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Abstract—In this paper, we propose an ansatz approximation
approach for variational quantum algorithms (VQAs) that uses
one of the hardware’s main attributes, its crosstalk behavior, as
its main approximation driver. By utilizing crosstalk-adaptive
scheduling, we are able to apply a circuit-level approxima-
tion/optimization to our ansatz. Our design procedure involves
first characterizing the hardware’s crosstalk and then approx-
imating the circuit by a desired level of crosstalk mitigation,
all while effectively reducing its duration and gate counts. We
demonstrate the effect of crosstalk mitigation on expressibility,
trainability, and entanglement: key components that drive the
utility of parameterized circuits. We tested our approach on real
quantum hardware against a base configuration, and our results
showed superior performance for the circuit-level optimized
ansatz over a base ansatz for two quantum chemistry bench-
marks. We take into consideration that applications vary in their
response to crosstalk, and we believe that this approximation
strategy can be used to create ansatze that are expressive,
trainable, and with crosstalk mitigation levels tailored for specific
workloads.

Index Terms—Quantum computing, variational quantum al-
gorithms (VQAs), parameterized quantum circuits (PQCs),
Crosstalk

I. INTRODUCTION

Near-term quantum computers are characterized by a limited
number of qubits, in the range of 10s to 100s with current
technology. Because there are not enough qubits to implement
full-scale quantum error correction, system and environmental
noise is exposed to the algorithm, which limits the useful depth
of quantum circuits. Variational quantum algorithms are a
promising approach for current hardware, utilizing reasonably
short-depth circuits and tunable parameters that can help
mitigate systemic noise.

A variational quantum algorithm (VQA) is a hybrid scheme
of computation that allocates tasks to both quantum and
classical computing resources and coordinates the execution
between the two through a tight feedback loop. The quantum
computer’s task is to prepare and measure relevant quantum
states generated by the so-called ansatz or Parameterized
Quantum Circuit (PQC). The classical computer’s task is to
update/optimize the circuit parameters, which are then fed
back into the quantum computer to prepare a new state. This
cycle is repeated until some convergence criteria are satisfied.

This work was supported in part by the QISE-NET NSF Fellowship DMR
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VQAs have been applied to a wide variety of applications
[1] such as quantum chemistry [2]–[5], combinatorial opti-
mization [6]–[8], and machine learning [9]–[13]. A widely-
used VQA is the Variational Quantum Eigensolver (VQE)
[14], which seeks to find the minimum eigenvalue of a matrix.
When used in quantum simulation, the matrix is typically the
Hamiltonian of a system. However, the algorithm is not just
limited to finding low energy eigenstates; it can be extended
to minimize any objective function that is expressible as a
quantum observable [15]–[17].

In this paper, we propose a different approach for VQA
optimization by integrating one of the quantum hardware’s
characteristics, particularly its crosstalk noise, in the design
process of PQCs. We propose an approximation strategy that
uses the hardware’s crosstalk behavior to create approximate
versions of a PQC with different levels of crosstalk mitigation.
We refer to PQCs created using this technique as Crosstalk-
optimized (Xtalk) PQCs. Multiple hardware features, such as
the native gate set, topology, and noise model, are unique
to each machine. We chose crosstalk as our main hardware
characteristic as it is recognized as a major challenge in
quantum computing, mitigable by both hardware and software
techniques [18]–[21]. Additionally, crosstalk-adaptive schedul-
ing techniques [20], [21] make it possible for this attribute to
be easily integrated into PQC design, as we will further discuss
in later sections.

Crosstalk can be defined as a mixture of unwanted interac-
tions between coupled qubits in a quantum device [20], [21]. It
can appear in many architectures such as trapped ions [22] and
superconducting systems [18], [19], [23]. Crosstalk errors can
manifest in many ways: as an exchange of excitation, leakage
to non-computational states [24], or an order of magnitude
worse gate fidelities [20], which are all detrimental to quantum
programs.

In superconducting systems, crosstalk can occur for multiple
reasons. IBM superconducting devices, for example, use fixed-
frequency resonators to couple their fixed-frequency transmon
qubits. This coupling produces an always-on ZZ interaction
proportional to the coupling strength or transmon-transmon
exchange J [18], [25]. This always-on ZZ interaction is
a major source of error in fixed-frequency devices. Besides
reducing the two-qubit gate fidelities below the levels set
by coherence, interactions with spectator qubits (qubits that
are not part of the two-qubit interaction) cause unwanted
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entanglement to accumulate across the system [19].
Crosstalk mitigation is, therefore, a major goal in quantum

hardware design and fabrication. For example, IBM machines
employ a set of crosstalk mitigation techniques, such as lim-
iting the device’s connectivity—which effectively simplifies
frequency allocation and limits the number of spectators to a
two-qubit interaction while admitting a quantum error correc-
tion code — and laser annealing of Josephson junctions [26],
[27]. Fixed-frequency transmon architectures such as the one
proposed in [28] utilize tunable couplers to achieve faster
two-qubit gates and to address errors due to the always-on
ZZ term. Other tunable superconducting devices, such as
Google’s Sycamore processor [29], where both qubits and
couplers are tunable, scalable optimization techniques are
utilized to extract error-reducing frequencies [30]. On a pulse
level, experimental results in [19] proved that adding rotary
echoes to the two-qubit cross-resonance interaction suppresses
errors arising from the static ZZ term. Despite such efforts,
crosstalk still exists in today’s quantum machines, as we will
see in Section III, and is still one of the main scalability-related
challenges.

Leveraging crosstalk-aware scheduling, we develop a novel
ansatz approximation mechanism that is capable of creating
different versions of a base configuration with different levels
of crosstalk mitigation, described in Section IV. In Section V,
we evaluate the effectiveness of the approach. Our crosstalk-
based ansatze outperform the base configuration for two
quantum chemistry benchmarks, speeding up execution by
up to 2.9× and 1.83× on average. Moreoever, we explore
the connection between crosstalk and trainability by demon-
strating that circuits experiencing more crosstalk have lower
trainability.

II. BACKGROUND

A. Randomized Benchmarking

Characterizing the noise affecting a quantum system is
useful in many ways. It allows for many optimizations to
a workload’s execution on the system and for good error-
correction schemes. Randomized Benchmarking (RB) is a
widely-used, scalable technique for partially characterizing
a quantum system’s noise. It is used by quantum hardware
developers to benchmark known gate sets such as Clifford
and CNOT-Dihedral [31]–[34]. The RB protocol can be sum-
marized in four steps [32]:
Step 1: K sequences of different lengths (m) are generated.

Each sequence consists of random gates from a spe-
cific gate set (e.g., Clifford) and a computed inverse
to return the qubits to their initial state.

Step 2: The sequences are executed on the hardware under
investigation. Each sequence is modeled for later
processing with a variable Sim that accounts for the
error rate of each operation in the sequence.

Step 3: The survival probability Tr[EψSim(ρψ)] of each of
the K sequences is measured, where ρψ is the initial
state (taking into account initial state preparation er-

Fig. 1: (a) The coupling map of ibmq guadalupe. (b) Simul-
taneous Randomized Benchmarking (SRB) for CNOT0,1 and
CNOT2,3 with {C0, ..., Cm} being the random Cliffords and
Cm+1 the inverting Clifford. The mapping of the gates on
the backend is indicated by the green and red highlighting in
(a). Operations indicated by the colored regions can be run
in parallel as they do not share resources. Note also that the
coupling between qubits 1 and 2 cannot be used when both
qubits are busy.

rors), and Eψ is the positive operator-valued measure-
ment (POVM) that takes into account measurement
errors. The average fidelity for the sequences Km is
then calculated

Fseq = (m, |ψ〉) = Tr[EψSKm
(ρψ)] (1)

where the average sequence operation SKm
=

1
Km

∑
im
Sim .

Step 4: The experiment is repeated for different sequence
lengths (m). The average sequence fidelities obtained
in Step 3 are fitted to

F (0)
seq = (m, |ψ〉) = A0α

m +B0 (2)

where F (0) is the gate-independent and time-
independent “simpler” fitting model. A0 and B0 coef-
ficients encode the state preparation and measurement
errors, respectively. The average error rate or Error
per Clifford (EPC) is determined by the parameter α
through

EPC = 1− α− 1− α
2n

(3)

where n is the number of the qubits.
Simultaneous RB (SRB) [35], which consists of RB experi-
ments run simultaneously on sets of qubits, allows for further
investigations of a system’s noise properties by comparing to
RB experiments run individually. It enables the measurement
of crosstalk and “conditional” error rates: gate errors on a qubit
while nearby qubits are active. Utilizing SRB to control and



Fig. 2: (a) Individual Error-per-Clifford (EPC) rates for
CNOTs executed on ibmq guadalupe. (b) Conditional Error-
per-Clifford (EPC) rates when two CNOTS are executed
simultaneously. Cells are shaded according to the relative
conditional-to-independent error rates.

handle errors arising from crosstalk and unwanted interactions
in multi-qubit systems has been proposed in [20]. We further
explain their proposed methodology in the next section.

B. Expressibility, Trainability & Entanglement

To evaluate whether a PQC can prepare the target quantum
state, different metrics have been proposed [9], [13], [36]–[38].
In this section, we describe three qualitative metrics used in
this paper to estimate a PQC’s expressibility, trainability, and
entanglement.

Expressibility is a metric first proposed by Sim et al. [36]
to evaluate a PQC’s ability to produce quantum states that
closely represent the Hilbert space. This is done by comparing
the distribution of states obtained from a PQC’s parameterized
unitary to the maximally expressive uniform (Haar) random
states. It is estimated using the Kullback-Leibler (KL) [39]
divergence as follows

Expr = DKL|(P̂PQC(F ; ~θ)||P Haar(F )) (4)

where P Haar(F ) is the probability distribution of fidelities F
for the Haar random state and P̂PQC(F ; ~θ) is the probability
distribution of the fidelities of quantum states prepared by the
PQC. As a divergence measure, a smaller expressibility value
indicates a more expressive circuit.

Trainability: the trainability of PQCs is crucial for achiev-
ing good performance in VQAs. However, simply increasing
the expressiveness of a PQC does not always lead to better
performance. It is crucial to characterize the optimization
landscape of a VQA and use efficient training routines to
ensure good performance. Interestingly, perfectly expressive
ansatze often have flatter optimization landscapes and are less
trainable [38]. The trainability of PQCs, particularly hardware-
efficient ones, has been studied extensively, with earlier work
by McClean et al. [40] demonstrating the phenomenon of
barren plateaus, where gradients vanish exponentially as the
number of qubits increases. This observation has been further

investigated by Cerezo et al. [15] to show that the occur-
rence of barren plateaus is cost-function-dependent for shallow
ansatze. Other factors, such as noise and entanglement, can
also impact barren plateaus [41]–[43].

In Section V-A2, we evaluate our PQCs’ trainability using
cost-function-dependent barren plateau analysis. Specifically,
we calculate V ar[∂iC], which represents the variance of the
partial derivative of a cost function C with respect to parameter
θi for n sampled circuits. The magnitude of the variance
reflects the concentration of the partial derivative around zero,
with smaller values indicating less trainability for the PQC.

Entanglement measurement quantifies the amount of en-
tanglement contained in a quantum state. Highly-entangled
PQCs can capture non-trivial correlations in quantum data and
efficiently represent solution spaces for tasks like ground state
preparation or data classification [2], [10], [36], [44], [45].
However, excessive entanglement can lead to concentration
of measure, making PQCs too random and less trainable. In
recent works, entanglement has been investigated as a primary
source of barren plateaus and its tradeoffs with trainability vary
across optimization problems [42], [43]. Thus, a comprehen-
sive understanding of the role of entanglement in VQAs is
important [46]–[49].

In this paper, we use the bipartite entanglement entropy,
which is the Von Neumann entropy of the reduced density
matrix of any of the subsystems, to estimate the spread S of
circuit entanglement

S = Tr[ρα log2 ρα] (5)

where ρα is the reduced density matrix of (n−1)/2 connected
qubits containing as many cost function qubits as possible [43].

III. CROSSTALK CHARACTERIZATION USING SRB

Following the method proposed by Murali et al. [20], we
characterize quantum devices’ crosstalk using SRB. We focus
on the effect of crosstalk on simultaneous two-qubit gates
only in this paper, as we are interested in approximating the
entangling layers of a PQC, which are normally comprised of
two-qubit gates only. Note that this is different from crosstalk
characterization at the two-qubit Hamiltonian level, achieved
through tomography-based techniques [19], [50]. Here, we are
examining the quantum device’s crosstalk behavior at a gate
level.

Fig. 1(a) shows the coupling map of IBM’s 16-qubit device
ibmq guadalupe, which we use to demonstrate our technique.
We utilize Qiskit Experiment’s [51] RB infrastructure for
our experiments. First, we perform Interleaved RB (IRB) to
measure the independent error rates of CNOT gates applied
on each backend pair, with no operations executed in parallel.
IRB interleaves the gate under investigation (CNOT) with
multiple random sequences generated from the gate set [31]–
[33]. As we discussed in Section II-A, the measured results
are fitted to a theoretical model that accounts for the measured
qubits’ ground state population, from which a CNOT’s error
is estimated. The results from this experiment are shown in
Fig. 2(a).



Next, we perform SRB by performing IRB on two CNOTs
simultaneously, as shown in Fig. 1(b). Two operations can be
parallelized if they do not share a quantum resource (both
qubits and couplers in this case), as shown by the colored
links in Fig. 1(a). SRB allows us to measure the conditional
error rate of CNOT0,1 in the presence of CNOT2,3 and vice
versa. When the conditional error rate is higher than the inde-
pendent rate, we generally attribute that difference to crosstalk
interference. Fig. 2 illustrates the independent and conditional
error rates for CNOT gates executed on ibmq guadalupe.
The experiment reveals that multiple parallel CNOTs incur
crosstalk at different levels of severity that can degrade their
error rate by up to 3.14×. The number of experiments is
reduced by performing SRB on CNOT pairs that are only one
hop away from each other on the coupling map. Experimental
results from [20] prove that crosstalk noise is significant only
at this distance for IBM machines, which comes as a natural
result of the device’s limited connectivity. Additionally, results
from [52] demonstrated that simultaneous single- and two-
qubit gates SRB show minor changes in error rates due to
crosstalk. However, the method is still applicable if such a
level of characterization is desired.

IV. CROSSTALK-BASED PQC APPROXIMATION

In this section, we describe our PQC approximation ap-
proach in detail. Our goal is to integrate crosstalk in the
design process of PQCs. Such integration allows for further
understanding and evaluation of the effects of noise in general,
and crosstalk in specific, on the performance of VQAs, and
characteristics of PQCs such as expressibility [36] and train-
ability [15], [40]. In Section V, we demonstrate how crosstalk
closely affects all of these aspects.

Our approach is aimed at Hardware Efficient Anstaze
(HEA), as they do not typically encode any problem-specific
data in their structure, allowing for more approximation and
rearrangement flexibility.

A. Approximation to Alternating Layered Ansatz

The first step in this approach is to break any ordering or
dependency constraints in the PQC’s entangling layer. This
is achieved in Qiskit’s transpiler [53] by parsing the PQC’s
Directed Acyclic Graph (DAG) representation and identifying
all operations in its first entangling layer (or sub-layer). Next,
the operations are scheduled on the backend’s qubits (mapped)
with the maximum allowed parallelism, disregarding their or-
dering or commutativity constraints, resulting in a transformed
DAG. In other words, this step approximates the PQC to
a structure similar to an Alternating Layered Ansatz (ALA)
[15], [40], [54]. Fig. 3(a) and (b) show an example of a PQC
configuration before and after applying this approximation
step.

B. Overview of Crosstalk-Adaptive Scheduling

In this section, we give an overview of XtalkSched [20], a
crosstalk-adaptive scheduling algorithm that aims to mitigate
the impacts of crosstalk and decoherence on a quantum

Fig. 3: (a) The base PQC. (b) The PQC after applying the
approximation step described in Section IV-A. The PQCs (c),
(d), and (e) show the approximated PQC after applying Xtalk
scheduling with high, medium, and low crosstalk tolerance
respectively.

program simultaneously. We employ this algorithm to extract
crosstalk-mitigated sub-layers from the approximated PQC we
obtained in the previous step. XtalkSched models scheduling
of the quantum circuit as a constrained optimization problem
and solves it using Satisfiability Modulo Theory (SMT) [55].
Its cost function incorporates crosstalk data, program depen-
dencies, and machine calibration (independent error rates,
coherence time, and gate duration).

To model crosstalk error, the optimizer connects the inde-
pendent gate error rates with the different overlap scenarios
that can happen when multiple gates are executed simul-
taneously. It does so by creating an overlap set for each
gate Olap(gi) that tracks all gates that can possibly overlap
with it. Each gate pair is then assigned an overlap indicator
σij that is set to 1 when gates gi and gj overlap and 0
otherwise. These overlap indicators are used to formulate the
gate error constraints. For example, consider a scenario where
Olap(g1)= {g2, g3} which creates four possible scheduling
scenarios (See [20, eq. (3)–(6)]). As such, the overlapping
scenario will determine whether the optimizer picks an in-
dependent error rate for g1 (i.e., E(g1)) or a conditional error
rate (e.g., E(g1|g2)), which represents the error rate of g1 in
the presence of g2. For any overlap scenarios, the scheduler
is configured to pick the maximum error rate possible for a
gate.

Qubit decoherence errors are accounted for by computing
the lifetime of each qubit in the schedule qi.t, which is the
difference between the start time of the first operation and
the finish time of the last one executed on qi. If a program
performs a computation for time t on a qubit, the probability
of error from T1 and T2 losses are (1 − e

−t
T1 ) and (1 − e

−t
T2 )

respectively. With that, the decoherence error is calculated as

qi.ε = 1− e
qi.t

qi.T (6)



Fig. 4: The Xtalk pqc configuration. m specifies the number
of base layers. R is the number of sub-layers obtained by
the scheduler and is determined by the configured crosstalk
mitigation level. High crosstalk mitigation will lead to larger
R and vice-versa.

where T is the minimum of T1 and T2, corresponding to the
maximum available compute time on qi.

The optimizer also adds constraints to satisfy data depen-
dencies as well by ensuring that if two gates gi and gj operate
on the same set of qubits, the program order is satisfied.
Finally, the overall cost function can be represented as follows

min

ω
∑
∀g∈G

(log g.ε)︸ ︷︷ ︸
Gate errors (Crosstalk)

− (1− ω)
∑
∀q∈Q

(q.t/q.T )︸ ︷︷ ︸
Decoherence errors

 (7)

where the first term aims to minimize the gate error g.ε of each
gate from the program gates G. The second term minimizes the
decoherence error of each of the program qubits Q according
to (6). Finally, ω ∈ [0, 1] is a user-set parameter controlling
the weight (importance) of each term, which can be tuned per
application to balance between gate errors and decoherence
and achieve better results.

C. Alternating Crosstalk-Mitigated Layers

In this step, we apply XtalkSched to the approximated
circuit obtained in the first step (Section IV-A) to extract
“crosstalk-mitigated” sub-layers that we can use in our Xtalk
PQCs. To enable the scheduler to accurately provide us
with different levels of crosstalk mitigation, we modify two
parameters:
• First, we increase the threshold used to calculate each

gate’s Olap set. This ensures that all conditional error
rates larger than 1 are accounted for, essentially making
the scheduler more sensitive to crosstalk.

• With all possible overlaps now considered, alternating the
value of ω in (7) gives us the desired outcome of different
levels of crosstalk mitigation. Dropping ω to 0 forces the
scheduler to create sub-layers with maximum parallelism,
as the cost function will only optimize for decoherence.

Fig. 5: (a) Base PQC configuration. (b) and (c) show the layer
configuration for base1 and base2, respectively.

Increasing ω balances between the two error terms up
until 1, at which the scheduler optimizes for gate errors
only (including crosstalk) and completely serializes the
execution.

Once the schedules are obtained, the scheduler adds controls
in the form of barriers as a post-processing step. This is
important to our approach as it facilitates extracting the sub-
layers from the scheduled IR. Figures 3(c), (d), and (e)
show the result of scheduling the approximated circuit with
three levels of crosstalk tolerance: high (ω = 0), medium
(ω = 0.5), and low (ω = 1) respectively. Fig. 5 shows two
base configurations we use in our evaluations (Section V).
Fig. 5(b) shows the single-layer configuration for base1, which
contains the base entanglement layer we used in the previous
step (before approximation) while Fig. 5(c) shows the single-
layer configuration for base2, which has the approximated
entanglement layer (before applying XtalkSched).

With the sub-layers obtained from the scheduler, we can
construct our Xtalk pqcs as shown in Fig. 4. The first m layers
of the PQC are from the base configuration. As Xtalk pqcs can
possibly have dispersed connectivity across a large number of
layers, we add this option to help the optimized PQCs achieve
better expressibility and entanglement. Our experimental anal-
ysis revealed that parameters such as expressibility saturate
within 3-5 layers. Therefore, we add up to 5 base layers to our
Xtalk circuit to make it more expressive. The rest of the circuit
is constructed by alternating between single-qubit rotation
layers and R sub-layers obtained by the XtalkScheduler for
L−m times, where L is the total number of layers.



Fig. 6: The effect of adding base1 layers on expressibility. The bars show the % increase in expressibility for 5- and 7-qubit
Xtalk pqcs with (m = 2) over the same configurations with (m = 0) across different numbers of layers.

V. RESULTS AND EVALUATION

In this section, we first analyze different PQC configurations
for expressibility, trainability, and entanglement. Next, we
evaluate other circuit parameters such as duration, depth, and
gate counts. Finally, we assess the PQCs’ VQE performance
on real hardware for two quantum chemistry benchmarks.

We evaluate five PQC configurations: base1, base2,
high Xtalk, medium Xtalk, and low Xtalk. Fig. 5 shows the
configuration for base PQCs. The Xtalk circuits {high Xtalk,
medium Xtalk, low Xtalk} follow the configuration shown
in Fig. 4. The sub-layers are obtained by applying different
levels of crosstalk-mitigation, with high Xtalk, for example,
corresponding to the lowest level of mitigation (Fig. 3(c)) and
so on.

A. Expressibility, Trainability, and Entanglement

1) Expressibility: We first evaluate the effect of adding base
layers to our Xtalk pqcs on their expressibility. As mentioned
in Section IV-C, the sparsely connected sub-layers used in
Xtalk pqcs can possibly produce less expressive ansatze. An
easy solution to this would be to add a few layers from the
more expressive base configuration.

Fig. 6 shows the % increase in expressibility due to adding
two base1 layers (m = 2) for different 5- and 7-qubit
Xtalk pqcs. We pick a value of 2 as our empirical analysis
reveals that expressibility for various ansatz nears saturation
at a number of layers in the range of 3 to 5. We see the
highest increase in expressibility for shallower PQCs utilizing
the sparsely connected Medium and Low Xtalk sub-layers
(79.7 and 93.91%, respectively). We also see that the 7-qubit
Medium Xtalk PQC with (m = 0) is less susceptible to the
addition of base layers than its 5-qubit counterpart. This is an
outcome of XtalkSchedule’s performance with different circuit
sizes. The 5-qubit Medium and Low Xtalk have very similar
sub-layers’ structure. On the other hand, the 7-qubit PQCs
give the scheduler more freedom to create different levels of
crosstalk sensitivity. This led to the 7-qubit Medium Xtalk
with (m = 0) having more comparable expressibility to
its (m = 2) version and a lower increase. The relative
difference drops as we increase the number of layers, which is

Fig. 7: The expressibility of the different PQC configurations.
The triangle and circular markers show the expressibility for
Xtalk pqcs with (m = 0) and (m = 2), resprectively.

expected as the expressibility of PQCs with (m = 0) gradually
increases. On average, the addition of 2 base layers increases
expressibility by 8.26, 23.98, and 32.84% for High, Medium,
and Low Xtalk configurations.

Fig. 7 shows the expressibility of the five PQC config-
urations used in our evaluations. We see that Xtalk pqcs
with (m = 0) achieve similar (or better) expressibility to
the base configurations. However, as demonstrated in prior
research [38], [56], more expressibility does not directly lead
to better performance. In fact, it can sometimes worsen a
PQC’s trainability [38] for deep configurations. Thus, we
leave identifying the number of m layers leading to optimal
expressibility as future work.

2) Trainability: We conduct a cost-function-based trainabil-
ity analysis [15] for the ground state preparation problem

CG = 1− p|0〉⊗N (8)

where N is the total number of qubits, and p|0〉⊗N is the
probability of measuring the |00...0〉N state. For the local cost
function, we only consider the probability of a subset of qubits

CL = 1− p|0〉⊗NC (9)

where NC is the number of cost-function qubits.



Fig. 8: The change in variance of the partial cost function derivative for High, Medium Xtalk, and Low Xtalk at different
local cost function sizes (nC), for shallow configurations (L = log2(N)), where N is the number of PQC qubits. The figure
also demonstrates the effect of crosstalk on trainability through experimenting with two types of simulation: Standard QASM
simulation and Xtalk-enabled QASM simulation as described in Section V-A2.

Qiskit’s QASM simulator, which we use for this analysis, is
currently limited to simulating independent gate errors. This
poses a challenge for analyzing the impact of crosstalk on
trainability. To address this issue, we modify the simulation
to enable accounting for conditional error rates. This can be
cheaply done by keeping a map of “EPC multipliers” using
the values indicated by Fig. 2(b) color map. Next, for each
DAG layer containing a parallel set of CNOTs, the multipliers
map can be used to adjust their error rates. For example,
consider a case when CNOT0,1 is executing in parallel with
CNOT2,3 and CNOT4,7 for which it has the multipliers 1.217
and 1.006, respectively. Then, its error rate for this particular
instance will be its independent EPC × 1.217× 1.006.

We analyze the trainability for High, Medium, and
Low Xtalk at different local cost function sizes (nC), as shown
in Fig. 8. We see that crosstalk does indeed affect trainability,
with the variance of the partial gradients decreasing by the
increased crosstalk noise in the circuit. This suggests that
barren plateaus can also be “Crosstalk-induced”, in addition
to previous findings in [41] that only considered local Pauli
noise. This observation is only available through the Xtalk-
enabled simulation (blue lines in Fig. 8), as the standard
QASM simulation shows little to no variation between the

different PQCs. Additionally, we observe that the effect of
crosstalk decreases as we increase the cost function qubits
(nC > 2), as indicated by the shrinking size of the shaded
regions.

3) Entanglement: Fig. 9a shows the trend of entanglement
entropy for five PQC configurations with 9-qubits and a 4-5
partition. As expected, the base configurations create more
entanglement compared to the Xtalk approach. Similar to
expressibility, the entanglement trend is inversely proportional
to the sparsity of the Xtalk pqc’s sub-layers, with High Xtalk’s
trend line approaching base as depth increases. As previous
work [46]–[49] states, different applications might require
different levels of entanglement. A simple method to account
for this entanglement loss in our Xtalk pqcs, if an application
necessitates it, is to increase m. Fig. 9b shows the trend
in entanglement entropy for Xtalk pqcs with (m = 1

3L);
entanglement quickly approaches the levels achieved by the
base configurations.

B. Experimental Setup

We conducted our experiments on ibmq guadalupe, a 16-
qubit backend available through IBM Quantum Service with
average T1 and T2 times of 102.67 µs and 108.06 µs respec-



(a) (b)

Fig. 9: The trend lines of entanglement entropy S for the five PQC configurations vs. number of layers. (a) Shows the entropy’s
trend with a fixed number of base layers for the Xtalk pqcs while (b) shows the trend with a number of base layers that equals
1/3 of total layers.

tively, and an average CNOT error rate of 1.013e-2 during
the time of writing this paper. Note that these values fluctuate
and are monitored through daily calibrations available through
Qiskit. We utilize Qiskit Runtime [57], a programming model
that allows for faster execution of quantum workloads on the
cloud, to run our algorithm benchmarks.

C. Circuit Parameters

We record the total gate count and duration of each PQC
with different configurations. We compile each configuration
with three Qiskit optimization levels and report the best gate
count and duration for each.

Fig. 10 shows the percentage of total gate count reduction
for each Xtalk pqc (with m = 2) compared to base. It is
important to note that both base configurations (base1 and
base2) have very similar gate counts as they both share the
same pre-compiled number of gates and their suitability to
1D mapping (mapping to a line of qubits). Additionally, our
Xtalk-based approach does not change the number of single-
qubit gates; thus, the gate reductions observed are ultimately
two-qubit gate reductions. We see an expected outcome that
all Xtalk pqcs reduce the number of two-qubit gates, as each
layer (after the first two layers) has a number of operations
less than base. Therefore, the percentage of reduction grows
with increasing the number of layers for each configuration, as
indicated by the figure. Overall, Xtalk pqcs have an average
gate count reduction of 5.7, 7.97, and 8.57% for High,
Medium, and Low Xtalk configurations, respectively, with up
to 21.46% for the 15-qubit Low Xtalk PQC. This specific
higher-than-average value of 21.46% is not directly attributed
to our Xtalk approach. We argue that it is due to the compiler’s
utilization of the reduced number of gates in its optimization
approach.

Fig. 11 shows the average speedups achieved by base2,
High, Medium, and Low Xtalk compared to base1. We first
note the difference between base1 and base2. Unlike total
gate count, base2 PQCs have lower depths as a result of the

approximation to an alternating structure. Therefore, we see
that base2 speeds up the execution time with an average of
1.23× at different PQC sizes and up to 1.48×. Xtalk pqcs,
on the other hand, observe higher average speedups due to
their lower depths compared to both base PQCs. The average
speedups are 1.66×, 1.94×, and 1.88× for High, Medium,
and Low Xtalk, respectively, with up to 2.93× and 2.86×
reported for the latter two configurations at (L = 3, n = 15).
We also observe that the rate of speedup drops for the 15-
qubit base2 and High Xtalk (1.13× and 1.15× respectively).
This is due to the mapping of the circuits on the 16-qubit
ibmq guadalupe. As the circuit size nears the backend’s total
number of qubits, the compiler will be unable to perform 1D
mapping. Therefore, it is more likely to add SWAP gates to
satisfy all operations in base2 and High compared to Medium
and Low Xtalk, which will be easier to map due to their lower
number of operations and hence, possible easier mappings to
the limited connectivity.

D. Algorithm Performance

We evaluate the performance of the PQCs for finding the
ground state energy of the H2 and LiH molecules through
VQE, which corresponds to finding the minimum eigenvalue
of Hermitian matrices characterizing these molecules. We
configured our experiments and PQCs as follows. We ran all
our benchmarks on ibmq guadalupe accessed through IBM
Cloud. We picked the Simultaneous Perturbation Stochastic
Approximation (SPSA) [58] as the classical optimizer, with
a maximum of 100 iterations. The number of PQC layers
L was set to 5 for both benchmarks, with (m = 2) for
Xtalk pqcs. We obtained both Hamiltonians using Bravyi-
Kitaev (BK) fermionic mapping technique [59] with Active-
Space reduction [60], resulting in 4- and 6-qubit Hamiltonians
for H2 and LiH, respectively. We chose BK-based Hamilto-
nians over other mapping techniques (e.g., Jordan-Wigner or
Parity [61]) that result in lower-qubit Hamiltonians and, in
return, might perform better on hardware [50]. The reason for



Fig. 10: Decrease (%) of total gate count over base for different Xtalk pqcs with (m = 2).

Fig. 11: Average speed-up compared to base1 for base2 and
Xtalk pqcs with (m = 2) at different circuit sizes.

this choice is that our three Xtalk variants (High, Medium,
and Low) are more distinguishable at larger PQC sizes.1

Figures. 12a and 12b show VQE results for H2 and LiH
molecules respectively. Although all PQC configurations do
not reach the target ground state energies, Xtalk pqcs clearly
outperform base configurations for both benchmarks. We make
two observations from the figures. First, both figures confirm
the advantage of our Xtalk approach and the effect of crosstalk
mitigation on algorithm performance. Second, Fig. 12b shows
that the best performing PQC is Medium Xtalk. This suggests
that the level of crosstalk-based approximation should be
tailored to each application to achieve the best results, which
we leave as future work.

VI. RELATED WORK

Crosstalk-based approaches for compilation and execution
have been investigated in [20], [21], [62]. Niu et al. [62]
investigated parallel execution techniques in noisy quantum
hardware by comparing the state-of-the-art methods and dis-
cussing their shortcomings with the impact of various as-
pects. Consequently, they proposed a Quantum Crosstalk-
aware Parallel workload execution method (QuCP) with no
crosstalk characterization overhead and additionally utilized
their method to parallelize Zero Noise Extrapolation (ZNE)
workloads and reduce their cost. Ding et al. [21] introduced
a systematic methodology for software mitigation of crosstalk
due to the frequency crowding phenomenon. Their strategy

1The experiment’s primary goal is to explore the differences between Xtalk
variants, not to get the most chemically accurate result.

allows for fixed coupler architectures to have matching levels
of reliability to tunable coupler architectures, thus simplifying
quantum machines’ fabrication. While this work trades paral-
lelism with higher gate fidelity when needed, it dramatically
improves the resilience of tunable qubits in fixed-couple
hardware.

Hardware-oriented compilation and approximation for
VQAs have gained much attraction recently [63]–[65]. Wang
et al. [63] proposed a noise-adaptive co-search framework for
variational circuits and qubit mapping, which utilizes iterative
pruning to remove redundant gates in the searched circuits.
Their investigation suggested several routes for more theoreti-
cal and experimental exploration in variational quantum algo-
rithms, with one route, the variational ansatz, being optimized
to alleviate barren plateaus. Patel et al. [64] proposed a method
for reducing CNOT gate count by generating approximations
for quantum circuits through partitioning for scalability. Their
method reduces the circuit length with approximate synthesis
while improving fidelity by running circuits representing key
samples in the approximation space. The work proposed by
Li et al. [65] leverages Pauli strings to identify program
components and introduce optimizations at the algorithm,
compiler, and hardware levels, for a family of chemistry
problems.

VII. CONCLUSIONS

In this paper, we examined a new approach to embedding
a machine’s characteristics in the VQA ansatze design. We
developed a strategy to approximate PQCs to a more hardware-
efficient version by utilizing the hardware’s crosstalk char-
acteristics. Our approach aims at creating a version of the
ansatz that inherently mitigates crosstalk by utilizing crosstalk-
based scheduling. The methodology can be used to create
approximated PQCs with various levels of crosstalk mitigation.

Our analysis shows that crosstalk mitigation enhances the
performance of VQE. We utilized a combination of hardware
and algorithmic PQC analysis parameters to evaluate our Xtalk
approach. Our results demonstrate that the Xtalk approach
maintains similar expressibility to a pre-approximated base
and is more trainable for local a cost function, all while
speeding up the execution by an average of 1.83× (up to
2.93×) and reducing the total gate count by an average of
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Fig. 12: VQE results for H2 and LiH molecules.

7.9% (up to 21.46%). Moreover, our algorithm performance
results show that Xtalk pqcs clearly outperform base for
estimating the ground state of two chemical molecules using
VQE. Furthermore, the results hint that, although Xtalk pqcs
generally perform better than base, the level of crosstalk
mitigation used to construct a Xtalk pqc is not directly pro-
portional to its algorithmic performance. Therefore, a method
that closely ties the approximation degree to the application’s
performance should will be explored as future work.
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