity of the simulation. However,
reconstructing measurement statistics requires computational
resources—both classical and quantum—that grow exponentially
with the number of cuts. In this manuscript, we introduce the
concept of a golden cutting point, which identifies unnecessary
basis components during reconstruction and avoids related down-
stream computation. We propose a hypothesis-testing scheme for
identifying golden cutting points, and provide robustness results
in the case of the test failing with low probability. Lastly, we
demonstrate the applicability of our method on Qiskit’s Aer
simulator and observe a reduced wall time from identifying and
avoiding obsolete measurements.

Index Terms—quantum circuit cutting, circuit cutting, circuit
knitting, circuit reconstruction, hypothesis-testing, golden cutting
point

I. INTRODUCTION

Quantum circuit cutting refers to the method of splitting
quantum circuits into a set of small independent circuit
fragments [1]. Using circuit cutting methods, large quantum
circuits can be simulated by a collection of smaller machines,
barring some addition classical computing resources. More-
over, it was also empirically shown that cutting the circuit
reduces the affect of noise [2], [3] and can be used for
error mitigation [4]. There has also been work on properly
accounting for statistical shot noise [5] and adaptation to
specific problems such as combinatorial optimization [6].
Thus, this technique holds great promise for resolving many
practical issues with utilizing quantum hardware, particularly
in the NISQ era [7].

However, circuit cutting suffers greatly in practice as the
runtime grows exponentially with the number of cuts. Akin to
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quantum state tomography, circuit cutting works by classically
tracking all quantum degrees of freedom at the cut locations.
Thus, exponential scaling comes naturally as the quantum state
of interest grows. There have been many efforts to reduce
this cost through randomized measurements [8], [9], classical
sampling [10], and variational optimization [11]. Nonetheless,
the exponential growth in runtime is unlikely to vanish without
imposing structural assumptions on the circuit. Alternatively,
finding applications of circuit cutting that avoid the scaling
issue, as demonstrated in [4], also remains a problem of
interest.

In this manuscript, we build upon our previous work [12]
and propose an algorithm for online detection of neglectable
basis elements during circuit cutting. In [12], we showed that
some reconstruction procedures can be sped up if we impose
extra assumptions on the circuit—namely, whether a basis
element can be neglected. However, such assumptions cannot
be easily detected a priori. Thus, we propose a hypothesis
testing scheme at each cut location that, at no additional cost
in run time, identifies whether there is statistically significant
evidence against the assumption being true. We empirically
demonstrate the viability of our method on the Qiskit simula-
tor [13], and examine scaling effects with respect to important
algorithm parameters.

The outline of the paper is as follows. Section II re-derives
the circuit cutting in the general bipartition case and introduces
the concept of a “golden cut”—a cut location that has basis
elements which can be neglected. We also show the algorithm
for detecting golden cuts as well as their statistical properties.
In Section III, we demonstrate the applicability of our method
in a simple, one-cut case. Meanwhile, we explore additional
properties of the proposed algorithm under varying parameters.
Lastly, we discuss some future directions in Section IV.
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Fig. 1: An example of circuit bipartition using K cuts. The circuit is comprised of arbitrary unitary gates Uf1 and Uf2 such
that the middle K qubits are possibly entangled. The circuit can be split into two fragments by performing K cuts between
the two gates, and classically recombining measurement outcomes in basis M and preparing eigenstates of M for a collection
of operators that forms a basis over density matrices.

II. THEORY

We start the section by briefly introducing circuit cutting
only for the bipartite case. Readers are encouraged to con-
sult [1], [5], [9] for more detailed derivations and/or general
treatment of circuit cutting. Section II-A ends with the defini-
tion of golden cuts—circuit structure that induces neglectable
basis elements. Then, Section II-B derives an online detection
algorithm for these structures.

A. Circuit Bipartition

Suppose an N -qubit quantum circuit induces a state ρ.
Further suppose we want to perform K cuts on a quantum
circuit to divide it into two fragments, f1 and f2 (see Figure
1). Indexing each cut by an integer in [K], then we can write
the cutting scheme as an injective function c : [K] → [N ] that
maps a cut to the respective qubit being cut. The premise of
circuit cutting is to rewrite ρ in terms of the states induced
by the circuit fragments, ρf1 and ρf2 , albeit with some
parameterization.

As first shown in Peng et al. [1], this can be done via
expanding ρ at the location of the cut. That is, for a basis set
over 2×2 Hermitian matrices, B = {I,X, Y, Z}, the following
decomposition holds:

ρ =
1

2K

∑
M∈BK

ρf1(M)⊗ ρf2(M) (1)

where

M =
(
Mc(1) Mc(2) . . . Mc(K)

)
, Mc(i) ∈ B. (2)

The state of each fragment ρfi , i = 1, 2, . . . is parameter-
ized by an operator M and depends on the particular gates
contained in the circuit. Let Ufi denote the unitary operation
induced by the quantum gates on each fragment, and let |0⟩

be an Nf1 -qubit “zero” state. Then, we can write ρfi as the
following (up to appropriate qubit permutation):

ρf1(M) = trc(1),...,c(K)

⊗
i∈[K]

Mc(i)Uf1 |0⟩⟨0|U
†
f1

 , (3)

ρf2(M) = Uf2

⊗
i∈[K]

Mc(i) ⊗ |0⟩⟨0|

U†
f2
. (4)

The choice of basis is arbitrary, and we chose the normalized
Pauli basis for simplicity. Note that the above equation lacks
a physical interpretation as elements in B are traceless (except
for I) and hence, are not quantum states.

To resolve this issue, we note that each operator M admits
spectral decomposition. Letting

r =
(
rc(1) rc(2) . . . rc(K)

)
∈ {±1}K (5)

be a tuple of eigenvalues, we define

Mr =
(
M

r(1)
c(1) M

r(2)
c(2) . . . M

r(K)
c(K)

)
(6)

to be the r-th eigenstate of operator M . Let s ∈ {±1}K and
Ms be similarly defined. Applying this decomposition gives
the reconstruction formula in the bipartition case:

ρ =
1

2K

∑
M∈BK ,

r,s∈{±1}K

Par(r) Par(s) ρf1(M
r)⊗ ρf2(M

s) (7)

where Par(r) denotes the parity of a string of eigenvalues, i.e.,
Par(r) =

∏
i ri. The formula above lends itself to a measure-

and-prepare scheme for realizing quantum circuit cutting: for
each basis element M , we measure the upstream circuit in the
basis, prepare the downstream circuit into the eigenstates of
the same basis, and reweight the outcome of the downstream
circuit by the probability of observing the respective eigenstate
upon measuring the upstream fragment.

Alternatively, for any desired quantum observable O, sup-
pose the operator can be decomposed to accommodate the two
fragments, i.e., O = Of1 ⊗Of2 up to appropriate permutation
of qubit indices. Then, we can arrive at an expression for the



expectation of the uncut circuit in terms of the fragments ρfi
and their respective observables Ofi :

tr(Oρ)

=
1

2K

∑
M ,r,s

Par(r)Par(s)tr ((Of1 ⊗Of2) (ρf1 ⊗ ρf2)) (8)

=
1

2K

∑
M ,r,s

Par(r)Par(s) tr (Of1ρf1) tr (Of2ρf2) (9)

where we implicitly apply M to ρf1 and ρf2 .
Note that the decomposition assumption O = Of1 ⊗ Of2

is without loss of generality. For any choice of Hermitian
operator O, one can expand it with respect to Pauli strings,
i.e.,

O =
∑

S∈BN

aS S (10)

for some set of real coefficients {aS}. So, by linearity of
the trace operator, we obtain a generalized expression for the
expectation:

tr(Oρ)

=
1

2K

∑
S,M ,r,s

aSPar(r)Par(s)tr (Sf1ρf1) tr (Sf2ρf2) (11)

where Sf1 and Sf2 are the Pauli strings separated according
to the circuit cutting scheme, i.e., S = Sf1 ⊗ Sf2 under
appropriate qubit permutations.

We now formally define the golden circuit cutting point.

Definition 1. Consider an N -qubit circuit amenable to bipar-
tition with K cuts. We’re interested in the expectation of the
circuit-induced state with respect to some quantum observable
O = Of1 ⊗Of2 . The cutting scheme admits a golden cutting
point if there exists M∗ ∈ BK such that∑

r∈{±1}K

Par(r) tr (Of1ρf1(M
r
∗ )) = 0 (12)

More simply put, a golden cutting point refers to the exis-
tence of a basis element that leads to systematic cancellations.
Golden cutting points neither necessarily exists nor are unique.
For each such basis element, one does not need to execute the
circuit downstream of the cut with initialization corresponding
to the neglected basis.

Golden cutting points can be constructed via circuit design
by restricting the set of rotations allowed prior to cutting so
long as the structure of the quantum circuit permits. However,
one should not expect such a property to hold for an arbitrary
algorithm. Thus, we propose an “online” scheme for detecting
the existence of golden cutting points and establish robustness
of misidentifying golden cuts.

B. Identifying Golden Cutting Points

With no knowledge of the existence of golden cutting
points, one must execute each of the 4K upstream circuits and
another 4K downstream circuits (f1 and f2 respectively in the
bipartition case). To detect golden cutting points in the absence

of a priori knowledge, we propose to conduct a hypothesis test
for each of the 4K upstream circuits, determine whether there
is statistically significant evidence for the existence of a golden
cutting point, then run the corresponding downstream circuit.

Denote

τ =
∑

r∈{±1}K

Par(r) tr (Of1ρf1(M
r
∗ )) (13)

as the quantity we want to verify magnitude of. Inheriting
the bipartition assumption from the previous section, we can
rewrite τ as estimating the expectation of a larger observable

τ = tr
(
(Of1 ⊗M∗)Uf1 |0⟩⟨0|U

†
f1

)
. (14)

where, again, Uf1 |0⟩ is the state induced by the upstream
fragment. Writing τ in this form allows us to employ standard
techniques for estimating quantum observables.

Assume for convenience that Of1 is a Pauli-string. To esti-
mate the expectation, we measure each qubit in the respective
Pauli basis (by performing a rotation V ) m times and obtain
an ensemble of bitstring samples {b̂i}mi=1. Therefore, we can
estimate τ be constructing

τ̂ =
1

m

m∑
i=1

⟨b̂i|V †(Of1 ⊗M)V |b̂i⟩. (15)

Alternatively, one can think of estimating the distribution of
strings of eigenvalues (which we’ll call eigenstrings for short)
induced by the measurements. Write pb for the probability of
obtaining eigenstring b, and p̂b for the empirical probability.
Moreover, let p and p̂ denote the vector of probabilities. Then,
we can sum the parity of each eigenstring weighted by the
(empirical) probability to arrive at an alternative expression
for the estimator:

τ̂ =
∑

b∈{±1}Nf1

Par(b) p̂b. (16)

The proposition below establishes the standard error and
asymptotic normality, which are convenient for hypothesis
testing.

Proposition 1 (Asymptotic Normality). Given a circuit
amenable to the bipartite circuit cutting scheme (cf. II-A),
let τ̂ be the estimator of τ expressed in Equation 15 and
let Of1 admit decomposition as in Equation 10. Then, τ̂ is
asymptotically normal, i.e.,

τ̂ − τ

std(τ̂)
→ N (0, 1) (17)

where the standard deviation of the estimator is expressed as

std(τ̂) =

 ∑
S∈BNf1

a2S
N

χ⊺(diag(p̂S)− p̂Sp̂S
⊺)χ

1/2

(18)

and χ is the vector of parities, i.e., χb = Par(b).

Proof. We first consider the case were Of1 is a Pauli string S,
then proceed to generalize to arbitrary quantum observables.



Estimating the expectation of the Pauli string S with m
shots, using the formalism presented in Equation 16, gives the
standard error

Var(τ̂) = Cov

(∑
b

p̂b Par(b),
∑
b′

p̂b′ Par(b′)

)
(19)

=
∑
b,b′

Cov(p̂b, p̂b′)Par(b)Par(b′) (20)

=
1

m

∑
b=b′

pb(1− pb)−
∑
b̸=b′

pbpb′Par(b)Par(b′)


(21)

where the third equality follows from the covariance of multi-
nomial distributions. Using the empirical quantities for each
pb and writing in matrix form gives the estimated standard
error

std(τ̂) =

√
1

m
χ⊺(diag(p̂S)− p̂Sp̂S

⊺)χ. (22)

Consider the decomposition in Equation 10. As the estima-
tion procedure runs independently, variances add. Hence, we
arrive at the form in Equation 18.

Lastly, asymptotic normality is established by the equiva-
lence formulation presented in Equation 15 and Equation 16.
In the form of Equation 15, we can express τ̂ as the average
over independent samples. In combination with finiteness of
Of1 , the Central Limit Theorem holds, implying asymptotic
normality of τ̂ .

Using the above proposition, we can deduce an algorithm
for detecting golden cutting points. For each basis element
in BK , we will compute τ̂ and perform a statistical test for
whether τ ̸= 0. If we’ve gathered statistically significant evi-
dence for τ being non-zero, then we would run the downstream
fragment parameterized by the respective basis element. On
the other hand, if τ̂ is sufficiently close to zero, then we
classify the cut as a golden cutting point and proceed without
running the corresponding downstream fragment. Using Φ to
denote the CDF of a standard Gaussian, we summarize the
above procedure in Algorithm 1.

While we can control the rate of correctly identifying golden
cutting points by the significance level α, we would also like
to derive a way of controlling the rate of false negatives. In
fact, falsely identifying a non-golden cutting point as golden
is more problematic than falsely identifying golden as non-
golden. This is because in the latter case the reconstructed
bitstring distribution will likely still be within acceptance error
ranges, but that’s not the case for the former. Thus, we hope to
lower the probability of false negatives by taking a sufficient
number of shots during the estimation procedure.

Remark 1. As we have showed that the estimator converges
weakly to a normal distribution, we will assume Gaussianity
to facilitate analysis. Suppose τ̂ ∼ N (τ, b2/m) where b =√
m·std(τ̂). We hope that for a basis element where τ > ϵ > 0,

the hypothesis testing scheme would reject it, perhaps with a

Algorithm 1: Online detection of golden cutting points
Input: fragments f1 and f2, observable Of1 , Of2 ,

significance level α ∈ (0, 1)
Output: Expectation tr(Oρ)

1 for M ∈ BK do
2 Compute τ̂ using Eqn. 16
3 if |τ̂ | > Φ−1(1− α) · std(τ̂) then
4 Reject the hypothesis and compute

Par(s) tr(Of2ρf2(M
s) for all s ∈ {−1,+1}K

5 else
6 Fail to reject the hypothesis and set quantities

related to M to zero

7 Reconstruct the full expectation from fragment data
using Eqn. 9

small probability of error δ. By the Chernoff bound, we know
that

Pr(|τ̂ − τ | > ϵ) ≤ 2e−mϵ2/2b2 = δ. (23)

Thus, to estimate τ to any desired ϵ accuracy with probability
1− δ, we need

m ≥ 2b2

ϵ2
log

2

δ
(24)

measurements. Since b is not known a priori, we can upper
bound it by

1⊺(diag(q) + qq⊺)1. (25)

The distribution q that maximizes the above quantity is the
uniform distribution. Thus, we can arrive at a definitive upper
bound b ≤ 3

2 (1− 2−Nf1 ).
Alternatively, one can interpret the proposed sample com-

plexity as accepting an ϵ margin for Equation 12 in the sense
that we declare a cut is golden if |τ̂ | < ϵ, thereby accepting
an additional additive error of magnitude O(ϵ) to the result
of the circuit reconstruction. On the other hand, if τ > ϵ,
we wish to identify it with probability 1− δ. Note that in the
limit of m → ∞, variance vanishes and the true positive and
negative rates approach one.

III. EXPERIMENTS

In this section, we numerically demonstrate the applicability
of Algorithm 1. The algorithm was implemented in Qiskit
and executed on the Aer simulator. We examine its statistical
(Section III-A) and runtime (Section III-B) properties through
studying its dependency on the number of shots and the
significance level α.

A. Statistical Analysis

As is standard in analyzing binary decisions, we analyzed
our statistical test by providing instances when the null hy-
pothesis is true and when it’s false. Specifically, we provided
circuits either with or without golden cuts, and observed the



Fig. 2: Behavior of Algorithm 1 for varied shots and α levels averaged over 1000 independent trials. The rate of true positives
(A) is consistent with the specified α, and the true negative rate (B) converges to one as the number of shots increases. The
reconstruction error monotonically vanishes both in the presence (C) and the absence (D) of golden cuts.

probability of correctly identifying the existence (or lack) of
golden cuts.

We consider a simple three-qubit circuit amenable to cutting
on the second qubit. First, we generated a circuit containing a
golden cut by appending two RX gates on the first and second
qubits, then an RY gate only on the first qubit—this is Uf1

from Figure 1, and we let K = 1. Rotation angle θ was set
to a value far from zero (θ = 0.5) to ensure X would be
the only golden cutting axis and to focus only on statistical
shot noise. To generate a circuit known to not contain a golden
cutting point, we applied the same procedure then appended an
additional RY gate on the second qubit (the qubit being cut) as
well. Finally, we generated Uf2 randomly across qubits 2 and 3
using Qiskit’s random_circuit function. Once the circuit
was constructed, for each shot count-α pair, we repeated
1000 independent executions of Algorithm 1 and collected
the frequency at which the algorithm correctly identified the
circuit structure. Results are displayed in subplots A and B of
Figure 2.

Subplot A shows the probability of failing to reject the null
hypothesis given the null hypothesis is true, which should be
exactly α. The numerics aligned with the theoretical value
with the exception of cases with low shot counts. This can
be understood as our estimator is built upon asymptotic state-
ments on the sampling distribution. Subplot B demonstrates
the rate of true negatives. We can see that, given sufficient
samples, we always identified non-golden cuts correctly. For
lower significance values, we are more prone to rejecting

the null hypothesis, explaining the faster rate of convergence
towards 1 for smaller α-values.

We also examined the quality of the reconstruction by
calculating the distance between the empirical and theoretical
bitstring distributions. The theoretical distribution is obtained
by taking large number of shots without circuit cutting. We
employed the ℓ2-distance to quantify how far apart two distri-
butions are, i.e., for discrete distributions p and q,

d(p, q) =

√∑
i

(pi − qi)2. (26)

Again, we executed Algorithm 1 independently for 1000
trials and collected the ℓ2 distance between the empirical, re-
constructed bitstring distribution and the respective theoretical
distribution at varying numbers of circuit execution shots and
alpha levels. Results are found in subplots C and D of Figure
2.

In general, the reconstruction error decreases monotonically
with the number of shots, and there was not a significant
difference among choices of α. In the case of low shot count
and no existing golden cut, there seems to be more statistical
fluctuation when reconstructing. Considering subplot B above,
we know that this region is prone to false negatives, and thus
neglecting bases that should not be neglected.

B. Runtime Analysis

To obtain timed runtime values, we generated a circuit with
a golden cut and executed Algorithm 1. Recall that, depending



run time (sec)

w/ optimization w/o optimization

α

10−1 0.0771±0.0006 0.0959±0.0004

10−2 0.0749±0.0004 0.0961±0.0004

10−3 0.0747±0.0003 0.0962±0.0004

TABLE I: Runtime comparison between circuit cutting pro-
cedures with and without optimization from Algorithm 1.
Independent trials were repeated 1000 times. We can see
that neglecting basis elements consistently run faster despite
spending computing overhead on hypothesis testing.

on the results of the hypothesis test on the upstream circuit, the
downstream circuit might not be executed for certain bases.
Then, we ran the same cut circuit and performed the usual
reconstruction routine without hypothesis testing or golden
cutting optimization. Both of these processes were timed indi-
vidually over 1000 trials and at varying alpha levels. Results
for this can be found in Table I. In general, we see roughly
a 20% decrease in runtime upon performing the optimization.
As α decreases, we tend to reject the null hypothesis more
often, thereby executing the downstream circuit more often.

IV. CONCLUSION

In this manuscript, we proposed an online detection al-
gorithm for finding golden cutting points—circuit structures
that induce neglectable basis elements during circuit recon-
struction. The detection algorithm was built on performing
a hypothesis test for each basis element, and executing the
respective downstream circuit only if the null hypothesis is
rejected. The detection does not require additional circuit exe-
cutions. We showed numerically that, under sufficient number
of shots, golden cuts will always be detected and there is no
drastic difference among choices of significance levels.

Empirically testing the algorithm on quantum hardware
and at large scale—both of which contribute additional noise
that can affect the quality of estimators—are left to future
work. Another immediate open question is the prevalence
of circuit structure amenable to golden cuts in applicable
circuits. For instance, we found that the SupermarQ [14] and
QASMBench [15] benchmark suites both feature a handful
of benchmarks that exhibit this circuit structure. Variational
circuits whose ansatz can be flexible might also be a candidate
to apply golden cutting point restrictions for better scalability.
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